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Abstract. State machines are considered a very general means of expressing
computations in an implementation-independent way. There are also ways to
extend  the  general  state  machine  framework  with  distribution  aspects.
However, there is still no agreement when it comes to handling time in this
framework. In this  article we take a look at existing ways to enhance state
machine frameworks. Based on this we propose a general framework of time
extensions  for  state  machines,  which we relate to existing approaches.  Our
work  is  mainly  based  on  time  approaches  for  ASM,  because  ASM  are
considered a very general state machine model. Taking this into account, our
approach is valid for state-transition systems in general.

1   Introduction

State  machines are considered a  very general  means of expressing computations.
This  is  used  in  the  formalism  of  Abstract  State  Machines  (ASM)  [1]  that  are
considered appropriate for giving semantics of a system in terms of its set of possible
executions.  ASM have been used to  define  a  formal  semantics  for  programming
languages (e.g. C [15] and Java [16]).  It  has also been used to define the formal
semantics of SDL 2000 [17], the most recent version of SDL [3]. SDL includes an
explicit  notion  of  time and time progress,  whereas  ASM,  at  least  in  their  initial
version,  have  no  explicit  means  to  deal  with  real-time.  Being  a  very  general
formalism, it is however possible to express any notion of time. For the definition of
the SDL semantics in ASM, we used the ASM time semantics as proposed in [2] and
encountered some problems. The SDL view on time progress is slightly different
from the one formalized in [2]. Moreover, ideas to extend the SDL timing to include
models with continuous changes lead to a more thorough examination of this issue.
This motivated us to summarize some essential properties of timed computations and
to derive a methodology for dealing with time in ASM, which we present in this
paper. We have studied the main models for timed computations used outside the
domain of ASM and we have considered the existing time extensions of ASM. Our
aim is to provide a framework for defining timed computations in ASM. For this
purpose, we define also a set of generic properties of timed computations, which may
be used to restrict the set of “well-formed timed computations”. 
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We tackle the problem by considering the needs for modeling the semantics of
concurrent  and  possibly  distributed  systems  as  in  the  context  of  model  based
verification and testing. We want to provide a means to describe executions of timed
systems using ASM in a convenient manner. In particular, we do not want to restrict
ourselves  to  the  description  of  time  dependent  behavior  –  as  in  real-time
programming languages – but we want to describe a set of timed computations which
means also to express constraints on time progress with respect to system progress.
In other words, we do know that some computations take some amount of time and
want to specify this.

In  section  2,  we  discuss  how  to  introduce  time  into  the  domain  of  ASM.
Moreover, we give some ideas how to express timed properties. Section 3 provides a
set of time properties that can be chosen in addition to the basic properties of section
2. Section 4 discusses the relation of our approach to the existing approaches. In
Section 5, we collect the properties we have given to form one possible use case for
ASM. The presentation is closed by some conclusions. 

2   An Overview on ASM and Timed Systems

In this section, we discuss general problems occurring when introducing time in a
computation model, and then consider the particular case of ASM. Also, our aim is
not just to be able to describe a set of timed computations, but to get a means to
construct  this  set  of  computations  (executability).  We  give  an  overview  on  the
principles of ASM and discuss some general problems of timed systems.

2.1  An overview of ASM and their computation model

Abstract State Machines (ASM) [1] were introduced as a general computation model
taking  concurrency  into  account  explicitly.  They  are  defined  starting  with  a
sequential variant and going on to the general distributed case.

A sequential ASM algorithm is described by a set of rules applied to states. The
notion of state in ASM is very general1, but for the discussion of time extensions one
can consider without loss of generality that a state is defined by the values of a set of
variables  (also  called  locations).  The  notion of  “atomic  step”  (called  a  move)  is
defined by means of a (arbitrarily complex) rule for assigning a new value to some
variables  depending  on  the  old  state  values.  In  order  to  model  inputs  and  non
determinism, a part of the state space might consist of “monitored variables” which
are under the control of “the environment” and the values of which can only be read
by “the system”. The possible evolutions of the values of monitored variables can be
explicitly restricted by constraints. That means, the behavior of the environment may
be described in a declarative way, whereas the system description is provided in a
constructive way: for any state, a means to construct the (set of) next states is given

1  A state is an algebra and a rule describes a transformation between algebras.
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by the set of possible moves. The semantics of the system is given as the set of
possible  executions,  i.e.  countable  sequences  of  states  representing  possible
evolutions  from  the  initial  state  according  to  the  rules  and  the  constraints  on
monitored variables. 

In a distributed ASM, there exist several agents (the number of which may evolve
over time), which can read and write some part of the global state and have their own
update  rules.  The  semantics  of  distributed  ASMs  is  given  by  a  set  of  partially
ordered runs, where each of these runs consists of a set of moves, partially ordered
by a relation denoted <. Absence of order between moves expresses independence. In
addition, it is required that in any run the moves of each agent are strictly ordered and
that rule application is confluent (coherence condition). The set of executions is the
set of state sequences induced by all possible linearizations of all runs.

In ASM, there exists no predefined notion of  trigger. Each agent has “its rule”
which can be applied to any state independently of any other agent or the changes of
the environment. However, sometimes the application of the rule does not change the
state  (empty  update  set).  We  will  consider  these  rules  to  be  guarded  rules,
representing partial functions from global states to global states, and consider only
runs without such empty moves.

Based on this general setup in ASM, we consider a system description to consist
of  (a)  a  description  of  the  initial  state  (defined  as  the  valuation  of  a  vector  of
variables), and (b) a description of the state change rules. Rules are described per
agent. A rule defines a set of moves (m∈M). A run is a subset of moves (R⊆M)
satisfying the above mentioned constraints, where each move belongs to an agent. 

Definition: A prefix F of a run R is a subset of moves closed for <, that is,
∀m∈F ∀m’∈ R • m’<m  =>  m’∈ F

2.2  Adding Time to State Transition Systems

The first decision we have to take when adding time concerns the kind of models we
consider.  There  is  the  general  distinction  between  state-based  and  event-based
models. As we are mainly interested in ASM, we will focus in state-based models.
However,  the  following  statements  are  very  general  and  can  probably  also  be
extended to other kinds of models, which we do not do here.

Another preliminary consideration concerns domains. We suppose the existence of
two related possibly dense domains Time and Duration with appropriate operations
between  them (notice  that  axiomatizations  of  these  domains  have  been  given  in
earlier work, for an example see [11]).

In  state-based systems,  runs  are  characterized by states  and moves,  which are
alternating. The next decision is therefore where to attach the time: to states, or to
moves, or to both. Moreover, we can also attach time intervals to each of states and
moves. This gives us three alternatives: (a) time points for moves, time intervals for
states;  (b)  time points  for  states,  time intervals  for  moves;  (c)  time intervals  for
moves and states. 
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If time intervals are attached to moves (time is allowed to proceed), we are faced
with durative moves, and otherwise we have instantaneous moves. We take the view,
that moves are describing a change of the state, and that we can associate a time
point  with such a state change. As we are handling distributed computations, it is
essential  to  have  a  well  defined  (partial)  state  at  any  time.  This  boils  down  to
excluding durative moves, because then there is clearly no state defined during the
time the move is performed. If durative moves have to be modeled they should be
modeled  with  an  explicit  intermediate  state  (and  there  is  space  for  different
frameworks with different choices). This means the only remaining alternative is (a),
where time points are attached to moves and time intervals to states.

We might also want to start from the other end, looking at states first. If we add
time to states, it turns out that this alternative requires for compositionality and for
distributed agents  a maximal  granularity of time steps (when there  is  no a priori
existing  discretization,  time  steps  need  to  be  dense).  This  is  done  in  a  very
consequent way within the formalism of HASM. However, we think that this is too
complex  to  be  useful  for  practical  applications.  Therefore  this  rules  out  the
alternative (b) in favor of alternative (a), which leads to a simpler framework. For
reasons of simplicity, (a) is then also better than (c).

This brings us to a first property of timed computations: time points are attached
to moves. In order to achieve this in a sound way, we have to extend our semantic
model.  We  start  with  the  partially  ordered  runs  of  the  original  ASM definition.

Attaching time to moves is relatively simple by introducing a function  when as
defined below.

Property 1: A state change takes place at a point of time, i.e. we introduce a function

when providing the time point of a move:

when: M -> Time

This  means  that  time  is  not  part  of  the  state,  but  there  is  a  semantic  function
associating a time point with moves; the duration of a state can be defined implicitly
as the time passing between the occurrence times of its two adjacent events (if this
interval is considered to be open, left-closed, right closed or closed leads to different
frameworks). The next property concerns the relationship between the time-induced
order and the partial order of moves. A natural minimal requirement is given by 

Property 2: In every run, all causally ordered events are also ordered in time, i.e.

∀ m1, m2∈M • m1 < m2  =>  when(m1) ≤ when(m2).

More restrictive requirements on the time ordering are discussed in section 3.

3   Choice of a Timed Framework by a Set of Properties

So far, we have shown how to extend an ASM system with time semantically in the
form of  timed runs  and have  given one  minimal  property  of  the resulting timed
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computations. Most frameworks for modeling timed systems suggest that a timed
computation  should  have  some  additional  properties.  Such  constraints  are  often
either directly reflected in syntactic or semantic restrictions of the framework (for
example, in VHDL the fact that causally related events must have a time distance of
at least some infinitesimal  δ) or imposed as verification conditions in the form of
assumptions (this is in particular the case for fairness or non Zenoness constraints).
This means that these properties represent axioms of particular timing frameworks
which in the context of ASM can be added as constraints.

In this section, we discuss a number of such constraints, which we have found in
existing frameworks. For each property, we try to evaluate if it is executable or not,
i.e. if it is possible to extend an executable framework without the axiom into one
including it. In the case of distributed ASM and time the most important question of
executability  is  about  which  agent  is  to  be  executed  next.  Without  timing,  this
question is easily answered in that any minimal2 move can be taken next. When time
constraints  between  arbitrary  events  are  allowed,  executability  is  not  guaranteed
anymore:  as  to  obtain  a  consistent  timing  of  all  moves  in  some run,  the  set  of
possible timepoints of some move m, may a priori not be determined by only looking
at the prefix of the run.

3.1   Global and Local Time and additional Ordering Constraints

In most existing frameworks time is global, that is the time domain is totally ordered3.
As  a  consequence,  any  two  timed  events  are  either  temporally  ordered  or
simultaneous, which decreases the power of partially ordered runs. A notion of local
time allows to introduce a partially ordered time domain where some time points
may  be  incomparable,  that  is  neither  ordered  nor  simultaneous.  This  distinction
motivates some variants of property 2 defined in Section 2.2.

Property 2 states that in a timed run the time order is not smaller than the causal
order. In order to define global time, this restriction must be strengthened.

Property 2a: Global Time: all time stamps of a run are totally ordered, i.e. the partial
order of the moves is extended to a total preorder for their occurrence times, i.e. 

∀m1,m2∈M • when(m1) ≤ when(m2) or when(m2) ≤ when(m1)

Independently of the choice of local or global time, some frameworks impose an
even stronger constraint on causally ordered events. 

Property 2b:  Strict  time progress along causal chains:  whenever two moves are
causally ordered, their occurrence times are strictly ordered, i.e. 

∀ m1,m2∈ M • m1 < m2  =>  when(m1) < when(m2).

This forbids reaction chains in zero time. When distinct agents are used to represent
physical distribution, this property may make sense, but often distinct agents are used

2  With respect to the causal order
3  In general, real numbers are chosen representing a dense time domain.
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to  express  purely  descriptive  parallelism  in  a  compositional  manner,  and  here
reaction chains may express synchronization or just conjunction of constraints. 

Some frameworks for distributed systems with a strict notion of local time require
an  even  stronger  property  implying  that  time  distances  can  only  be  measured
between causally related moves.

Property 2c:  Timed order is  not stronger than causal order:  causally non related
events are not comparable in the timed order, i.e. 

∀ m1, m2: M • m1 ≤ m2  iff  when(m1) ≤ when(m2).

This requirement is very strong as it forbids even incidental timed ordering of non
causally  related  moves.  The  only  means  to  satisfy  this  axiom is  by  choosing  a
partially ordered time domain. 

All  these axioms represent safety properties which can be used to strengthen the
constraint on the occurrence time of the immediate successors of each move. Note
that some of these properties may be combined to create stronger constraints.

3.2   Zeno Computations

So far, we did not justify the choice of a dense time domain but just chose it to be
dense. Indeed, a dense time domain allows arbitrary action refinement (making more
internal steps visible) because between any two moves always an intermediate move
at an intermediate time point can be inserted without redefining the time scale. 

What is the meaning of density in an individual timed computation of countable
length? For example, do we want to allow computations where the occurrence times
of the events of a computation converge to some finite time point? This is called a
Zeno computation, and in most frameworks considered as an invalid computation, as
expressed by the following property.

Property 3a: Absence of Zeno computations: In any infinite run, there is no upper
bound of the time values attached with moves, i.e. 

∀R isInfinite(R) => ∀t∈Time ∃m∈R • when(m) > t.

Often, we need density only to say that we do not want to require any global bound
on the minimal distance between two ordered events or to be able to make refinement
easy.  In any single computation, it  makes sense to require the existence of some
discrete duration δ such that by observing the state every δ time units, no local state
change is missed4.

Property  3b:  Existence  of  a  discretization:  There  is  a  lower  bound  of  the  time
differences between non simultaneous causally ordered moves, i.e. 

∃δ∈Duration ∀m1,m2∈ M • m1 < m2  =>  when(m2) − when(m1) > δ.

4  In this context, multiple state changes at the same time are considered as a single state
change.
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t:=now
startA

y=1 ∧now∈[t+2,t+3)
             endA

now≥t+3 
timeoutA

x=0 
interrupt

inA

Property 3b is strictly stronger than 3a, as 3a admits computations where the events
of some agent are at time points tn, with tn+1= tn +1/n. This computation is not Zeno,
as  tn grows over all bounds, but it does not satisfy property 3b. Notice that in the
context of global time, 3b does not exclude the existence of “time races”, that is,
moves in different agents which are arbitrarily close, so that there exists no uniform δ
to separate any pair of moves by a discrete observation.

We can give an even sharper way of defining the time points of moves which
defines time as discrete.

Property  3c:  Events  at  discrete  steps:  Any two moves  occur  either  at  the  same
instant or the time differences between their occurrence times are a multiple of a
given value,

∃δ∈Duration∀m1,m2∈ M ∃k∈N • when(m1) − when(m2)=k*δ
In the context of timed automata, sufficient syntactic conditions on rules have been
given guaranteeing the absence of Zeno computations and verification methods exists
for checking that all finite prefixes can be extended to non Zeno computations.

Concerning executability, properties 3a is meaningless for finite prefixes, property
3b coincides with 2b for finite prefixes, and property 3c is easily executed because it
is a safety property5.

3.3 Maximal Progress and Urgency

In general,  a set  of  time constraints  allows several  alternative time stamps to be
attached with a move. In this case, the question arises if one should implicitly choose
a  particular  one or  make  the  choice  non deterministically.  This  brings  us  to  the
question if one wants to impose some  urgency, for example by requiring maximal
progress: Should transitions be taken at the earliest possible time point with respect
to all the constraints? 

Example: Let us consider the example in the figure below to illustrate the questions
related to urgency. The Figure shows some agent  Ag and its choices in state  inA

(meaning  that  action  A has  been
started).  There  are  3  possible
terminations  (a  move  with  three
distinct futures), depending on if and
when some  other  agents  set  the
variables x and y; notice that we only
represent guards here. 

An interrupt transition is usually
interpreted urgent: as soon as x is set
to  0 by the environment, let’s say a

move mI in an agent AgI, the interrupt or one of the alternatives follows in immediate
reaction.  A timed  run  in  which  the  interrupt  occurs  not  “immediately  after”  the

5  A safety property is a property that can be checked on all finite prefixes of runs, or in the
setting of temporal logic, in the form of “always (some property on the past)”
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enabling move, but later, is to be considered  invalid6. For the other two transitions
several interpretations make sense: 

• An “urgent” interpretation of the endA transition means, it occurs “as soon as
the environment sets  y to  1, let’s say a move  mN in an agent  AgN, but only
between 2 and 3 time units after entering the state”. In particular, this means
that a run in which a move mN occurs, and some time later a move mI and then
the interrupt move, is not allowed.

• A “delayable” interpretation of the  endA transition means it occurs “at any
moment between 2 and 3 time units after entering the state, but only under the
condition that  mN has occurred before”. This means in particular, that even
when mN occurred, the interrupt may be chosen but only before 3 time units
have passed in state inA, whereas the timeout is impossible.

• Finally the “lazy” interpretation of the endA transition means, “if mN occurs in
the right time interval,  endA or alternatively timeout may be the form of the
next move of agent Ag”.

In order to achieve the “lazy” interpretation of all transitions, no additional axiom is
needed. Notice that – even if this is sometimes quite cumbersome - the “urgent”
interpretation  of  all transitions  allows  achieving  the  other  interpretations  by  the
introduction of explicit moves delaying the concerned move by a duration d in some
interval when the environment makes true its enabling condition7. 

Urgency is expressed simply by the following property:

Property 4: Urgency: The time of each state change of each run is minimal.

∀R • when is minimal

Several remarks can be made: 
• First, urgency makes timing deterministic - the time point of each move

is determined as the earliest point of time at which it becomes enabled
and  satisfies  its  time  guard.  Time  non  determinism  can  only  be
introduced by explicit choices in moves of the form “choose to wait  d”8

and guarantees therefore executability under time constraints.

6  The  interpretation  of  “immediately  after”  depends  on  the  choice  of  the  time  progress
model. If property 2b is not considered, “immediately after” means in fact “at the same
point of time”.

7  In the example, endA is made lazy by splitting it into to successive moves “y=0  -> choose
d∈[now,3)” followed by “now=d  -> endA or x=0  -> interrupt”, that means a soon as mN

occurs, timeout becomes impossible, but the possibility of the occurrence of an interrupt is
maintained

8  or alternatively “force another agent to wait d”
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• Second,  the choice of  the time domain to be reals,  makes  property  4
incompatible  with  property  2b9;  it  also  makes  illegal  strong  time
constraints for the form “m takes place at time t>2”

We could also try to not introduce Property 4, but rather to express delayable and
urgent transitions by extra moves or conditions in moves. This is not possible, as “as
early as possible” is a semantic level notation, not expressible at “program level”. 

In  general,  the  introduction  of  time  constraints  can  make  some  untimed  runs
impossible,  and this  risk  is  increased by the introduction of  property  410.  This  is
sometimes  considered  as  undesirable.  From  the  example,  it  becomes  clear  that
forbidding  elimination  of  runes  by  timing  is  not  compatible  with  defensive
programming, which consists, among others, by addition of timeouts. We consider
this a methodology issue as, a property saying that “for all untimed runs must exist a
timed run” is not a constraint on the possible time points of the moves in each run,
but a restriction on the possible ASM specifications.

4  Related Work

In this section, we discuss several frameworks for modeling of timed systems and
relate them to the set of properties introduced in the preceding section. 

4.1  Timed and Hybrid automata

Timed automata [9] are a model focusing exclusively on timing aspects. A system is
represented as a graph where each transition representing a state change is labeled by
a  constraint  on  when  it  can  take  place.  The  semantics  of  a  timed  automaton  is
formally defined as a transition system on states defined by a pair consisting of a
control state and a time point, where transitions are either discrete moves without
state change or time progress moves in the same state. Executions as we have defined
them in section 2 are obtained from a timed automaton execution by the stuttering
reduction of the projection to a sequence of discrete states, where the time point at

which each discrete move take place is used to define the function when. 
In timed automata, clocks can be reset to zero in transitions; from then on, at any

time they represent the duration since this transition or event until they are reset for
the next time. 

The time model of timed automata is that of global but relative time, where the
absolute value of time may or may not be defined in any particular system. With

9  except if an adequate explicit timing is introduced explicitly to constrain the occurrence
time of each reaction

10  in the example, when the mN transition occurs necessarily before time point 3 in all timed
runs, all those runs are impossible which depend on the choice of the timeout variant of the
move of agent Ag in the example.
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respect to the set of properties of section 3: timed automata impose only the minimal
restriction on timed behaviors (property 2), that is, causal chains in zero time are
possible. Only non Zeno computations are valid (property 3a). Timed automata do
not require maximal progress (property 4), but have several means to express a less
restrictive notion of urgency. Invariants associated with states can force the system to
leave a state on a time condition (like the timeout transition in the example of section
3.4,  but  without  forcing  immediate  reaction)  or  by  an  explicit  urgency  attribute
associated with transitions, specifying when transitions must be taken.

Hybrid automata are a generalization of timed automata adding continuous entities
other than time. Again, states represent “modes” in which continuous entities evolve
with time according to certain laws – expressed in terms of differential equations –
whereas state changes represent discrete changes between different modes - in which
the continuous entities may evolve according to different laws. The above mentioned
variants of timed automata can also be defined for hybrid automata.

4.2 Timed Petrinets and Time Extensions in Process Algebras

The aim of  time extensions  of  Process  algebras  [19]  and Petrinets  is  to  express
constraints  on  the  occurrence  times  of  synchronization  events.  These  formalisms
have  Property  1.  They  are  based  on  global  time  and  impose  only  the  minimal
restriction on timed computations as formulated by Property 2. Properties of infinite
sequences, such as non Zenoness are not part of the framework, but are often added
at analysis time as verification conditions or hypotheses.

The timed process algebra E-Lotos [21] attaches interval waiting constraints with
actions (similar  as  timed automata).  The semantics  is  defined in  a  compositional
manner: partial actions (which are able to synchronize with other subsystems) are
delayable, whereas actions which cannot synchronize with other actions are urgent
(property 4).

A Petrinet [20] defines a set of partially ordered runs, and time extensions express
constraints on the occurrence times of synchronization events.  Petrinet places are
waiting states  and “transitions” are actions which may take a variable amount of
time.  There  are  several  variants  of  timed  Petrinets.  We  mention  here  the  most
interesting one, preserving free choice: an enabled transition (all ingoing places have
the required amount of tokens) take place after a variable amount of time defined by
a constraint associated with this transition; nevertheless during this “blocking time”
the choice between conflicting transitions remains open, even for those transitions
which  become  enabled  later,  as  long  as  they  can  take  place  not  later  than  the
“blocked” transition. That is synchronization transitions are delayable, In order to
express a set  of  conflicting Petrinet synchronizations, this  must be done in ASM
either directly in a single agent or by some agreement protocol amongst individual
agents or agents representing the transitions.
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4.3   Time Extensions of ASM

In the ASM framework, the notion of state is central, whereas in the definition of
partially ordered runs, events (moves) play the central role. The time extensions for
ASM consider time as a part of the state; this is the only way in which it can be done
without  extending ASM, but  when time is  global this  leads to many global time
progress steps (synchronizations).

Extension 1
The framework defined in [2]  is  the one we have used for  the definition of  the
semantics of SDL.

In this framework, there is not only a time value associated with each state but
also a state with each time value, meaning that consecutive states in a execution must
have  different  times,  thus  enforcing  property  2b.  This  poses  the  problem  of
immediate reaction for more than two consecutive state changes. 

Extension 2
In [4], the concepts of [2] have been modified by allowing a state change to take
time, meaning that this framework does not use property 1.

This model is due to the observation that the application of a set of update rules
defining a state  change does often not  correspond to an event,  but  to an  activity
which might  have  duration.  It  is  not  made explicit  in [4]  what  the status of the
variables changed during an update is; it may
• either keep the old value during the update time (supposing that they remain

visible for the environment)
• have an undefined value (a read by the environment leads to error)
• or have an arbitrary value in the domain (then, it is often better to consider finer

granularity of computation)
As  already  mentioned  in  section  2,  such  a  “transition”,  in  the  untimed  setting
considered as a state change, should become in the timed setting a state, the state “in
transition” with some duration. There are two instantaneous state changes associated
with an update: “start transition” - which might render undefined a set of variables,
but has otherwise no effect on the state - and “end transition” - which leads to the
updated state.

Extension 3: AsmL 
AsmL  [8]  is  an  implementation  of  ASM  for  execution  and  testing  of  ASM
specification. Its real-time concept is based on external time (monitored), where in
practice the system time of the computer used for the execution of the model is used
as the external source for providing the value of time: it is possible to read time and
to react depending on its value. It is also possible to define triggers on time – which
in any particular execution may be missed (those actions are lazy and property 4 is
not enforced) - and waiting conditions. This model enforces property 2c. As finite
experiments cannot express properties of infinite sequences, properties on infinite
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sequences  (properties  3)  are  irrelevant.  The  problem of  this  approach  (which  is
chosen also in other real-time modeling tools, for example the UML based CASE
tool  Rhapsody)  is  that  time is  not  abstract  but  concrete,  and the  obtained  timed
execution sequences are only relevant if the execution time for a given set of rules
has a well defined relationship to the execution time of the implementation of the
model executed at  run-time in its target environment.  Notice that, the smaller the
observed time intervals are, the more important becomes the probing effect from the
model,  even  if  the  measured  times  are  relevant  for  the  target  platform.  Our
experiments  with  Rhapsody confirmed  that  the  results  are  extremely sensitive to
scaling,  which  is  unsurprising,  but  disappointing  from the  point  of  view  of  the
modeler.  These kinds  of models  are  useful  for reactive systems where execution
times are negligible with respect to reactivity constraints.

Extension 4: HASM
The Hybrid ASM or HASM approach [6] tries to marry the discrete world of state
changes with continuous changes of a part of the state. This is done by introducing
hyper-real numbers, especially infinitesimal numbers. Using an infinite but hyper-
natural number of steps, these infinitesimals add up to "real" numbers that in turn
represent time. This framework imposes a weakened form of property 2b which –
due to the fact that computations are countable - is covered by the non Zenoness
requirement 3a: an infinite number of steps cannot be done in bounded time. In a
simpler form, a similar framework has been chosen in VHDL, where causally related
events  must  be separated by at  least  some infinitesimal  duration,  denoted  δ,  and
where only an infinite amount of δ steps have a measurable duration.

The main drawback of this framework is that there is no validation method being
able to profit from this fine grained modeling concept.

4.4  SDL Time

SDL is promoted for the specification and design of distributed real-time systems. Its
support  for real-time behavior is  essentially limited to  timers  and the underlying
notion of global system time. In SDL, time is considered as external to the system
and the system can only react on time progress. Time may pass everywhere, in states,
in tasks, in evaluations of guards, and in communications and there is no means to
limit these durations (such means are meant to be left to particular implementations).
There are two exceptions to this general concept: there exists a notion of “nodelay”
channel where sending and receiving a signal takes place at the same point of time.
Also, once a transition has been detected as enabled, it  must be taken  immediately
(property 4)

The formal semantics of SDL 2000 has been defined in terms of ASM [3]. In this
work we have introduced  time as a monitored variable of type real with only very
few  constraints,  in  particular  the  one  saying  that  the  values  of  time  must  be
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increasing11. We had problems to define sending over nodelay channels (which is at
the semantic  level  represented by a  sequence of  actions)  due  to  the  fact  that  all
existing ASM frameworks insist on enforcing property 2c (non zero delay between
causally related events). 

5   A Proposal for Representing and Handling Time in ASM

In ASM, there exists no predefined notion of time, but an appropriate representation
of time may be introduced explicitly, depending on the nature of the system to be
modeled.  We  propose  the  introduction  of  some  primitive  and  derived  features
defining a  framework  compatible  with  properties  1  and 2a,  and where  the  other
properties can be chosen freely. 

Reading time

In order to be able to constrain the occurrence time of state changes in the rules
depending on the occurrence times of earlier event occurrences, we have to make
available the occurrence time of events in the states. In ASM, this is done in a similar

way as the Self function is defined: we introduce a new function name now into

the vocabulary and fix the interpretation of  now to be the value of the  when
function. This allows then to store the occurrence time of an event in a variable for
later comparison.

monitored now: Time
This function is monitored, that is defined by the environment which must respect

the chosen set of axioms. The occurrence time of an event may be constrained also
by system dependent guards.

Local clocks and storing time
In  order  to  obtain  an  expressive  framework,  guards  must  be  able  to  depend  on
occurrence times  of  any causally  previous  event.  Timed automata use clocks for
making these instants syntactically accessible. 

In order to introduce similar clocks in ASM, we propose to introduce a domain of

MoveNames similar  to  ProgramNames.  In  addition,  we  introduce  a

controlled function time: 

domain MoveNames

controlled time: MoveNames ­> Time

11  In fact, this is very similar to the approach in [2], mentioned earlier.
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Using this function, the occurrence time of a move can be recorded in a move by a
usual assignment time(mN):=now, where MN is a move name

Urgency, Updates taking time
As explained in section 3.3, in a compositional framework for simulated time, it is
interesting  to  be  able  to  distinguish  between  the  moments  when  a  transition  is
possible and the moments in which the transition is urgent (immediate, if enabled). In
[11],  it  has been shown that the distinction of “urgent” and “lazy” transitions, as
defined in the context of timed automata, is sufficient.

In order to simplify the expression of models where the application of update rules
are interpreted as activities taking time, it is interesting to define a notion of “timed
update rules”, which associates with an update rule a time guard, restricting when it
can be started, and an urgency constraint, expressing when it must be taken. This can
be seen as a “macro” which can be translated into a sequence of moves: whenever the
environment makes the enabling and the urgency condition true, the action of the
transition is executed immediately and the sequence of moves terminated; when the
enabling condition becomes true, but not urgent a legal waiting time is decided, but
during waiting,  when the urgency becomes true,  the transition action is  executed
immediately. The timed update rule representing the three alternative transitions of
the figure in section 3.3, has an enabling condition “x=1 and now>=3 or y=1 or
now>=3”, an urgency “x=1 or now=3” and an update depending also on  now. A
simpler  notion of  timed update  rule  which determines  a  waiting delay when the
enabling condition becomes true and then just “waits” does not preserve free choice.
Real-time  programming  languages  distinguish  for  this  purpose  between  normal
signals – which are only taken into account after the “ongoing update” is terminated
(run-to-completion policy) and interrupts – which are taken into account also within
an “ongoing  update”  (that  is  between  an  above  mentioned start  and  end  move).
Indeed if one considers determinism of un update to be important, then such interrupt
constructs may be considered as undesirable.

6   Summary and Conclusions

We  have  discussed  a  set  of  properties  which  can  be  used  to  characterize  and
distinguish existing formalisms for the description of timed behaviours. 

We have come to the conclusion that the best way of adding time to a system is:
1. No  time  progress  in  moves,  they  are  instantaneous,  whereas  time

progresses in states.
2. Time values are attached to moves.

Apart  from  these  general  guidelines,  there  are  several  ways  to  adapt  the  time
mechanism to the application, and some high level derived notations are proposed,
which have been proven useful in practise and which lead to more readable models.
Another conclusion is that the fact that in ASM there exists no explicit notion of
input,  but  only a state,  shared between system and environment,  complicates  the
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introduction of an appropriate notion of time within this framework. In particular, if
time is part of the state, time progress is a state change leading to state changes in all
agents. A framework in which time passes in states and transitions represent instants
is  more  flexible  than one in  which transitions  “take  time”,  and most  formalisms
existing in the literature are of this kind. In order to obtain such a framework for
ASM in a convenient manner, we consider time as visible only in transitions and not
in states.

A  final  observation  is  that  frameworks  for  modelling  timed  systems  defined
independently of ASM do generally admit causal chains taking zero time, at least as
long as there are only finitely many zero time steps in a row. All the papers on time
extensions of ASM we have studied make an important point out of the requirement
of absence of such zero time steps. Maybe this should be reconsidered. 

We thank the ASM community for many helpful remarks during the period of
writing of this article and for many interesting discussions around this topic.
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