
Time in State Machines

Susanne Graf Andreas Prinz
Verimag

2, avenue de Vignate
Grenoble, France

Agder University College
Grooseveien 36

Grimstad, Norway

Susanne.Graf@imag.fr Andreas.Prinz@HIA.no

Abstract. State machines are considered a very general means of expressing
computations in an implementation-independent way. There are also ways to
extend the general state machine framework with distribution aspects.
However, there is still no agreement when it comes to handling time in this
framework. In this article we take a look at existing ways to enhance state
machine frameworks. Based on this we propose a general framework of time
extensions for state machines, which we relate to existing approaches. Our
work is mainly based on time approaches for ASM, because ASM are
considered a very general state machine model. Taking this into account, our
approach is valid for state-transition systems in general.

1 Introduction

State machines are considered a very general means of expressing computations.
This is used in the formalism of Abstract State Machines (ASM) [1] that are
considered appropriate for giving semantics of a system in terms of its set of possible
executions. ASM have been used to define a formal semantics for programming
languages (e.g. C [15] and Java [16]). It has also been used to define the formal
semantics of SDL 2000 [17], the most recent version of SDL [3]. SDL includes an
explicit notion of time and time progress, whereas ASM, at least in their initial
version, have no explicit means to deal with real-time. Being a very general
formalism, it is however possible to express any notion of time. For the definition of
the SDL semantics in ASM, we used the ASM time semantics as proposed in [2] and
encountered some problems. The SDL view on time progress is slightly different
from the one formalized in [2]. Moreover, ideas to extend the SDL timing to include
models with continuous changes lead to a more thorough examination of this issue.
This motivated us to summarize some essential properties of timed computations and
to derive a methodology for dealing with time in ASM, which we present in this
paper. We have studied the main models for timed computations used outside the
domain of ASM and we have considered the existing time extensions of ASM. Our
aim is to provide a framework for defining timed computations in ASM. For this
purpose, we define also a set of generic properties of timed computations, which may
be used to restrict the set of “well-formed timed computations”.

217

We tackle the problem by considering the needs for modeling the semantics of
concurrent and possibly distributed systems as in the context of model based
verification and testing. We want to provide a means to describe executions of timed
systems using ASM in a convenient manner. In particular, we do not want to restrict
ourselves to the description of time dependent behavior – as in real-time
programming languages – but we want to describe a set of timed computations which
means also to express constraints on time progress with respect to system progress.
In other words, we do know that some computations take some amount of time and
want to specify this.

In section 2, we discuss how to introduce time into the domain of ASM.
Moreover, we give some ideas how to express timed properties. Section 3 provides a
set of time properties that can be chosen in addition to the basic properties of section
2. Section 4 discusses the relation of our approach to the existing approaches. In
Section 5, we collect the properties we have given to form one possible use case for
ASM. The presentation is closed by some conclusions.

2 An Overview on ASM and Timed Systems

In this section, we discuss general problems occurring when introducing time in a
computation model, and then consider the particular case of ASM. Also, our aim is
not just to be able to describe a set of timed computations, but to get a means to
construct this set of computations (executability). We give an overview on the
principles of ASM and discuss some general problems of timed systems.

2.1 An overview of ASM and their computation model

Abstract State Machines (ASM) [1] were introduced as a general computation model
taking concurrency into account explicitly. They are defined starting with a
sequential variant and going on to the general distributed case.

A sequential ASM algorithm is described by a set of rules applied to states. The
notion of state in ASM is very general1, but for the discussion of time extensions one
can consider without loss of generality that a state is defined by the values of a set of
variables (also called locations). The notion of “atomic step” (called a move) is
defined by means of a (arbitrarily complex) rule for assigning a new value to some
variables depending on the old state values. In order to model inputs and non
determinism, a part of the state space might consist of “monitored variables” which
are under the control of “the environment” and the values of which can only be read
by “the system”. The possible evolutions of the values of monitored variables can be
explicitly restricted by constraints. That means, the behavior of the environment may
be described in a declarative way, whereas the system description is provided in a
constructive way: for any state, a means to construct the (set of) next states is given

1 A state is an algebra and a rule describes a transformation between algebras.

218

by the set of possible moves. The semantics of the system is given as the set of
possible executions, i.e. countable sequences of states representing possible
evolutions from the initial state according to the rules and the constraints on
monitored variables.

In a distributed ASM, there exist several agents (the number of which may evolve
over time), which can read and write some part of the global state and have their own
update rules. The semantics of distributed ASMs is given by a set of partially
ordered runs, where each of these runs consists of a set of moves, partially ordered
by a relation denoted <. Absence of order between moves expresses independence. In
addition, it is required that in any run the moves of each agent are strictly ordered and
that rule application is confluent (coherence condition). The set of executions is the
set of state sequences induced by all possible linearizations of all runs.

In ASM, there exists no predefined notion of trigger. Each agent has “its rule”
which can be applied to any state independently of any other agent or the changes of
the environment. However, sometimes the application of the rule does not change the
state (empty update set). We will consider these rules to be guarded rules,
representing partial functions from global states to global states, and consider only
runs without such empty moves.

Based on this general setup in ASM, we consider a system description to consist
of (a) a description of the initial state (defined as the valuation of a vector of
variables), and (b) a description of the state change rules. Rules are described per
agent. A rule defines a set of moves (m∈M). A run is a subset of moves (R⊆M)
satisfying the above mentioned constraints, where each move belongs to an agent.

Definition: A prefix F of a run R is a subset of moves closed for <, that is,
∀m∈F ∀m’∈ R • m’<m => m’∈ F

2.2 Adding Time to State Transition Systems

The first decision we have to take when adding time concerns the kind of models we
consider. There is the general distinction between state-based and event-based
models. As we are mainly interested in ASM, we will focus in state-based models.
However, the following statements are very general and can probably also be
extended to other kinds of models, which we do not do here.

Another preliminary consideration concerns domains. We suppose the existence of
two related possibly dense domains Time and Duration with appropriate operations
between them (notice that axiomatizations of these domains have been given in
earlier work, for an example see [11]).

In state-based systems, runs are characterized by states and moves, which are
alternating. The next decision is therefore where to attach the time: to states, or to
moves, or to both. Moreover, we can also attach time intervals to each of states and
moves. This gives us three alternatives: (a) time points for moves, time intervals for
states; (b) time points for states, time intervals for moves; (c) time intervals for
moves and states.

219

If time intervals are attached to moves (time is allowed to proceed), we are faced
with durative moves, and otherwise we have instantaneous moves. We take the view,
that moves are describing a change of the state, and that we can associate a time
point with such a state change. As we are handling distributed computations, it is
essential to have a well defined (partial) state at any time. This boils down to
excluding durative moves, because then there is clearly no state defined during the
time the move is performed. If durative moves have to be modeled they should be
modeled with an explicit intermediate state (and there is space for different
frameworks with different choices). This means the only remaining alternative is (a),
where time points are attached to moves and time intervals to states.

We might also want to start from the other end, looking at states first. If we add
time to states, it turns out that this alternative requires for compositionality and for
distributed agents a maximal granularity of time steps (when there is no a priori
existing discretization, time steps need to be dense). This is done in a very
consequent way within the formalism of HASM. However, we think that this is too
complex to be useful for practical applications. Therefore this rules out the
alternative (b) in favor of alternative (a), which leads to a simpler framework. For
reasons of simplicity, (a) is then also better than (c).

This brings us to a first property of timed computations: time points are attached
to moves. In order to achieve this in a sound way, we have to extend our semantic
model. We start with the partially ordered runs of the original ASM definition.

Attaching time to moves is relatively simple by introducing a function when as
defined below.

Property 1: A state change takes place at a point of time, i.e. we introduce a function

when providing the time point of a move:

when: M -> Time

This means that time is not part of the state, but there is a semantic function
associating a time point with moves; the duration of a state can be defined implicitly
as the time passing between the occurrence times of its two adjacent events (if this
interval is considered to be open, left-closed, right closed or closed leads to different
frameworks). The next property concerns the relationship between the time-induced
order and the partial order of moves. A natural minimal requirement is given by

Property 2: In every run, all causally ordered events are also ordered in time, i.e.

∀ m1, m2∈M • m1 < m2 => when(m1) ≤ when(m2).

More restrictive requirements on the time ordering are discussed in section 3.

3 Choice of a Timed Framework by a Set of Properties

So far, we have shown how to extend an ASM system with time semantically in the
form of timed runs and have given one minimal property of the resulting timed

220

computations. Most frameworks for modeling timed systems suggest that a timed
computation should have some additional properties. Such constraints are often
either directly reflected in syntactic or semantic restrictions of the framework (for
example, in VHDL the fact that causally related events must have a time distance of
at least some infinitesimal δ) or imposed as verification conditions in the form of
assumptions (this is in particular the case for fairness or non Zenoness constraints).
This means that these properties represent axioms of particular timing frameworks
which in the context of ASM can be added as constraints.

In this section, we discuss a number of such constraints, which we have found in
existing frameworks. For each property, we try to evaluate if it is executable or not,
i.e. if it is possible to extend an executable framework without the axiom into one
including it. In the case of distributed ASM and time the most important question of
executability is about which agent is to be executed next. Without timing, this
question is easily answered in that any minimal2 move can be taken next. When time
constraints between arbitrary events are allowed, executability is not guaranteed
anymore: as to obtain a consistent timing of all moves in some run, the set of
possible timepoints of some move m, may a priori not be determined by only looking
at the prefix of the run.

3.1 Global and Local Time and additional Ordering Constraints

In most existing frameworks time is global, that is the time domain is totally ordered3.
As a consequence, any two timed events are either temporally ordered or
simultaneous, which decreases the power of partially ordered runs. A notion of local
time allows to introduce a partially ordered time domain where some time points
may be incomparable, that is neither ordered nor simultaneous. This distinction
motivates some variants of property 2 defined in Section 2.2.

Property 2 states that in a timed run the time order is not smaller than the causal
order. In order to define global time, this restriction must be strengthened.

Property 2a: Global Time: all time stamps of a run are totally ordered, i.e. the partial
order of the moves is extended to a total preorder for their occurrence times, i.e.

∀m1,m2∈M • when(m1) ≤ when(m2) or when(m2) ≤ when(m1)

Independently of the choice of local or global time, some frameworks impose an
even stronger constraint on causally ordered events.

Property 2b: Strict time progress along causal chains: whenever two moves are
causally ordered, their occurrence times are strictly ordered, i.e.

∀ m1,m2∈ M • m1 < m2 => when(m1) < when(m2).

This forbids reaction chains in zero time. When distinct agents are used to represent
physical distribution, this property may make sense, but often distinct agents are used

2 With respect to the causal order
3 In general, real numbers are chosen representing a dense time domain.

221

to express purely descriptive parallelism in a compositional manner, and here
reaction chains may express synchronization or just conjunction of constraints.

Some frameworks for distributed systems with a strict notion of local time require
an even stronger property implying that time distances can only be measured
between causally related moves.

Property 2c: Timed order is not stronger than causal order: causally non related
events are not comparable in the timed order, i.e.

∀ m1, m2: M • m1 ≤ m2 iff when(m1) ≤ when(m2).

This requirement is very strong as it forbids even incidental timed ordering of non
causally related moves. The only means to satisfy this axiom is by choosing a
partially ordered time domain.

All these axioms represent safety properties which can be used to strengthen the
constraint on the occurrence time of the immediate successors of each move. Note
that some of these properties may be combined to create stronger constraints.

3.2 Zeno Computations

So far, we did not justify the choice of a dense time domain but just chose it to be
dense. Indeed, a dense time domain allows arbitrary action refinement (making more
internal steps visible) because between any two moves always an intermediate move
at an intermediate time point can be inserted without redefining the time scale.

What is the meaning of density in an individual timed computation of countable
length? For example, do we want to allow computations where the occurrence times
of the events of a computation converge to some finite time point? This is called a
Zeno computation, and in most frameworks considered as an invalid computation, as
expressed by the following property.

Property 3a: Absence of Zeno computations: In any infinite run, there is no upper
bound of the time values attached with moves, i.e.

∀R isInfinite(R) => ∀t∈Time ∃m∈R • when(m) > t.

Often, we need density only to say that we do not want to require any global bound
on the minimal distance between two ordered events or to be able to make refinement
easy. In any single computation, it makes sense to require the existence of some
discrete duration δ such that by observing the state every δ time units, no local state
change is missed4.

Property 3b: Existence of a discretization: There is a lower bound of the time
differences between non simultaneous causally ordered moves, i.e.

∃δ∈Duration ∀m1,m2∈ M • m1 < m2 => when(m2) − when(m1) > δ.

4 In this context, multiple state changes at the same time are considered as a single state
change.

222

t:=now
startA

y=1 ∧now∈[t+2,t+3)
 endA

now≥t+3
timeoutA

x=0
interrupt

inA

Property 3b is strictly stronger than 3a, as 3a admits computations where the events
of some agent are at time points tn, with tn+1= tn +1/n. This computation is not Zeno,
as tn grows over all bounds, but it does not satisfy property 3b. Notice that in the
context of global time, 3b does not exclude the existence of “time races”, that is,
moves in different agents which are arbitrarily close, so that there exists no uniform δ
to separate any pair of moves by a discrete observation.

We can give an even sharper way of defining the time points of moves which
defines time as discrete.

Property 3c: Events at discrete steps: Any two moves occur either at the same
instant or the time differences between their occurrence times are a multiple of a
given value,

∃δ∈Duration∀m1,m2∈ M ∃k∈N • when(m1) − when(m2)=k*δ
In the context of timed automata, sufficient syntactic conditions on rules have been
given guaranteeing the absence of Zeno computations and verification methods exists
for checking that all finite prefixes can be extended to non Zeno computations.

Concerning executability, properties 3a is meaningless for finite prefixes, property
3b coincides with 2b for finite prefixes, and property 3c is easily executed because it
is a safety property5.

3.3 Maximal Progress and Urgency

In general, a set of time constraints allows several alternative time stamps to be
attached with a move. In this case, the question arises if one should implicitly choose
a particular one or make the choice non deterministically. This brings us to the
question if one wants to impose some urgency, for example by requiring maximal
progress: Should transitions be taken at the earliest possible time point with respect
to all the constraints?

Example: Let us consider the example in the figure below to illustrate the questions
related to urgency. The Figure shows some agent Ag and its choices in state inA

(meaning that action A has been
started). There are 3 possible
terminations (a move with three
distinct futures), depending on if and
when some other agents set the
variables x and y; notice that we only
represent guards here.

An interrupt transition is usually
interpreted urgent: as soon as x is set
to 0 by the environment, let’s say a

move mI in an agent AgI, the interrupt or one of the alternatives follows in immediate
reaction. A timed run in which the interrupt occurs not “immediately after” the

5 A safety property is a property that can be checked on all finite prefixes of runs, or in the
setting of temporal logic, in the form of “always (some property on the past)”

223

enabling move, but later, is to be considered invalid6. For the other two transitions
several interpretations make sense:

• An “urgent” interpretation of the endA transition means, it occurs “as soon as
the environment sets y to 1, let’s say a move mN in an agent AgN, but only
between 2 and 3 time units after entering the state”. In particular, this means
that a run in which a move mN occurs, and some time later a move mI and then
the interrupt move, is not allowed.

• A “delayable” interpretation of the endA transition means it occurs “at any
moment between 2 and 3 time units after entering the state, but only under the
condition that mN has occurred before”. This means in particular, that even
when mN occurred, the interrupt may be chosen but only before 3 time units
have passed in state inA, whereas the timeout is impossible.

• Finally the “lazy” interpretation of the endA transition means, “if mN occurs in
the right time interval, endA or alternatively timeout may be the form of the
next move of agent Ag”.

In order to achieve the “lazy” interpretation of all transitions, no additional axiom is
needed. Notice that – even if this is sometimes quite cumbersome - the “urgent”
interpretation of all transitions allows achieving the other interpretations by the
introduction of explicit moves delaying the concerned move by a duration d in some
interval when the environment makes true its enabling condition7.

Urgency is expressed simply by the following property:

Property 4: Urgency: The time of each state change of each run is minimal.

∀R • when is minimal

Several remarks can be made:
• First, urgency makes timing deterministic - the time point of each move

is determined as the earliest point of time at which it becomes enabled
and satisfies its time guard. Time non determinism can only be
introduced by explicit choices in moves of the form “choose to wait d”8

and guarantees therefore executability under time constraints.

6 The interpretation of “immediately after” depends on the choice of the time progress
model. If property 2b is not considered, “immediately after” means in fact “at the same
point of time”.

7 In the example, endA is made lazy by splitting it into to successive moves “y=0 -> choose
d∈[now,3)” followed by “now=d -> endA or x=0 -> interrupt”, that means a soon as mN

occurs, timeout becomes impossible, but the possibility of the occurrence of an interrupt is
maintained

8 or alternatively “force another agent to wait d”

224

• Second, the choice of the time domain to be reals, makes property 4
incompatible with property 2b9; it also makes illegal strong time
constraints for the form “m takes place at time t>2”

We could also try to not introduce Property 4, but rather to express delayable and
urgent transitions by extra moves or conditions in moves. This is not possible, as “as
early as possible” is a semantic level notation, not expressible at “program level”.

In general, the introduction of time constraints can make some untimed runs
impossible, and this risk is increased by the introduction of property 410. This is
sometimes considered as undesirable. From the example, it becomes clear that
forbidding elimination of runes by timing is not compatible with defensive
programming, which consists, among others, by addition of timeouts. We consider
this a methodology issue as, a property saying that “for all untimed runs must exist a
timed run” is not a constraint on the possible time points of the moves in each run,
but a restriction on the possible ASM specifications.

4 Related Work

In this section, we discuss several frameworks for modeling of timed systems and
relate them to the set of properties introduced in the preceding section.

4.1 Timed and Hybrid automata

Timed automata [9] are a model focusing exclusively on timing aspects. A system is
represented as a graph where each transition representing a state change is labeled by
a constraint on when it can take place. The semantics of a timed automaton is
formally defined as a transition system on states defined by a pair consisting of a
control state and a time point, where transitions are either discrete moves without
state change or time progress moves in the same state. Executions as we have defined
them in section 2 are obtained from a timed automaton execution by the stuttering
reduction of the projection to a sequence of discrete states, where the time point at

which each discrete move take place is used to define the function when.
In timed automata, clocks can be reset to zero in transitions; from then on, at any

time they represent the duration since this transition or event until they are reset for
the next time.

The time model of timed automata is that of global but relative time, where the
absolute value of time may or may not be defined in any particular system. With

9 except if an adequate explicit timing is introduced explicitly to constrain the occurrence
time of each reaction

10 in the example, when the mN transition occurs necessarily before time point 3 in all timed
runs, all those runs are impossible which depend on the choice of the timeout variant of the
move of agent Ag in the example.

225

respect to the set of properties of section 3: timed automata impose only the minimal
restriction on timed behaviors (property 2), that is, causal chains in zero time are
possible. Only non Zeno computations are valid (property 3a). Timed automata do
not require maximal progress (property 4), but have several means to express a less
restrictive notion of urgency. Invariants associated with states can force the system to
leave a state on a time condition (like the timeout transition in the example of section
3.4, but without forcing immediate reaction) or by an explicit urgency attribute
associated with transitions, specifying when transitions must be taken.

Hybrid automata are a generalization of timed automata adding continuous entities
other than time. Again, states represent “modes” in which continuous entities evolve
with time according to certain laws – expressed in terms of differential equations –
whereas state changes represent discrete changes between different modes - in which
the continuous entities may evolve according to different laws. The above mentioned
variants of timed automata can also be defined for hybrid automata.

4.2 Timed Petrinets and Time Extensions in Process Algebras

The aim of time extensions of Process algebras [19] and Petrinets is to express
constraints on the occurrence times of synchronization events. These formalisms
have Property 1. They are based on global time and impose only the minimal
restriction on timed computations as formulated by Property 2. Properties of infinite
sequences, such as non Zenoness are not part of the framework, but are often added
at analysis time as verification conditions or hypotheses.

The timed process algebra E-Lotos [21] attaches interval waiting constraints with
actions (similar as timed automata). The semantics is defined in a compositional
manner: partial actions (which are able to synchronize with other subsystems) are
delayable, whereas actions which cannot synchronize with other actions are urgent
(property 4).

A Petrinet [20] defines a set of partially ordered runs, and time extensions express
constraints on the occurrence times of synchronization events. Petrinet places are
waiting states and “transitions” are actions which may take a variable amount of
time. There are several variants of timed Petrinets. We mention here the most
interesting one, preserving free choice: an enabled transition (all ingoing places have
the required amount of tokens) take place after a variable amount of time defined by
a constraint associated with this transition; nevertheless during this “blocking time”
the choice between conflicting transitions remains open, even for those transitions
which become enabled later, as long as they can take place not later than the
“blocked” transition. That is synchronization transitions are delayable, In order to
express a set of conflicting Petrinet synchronizations, this must be done in ASM
either directly in a single agent or by some agreement protocol amongst individual
agents or agents representing the transitions.

226

4.3 Time Extensions of ASM

In the ASM framework, the notion of state is central, whereas in the definition of
partially ordered runs, events (moves) play the central role. The time extensions for
ASM consider time as a part of the state; this is the only way in which it can be done
without extending ASM, but when time is global this leads to many global time
progress steps (synchronizations).

Extension 1
The framework defined in [2] is the one we have used for the definition of the
semantics of SDL.

In this framework, there is not only a time value associated with each state but
also a state with each time value, meaning that consecutive states in a execution must
have different times, thus enforcing property 2b. This poses the problem of
immediate reaction for more than two consecutive state changes.

Extension 2
In [4], the concepts of [2] have been modified by allowing a state change to take
time, meaning that this framework does not use property 1.

This model is due to the observation that the application of a set of update rules
defining a state change does often not correspond to an event, but to an activity
which might have duration. It is not made explicit in [4] what the status of the
variables changed during an update is; it may
• either keep the old value during the update time (supposing that they remain

visible for the environment)
• have an undefined value (a read by the environment leads to error)
• or have an arbitrary value in the domain (then, it is often better to consider finer

granularity of computation)
As already mentioned in section 2, such a “transition”, in the untimed setting
considered as a state change, should become in the timed setting a state, the state “in
transition” with some duration. There are two instantaneous state changes associated
with an update: “start transition” - which might render undefined a set of variables,
but has otherwise no effect on the state - and “end transition” - which leads to the
updated state.

Extension 3: AsmL
AsmL [8] is an implementation of ASM for execution and testing of ASM
specification. Its real-time concept is based on external time (monitored), where in
practice the system time of the computer used for the execution of the model is used
as the external source for providing the value of time: it is possible to read time and
to react depending on its value. It is also possible to define triggers on time – which
in any particular execution may be missed (those actions are lazy and property 4 is
not enforced) - and waiting conditions. This model enforces property 2c. As finite
experiments cannot express properties of infinite sequences, properties on infinite

227

sequences (properties 3) are irrelevant. The problem of this approach (which is
chosen also in other real-time modeling tools, for example the UML based CASE
tool Rhapsody) is that time is not abstract but concrete, and the obtained timed
execution sequences are only relevant if the execution time for a given set of rules
has a well defined relationship to the execution time of the implementation of the
model executed at run-time in its target environment. Notice that, the smaller the
observed time intervals are, the more important becomes the probing effect from the
model, even if the measured times are relevant for the target platform. Our
experiments with Rhapsody confirmed that the results are extremely sensitive to
scaling, which is unsurprising, but disappointing from the point of view of the
modeler. These kinds of models are useful for reactive systems where execution
times are negligible with respect to reactivity constraints.

Extension 4: HASM
The Hybrid ASM or HASM approach [6] tries to marry the discrete world of state
changes with continuous changes of a part of the state. This is done by introducing
hyper-real numbers, especially infinitesimal numbers. Using an infinite but hyper-
natural number of steps, these infinitesimals add up to "real" numbers that in turn
represent time. This framework imposes a weakened form of property 2b which –
due to the fact that computations are countable - is covered by the non Zenoness
requirement 3a: an infinite number of steps cannot be done in bounded time. In a
simpler form, a similar framework has been chosen in VHDL, where causally related
events must be separated by at least some infinitesimal duration, denoted δ, and
where only an infinite amount of δ steps have a measurable duration.

The main drawback of this framework is that there is no validation method being
able to profit from this fine grained modeling concept.

4.4 SDL Time

SDL is promoted for the specification and design of distributed real-time systems. Its
support for real-time behavior is essentially limited to timers and the underlying
notion of global system time. In SDL, time is considered as external to the system
and the system can only react on time progress. Time may pass everywhere, in states,
in tasks, in evaluations of guards, and in communications and there is no means to
limit these durations (such means are meant to be left to particular implementations).
There are two exceptions to this general concept: there exists a notion of “nodelay”
channel where sending and receiving a signal takes place at the same point of time.
Also, once a transition has been detected as enabled, it must be taken immediately
(property 4)

The formal semantics of SDL 2000 has been defined in terms of ASM [3]. In this
work we have introduced time as a monitored variable of type real with only very
few constraints, in particular the one saying that the values of time must be

228

increasing11. We had problems to define sending over nodelay channels (which is at
the semantic level represented by a sequence of actions) due to the fact that all
existing ASM frameworks insist on enforcing property 2c (non zero delay between
causally related events).

5 A Proposal for Representing and Handling Time in ASM

In ASM, there exists no predefined notion of time, but an appropriate representation
of time may be introduced explicitly, depending on the nature of the system to be
modeled. We propose the introduction of some primitive and derived features
defining a framework compatible with properties 1 and 2a, and where the other
properties can be chosen freely.

Reading time

In order to be able to constrain the occurrence time of state changes in the rules
depending on the occurrence times of earlier event occurrences, we have to make
available the occurrence time of events in the states. In ASM, this is done in a similar

way as the Self function is defined: we introduce a new function name now into

the vocabulary and fix the interpretation of now to be the value of the when
function. This allows then to store the occurrence time of an event in a variable for
later comparison.

monitored now: Time
This function is monitored, that is defined by the environment which must respect

the chosen set of axioms. The occurrence time of an event may be constrained also
by system dependent guards.

Local clocks and storing time
In order to obtain an expressive framework, guards must be able to depend on
occurrence times of any causally previous event. Timed automata use clocks for
making these instants syntactically accessible.

In order to introduce similar clocks in ASM, we propose to introduce a domain of

MoveNames similar to ProgramNames. In addition, we introduce a

controlled function time:

domain MoveNames

controlled time: MoveNames ­> Time

11 In fact, this is very similar to the approach in [2], mentioned earlier.

229

Using this function, the occurrence time of a move can be recorded in a move by a
usual assignment time(mN):=now, where MN is a move name

Urgency, Updates taking time
As explained in section 3.3, in a compositional framework for simulated time, it is
interesting to be able to distinguish between the moments when a transition is
possible and the moments in which the transition is urgent (immediate, if enabled). In
[11], it has been shown that the distinction of “urgent” and “lazy” transitions, as
defined in the context of timed automata, is sufficient.

In order to simplify the expression of models where the application of update rules
are interpreted as activities taking time, it is interesting to define a notion of “timed
update rules”, which associates with an update rule a time guard, restricting when it
can be started, and an urgency constraint, expressing when it must be taken. This can
be seen as a “macro” which can be translated into a sequence of moves: whenever the
environment makes the enabling and the urgency condition true, the action of the
transition is executed immediately and the sequence of moves terminated; when the
enabling condition becomes true, but not urgent a legal waiting time is decided, but
during waiting, when the urgency becomes true, the transition action is executed
immediately. The timed update rule representing the three alternative transitions of
the figure in section 3.3, has an enabling condition “x=1 and now>=3 or y=1 or
now>=3”, an urgency “x=1 or now=3” and an update depending also on now. A
simpler notion of timed update rule which determines a waiting delay when the
enabling condition becomes true and then just “waits” does not preserve free choice.
Real-time programming languages distinguish for this purpose between normal
signals – which are only taken into account after the “ongoing update” is terminated
(run-to-completion policy) and interrupts – which are taken into account also within
an “ongoing update” (that is between an above mentioned start and end move).
Indeed if one considers determinism of un update to be important, then such interrupt
constructs may be considered as undesirable.

6 Summary and Conclusions

We have discussed a set of properties which can be used to characterize and
distinguish existing formalisms for the description of timed behaviours.

We have come to the conclusion that the best way of adding time to a system is:
1. No time progress in moves, they are instantaneous, whereas time

progresses in states.
2. Time values are attached to moves.

Apart from these general guidelines, there are several ways to adapt the time
mechanism to the application, and some high level derived notations are proposed,
which have been proven useful in practise and which lead to more readable models.
Another conclusion is that the fact that in ASM there exists no explicit notion of
input, but only a state, shared between system and environment, complicates the

230

introduction of an appropriate notion of time within this framework. In particular, if
time is part of the state, time progress is a state change leading to state changes in all
agents. A framework in which time passes in states and transitions represent instants
is more flexible than one in which transitions “take time”, and most formalisms
existing in the literature are of this kind. In order to obtain such a framework for
ASM in a convenient manner, we consider time as visible only in transitions and not
in states.

A final observation is that frameworks for modelling timed systems defined
independently of ASM do generally admit causal chains taking zero time, at least as
long as there are only finitely many zero time steps in a row. All the papers on time
extensions of ASM we have studied make an important point out of the requirement
of absence of such zero time steps. Maybe this should be reconsidered.

We thank the ASM community for many helpful remarks during the period of
writing of this article and for many interesting discussions around this topic.

References

1. Y. Gurevich. Evolving Algebras 1993: Lipari Guide. In E. Börger, editor, Specification and
Validation Methods, Oxford University Press, 1995

2. Y. Gurevich and J. Huggins: The Railroad Crossing Problem: An Experiment with
Instantaneous Actions and Immediate Reactions. In Proc. of CSL’95, volume 1092 of
LNCS, pages 266-290, 1996

3. SDL Formal Semantics Project. ITU-T Study Group 10: SDL Semantics Group. URL:
http://rn.informatik.uni-kl.de/projects/sdl/

4. E. Börger, Y. Gurevich, D. Rosenzweig: The Bakery Algorithm: Yet another Specification
and Verification, In: Specification and Validation Methods, ed. E. Börger, Oxford
University Press, 1995

5. N. Lynch, R. Segala, F. Vaandrager, H.B. Weinberg: Hybrid I/O Automata. In R. Alur, Th.
Henzinger, E. Sontag: Hybrid Systems III. LNCS 1066, Springer-Verlag, 1996.

6. H. Rust: Hybrid Abstract State Machines: Using the Hyperreals for Describing Continuous
Changes in a Discrete Notation. In: Y. Gurevich, Ph. W. Kutter, M. Odersky, L. Thiele
(Eds.) Abstract State Machines - ASM2000, TIK Report 87, 2000, ETH Zürich

7. D. Beauquier, A. Slissenko: On Semantics of Algorithms with Continuous Time. Technical
Report 97-15, Dep. of Informatics, University Paris 12, 1997.

8. Y. Gurevich, W. Schulte, C. Campbell, W. Grieskamp: AsmL: The Abstract State Machine
Language, Version 2.0, Microsoft Research, Redmond, 2002.

9. R. Alur, D. Dill: A Theory of Timed Automata, Proceedings of the 17th Int. Colloquium on
Automata, Languages, and Programming, 1990.

10. N. Lynch: Distributed Algorithms, Morgan Kaufman Publishers Inc., San Francisco 1996.
11. S. Bornot, J. Sifakis: An Algebraic Framework for Urgency In Information and

Computation vol. 163, 2000
12. S. Bornot, G. Gößler, J. Sifakis: On the Construction of Live Timed Systems In S. Graf,

M. Schwartzbach (Eds.) Proc. TACAS 2000 LNCS vol. 1785, Springer, 2000
13. M. Bozga S. Graf, L. Mounier: IF-2.0: A Validation Environment for Component-Based

Real-Time Systems In Proceedings of Conference on Computer Aided Verification,
CAV'02, Copenhagen LNCS 2404, Springer, 2002

231

14. R. Alur, C. Courcoubetis, Th. Henzinger, Pei-Hsin Ho: Hybrid Automata: An Algorithmic
Approach to the Specification and Verification of Hybrid Systems. In Hybrid Systems
1992, LNCS 736, 1992

15. Y. Gurevich and J. K. Huggins: The Semantics of the C Programming Language. in
Selected papers from CSL'92 (Computer Science Logic), Springer LNCS 702, 1993, 274—
308

16. R. Stärk, J. Schmid, and E. Börger: Java and the Java Virtual Machine: Definition,
Verification, Validation. Springer-Verlag, 2001

17. SDL 2000 – ITU-T Standard Z100
18 A. Benveniste, P. Caspi, S. Edwards, N. Halbwachs,P. Le Guernic, R. de Simone: The

synchronous languages, 12 years later. Proc. of the IEEE , Volume 91 Issue: 1, Jan 2003
19. J. A. Bergstra, A. Ponse, and S. A. Smolka, Editors: Handbook of Process Algebra.

Elsevier, ISBN: 0-444-82830-3, 2001
20. J. Wang: Timed Petri Nets, Theory and Application, Kluwer Academic Publishers 1998
21. ISO/IEC: E-LOTOS (enhanced LOTOS), document ISO/IEC 15437:2001, 2001
22. G. Gößler, J. Sifakis: Composition for Component-Based Modelling (PDF), Proceedings

of FMCO’02, held Nov 5–8, 2002, Leiden, LNCS 2852, pp 443-466.

232

