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ON COUNTABLE CHAINS HAVING DECIDABLE MONADIC THEORY

ALEXIS BÈS AND ALEXANDER RABINOVICH

Abstract. Rationals and countable ordinals are important examples of structures with decidable
monadic second-order theories. A chain is an expansion of a linear order by monadic predicates. We
show that if the monadic second-order theory of a countable chain C is decidable then C has a non-trivial
expansion with decidable monadic second-order theory.

§1. Introduction. The study of decidability of logical theories is a well-established
research topic with numerous applications in Computer Science, in particular in the
field of verification. Many techniques have been developed to build larger and
larger classes of structures with a decidable theory. For an overview of recent
related results in the framework of monadic second order (shortly: MSO) theories
we refer e.g., to [4, 24]. It is interesting to explore the limit of specific decidability
techniques, and also to prove general results about the frontier between decidability
and undecidability.
In particular, Elgot and Rabin ask in [8] whether there exist maximal decidable
structures, i.e., structuresM with a decidable first-order (shortly: FO) theory and
such that the FO theory of any expansion of M by a non-definable predicate is
undecidable. This question is still open. Let us mention some partial results:
Soprunov proved in [21] that every countable structure in which a regular ordering
is interpretable is not maximal. A partial ordering (B,<) is said to be regular if for
every a ∈ B there exist distinct elements b1, b2 ∈ B such that b1 < a, b2 < a, and
no element c ∈ B satisfies both c < b1 and c < b2. As a corollary he also proved
that there is no maximal decidable structure if we replace FO by weakMSO logic.
In [2] it was shown that there exists a structureM with a decidable MSO theory and
such that any expansion ofM by a constant symbol has an undecidable FO theory.
Paper [1] gives a sufficient condition in terms of the Gaifman graph of M which
ensures thatM is not maximal. The condition is the following: for every natural
number r and every finite set X of elements of the domain |M | ofM there exists an
element x ∈ |M | such that the Gaifman distance between x and every element of
X is greater than r.
In [3] we considered Elgot–Rabin’s question for chains, i.e., linear orderings
expanded with monadic predicates, in the framework of MSO theory. The class
of chains is interesting with respect to the above results, since on the one hand

Received October 3, 2010.

c© 0000, Association for Symbolic Logic
0022-4812/00/0000-0000/$00.00

1
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no regular ordering seems to be interpretable in such structures (this intuition is
supported by the fact that the full binary tree is not interpretable in a chain [18]),
and on the other hand their associatedGaifman distance is trivial; thus, they do not
satisfy the criterion given in [1]. We proved in [3] that for every chainM = (A,<,P)
such that (A,<) contains a sub-interval of type � or −�,M is not maximal with
respect to MSO logic, i.e., there exists an expansionM ′ ofM by a predicate which
is not MSO definable inM , and such that the MSO theory ofM ′ is recursive in the
one ofM .
In this paper we prove that this property holds for every infinite countable chain,
namely that no infinite countable chain is maximal with respect to MSO logic.
The proof relies on the composition method developed by Feferman–Vaught [9],
Läuchli [15] and Shelah [20], which reduces the MSO theory of a sum of ordered
structures to the one of its components.
The MSO logic of chains has a special interest as it provides prominent examples
of decidable MSO theories, and also for the variety of approaches for proving de-
cidability, such as Ehrenfeucht–Fraı̈ssé games, automata, or composition methods
(see e.g., [24]). Let us recall some important decidability results. In his seminal
paper [5], Büchi proved that languages of �-words recognizable by automata coin-
cide with languages definable in the MSO theory of (�,<), from which he deduced
decidability of the theory. The result (and the automatamethod) was then extended
to the MSO theory of any countable ordinal [6], to �1, and to any ordinal less than
�2 [7]. Gurevich, Magidor and Shelah prove [12] that decidability of MSO theory
of �2 is independent of ZFC. Let us mention results for linear orderings beyond
ordinals. Using automata, Rabin [17] proved decidability of theMSO theory of the
binary tree, from which he deduces decidability of the MSO theory of Q, which in
turn implies decidability of the MSO theory of the class of countable linear order-
ings. Shelah [20] improved model-theoretical techniques that allow him to reprove
almost all known decidability results about MSO theories, as well as new decid-
ability results for the case of linear orderings, and in particular dense orderings.
He proved in particular that the MSO theory of R is undecidable. The frontier
between decidable and undecidable cases was specified in later papers by Gurevich
and Shelah [10, 13, 14]; we refer the reader to the survey [11].

§2. Preliminaries. This section contains standarddefinitions, notations and some
useful results.
2.1. Linear orderings and chains. We first recall useful definitions and results
about linear orderings. A good reference on the subject is Rosenstein’s book [19].
A linear ordering J is a total ordering. The order types of N, Z, Q are denoted by
�, � and �, respectively. Given a linear ordering J , we denote by −J the backwards
linear ordering obtained by reversing the ordering relation.
Given two elements j, k of a linear ordering J , we denote by [j, k] (respectively
(j, k)) the interval [min (j, k),max (j, k)] (resp. (min (j, k),max (j, k))). An order-
ing is dense if it contains no pair of consecutive elements. An ordering I is scattered
if there is no order-preserving mapping from � into I .
Given an ordering Y and a sub-ordering X of Y , we say that X is dense in Y if
[x, y] ∩ X �= ∅ for every pair x, y of distinct elements of Y , and that X is nowhere
dense in Y if for every open interval Z of Y , X ∩ Z is not dense in Z.
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We say that X is co-dense in Y if Y \ X is dense in Y .
In this paper we consider chains (or, labelled linear orderings), i.e., linear order-
ings (A,<) equipped with a function f: A → T where T is a finite (nonempty)
set.
Given a dense ordering I , a finite set T , and a coloring C : I → T , we say that
an interval J ⊆ I is C -uniform if for every t ∈ T the set J ∩C−1(t) is either empty
or dense in J . We shall use the following result (see [15]).

Proposition 2.1. Let I be a dense ordering. For every finite set T and every
coloring C : I → T , I contains an infinite C -uniform interval.
2.2. Logic. Let us briefly recall useful elements of monadic second-order logic,
and settle some notations. For more details about MSO logic see e.g., [11, 23].
Monadic second-order logic is an extension of first-order logic that allows to quan-
tify over elements aswell as subsets of the domain of the structure. Given a signature
L, one can define the set of (MSO) formulas over L as well-formed formulas that
can use first-order variable symbols x, y, . . . interpreted as elements of the domain
of the structure, monadic second-order variable symbols X,Y, . . . interpreted as
subsets of the domain, symbols from L, and a new binary predicate x ∈ X inter-
preted as “x belongs toX”. A sentence is a formula without free variable. As usual,
we often identify logical symbols with their interpretation. Given a signatureL and
an L-structureM with domainD, we say that a relationR ⊆ Dm× (2D)n is (MSO)
definable inM if and only if there exists a formula ϕ(x1, . . . , xm,X1, . . . , Xn) over
L which is true in M if and only if (x1, . . . , xm,X1, . . . , Xn) is interpreted by an
(m + n)-tuple of R. Given a structure M we denote by MSO(M ) (respectively
FO(M )) the monadic second-order (respectively first-order) theory ofM .
We say thatM ismaximal if MSO(M ) is decidable andMSO(M ′) is undecidable
for every expansionM ′ ofM by a predicate which is not definable inM .
We can identify labelled linear orderings with structures of the formM = (A,<,
P1, . . . , Pn) where< is a binary relation interpreted as a linear ordering over A, and
thePi ’s denote unary predicates. We use the notationP as a shortcut for the n-tuple
(P1, . . . , Pn).
Let Σ and Σ′ be relational signatures,M a Σ-structure with domain A andM ′ a
Σ′-structure with domain A′. We say thatM is (MSO) interpretable inM ′ if there
exist a subset D of A′ and a surjective mapI : D → A such that:

• D is MSO definable inM ′;
• The equivalence relation EQI = {(x, y) ∈ A′ : I (x) = I (y)} is MSO
definable inM ′;

• For every m-ary symbol R of Σ, there exists a MSO Σ′-formula ϕR such that
M |= R(I (a1), . . . ,I (am))⇔M ′ |= ϕR(a1, . . . , am)

for all a1, . . . , am ∈ D.
The following property of interpretations is well-known.

Lemma 2.2. IfM is interpretable inM ′ thenMSO(M ) is recursive inMSO(M ′).

Let us recall the following result.

Theorem 2.3 (Rabin [17]). MSO(�,<) is decidable.

We shall use the following easy corollary of Theorem 2.3.
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Corollary 2.4. LetM = (�,<,P1, . . . , Pn) be such that (P1, . . . , Pn) is a parti-
tion and every Pi is non-empty and dense in �. ThenMSO(M ) is decidable.

Proof. We prove thatMSO(M ) is recursive inMSO(�,<), and use Theorem 2.3.
For every n, all structures (�,<,P1, . . . , Pn) such that (P1, . . . , Pn) is a partition and
every Pi is non-empty and dense in �, are isomorphic. Moreover there exists an
MSO-formula U (X1, . . . , Xn) which expresses that (X1, . . . , Xn) is a partition and
that every Xi is non-empty and dense. Hence for every sentence ϕ, we obtain that
M |= ϕ iff

(�,<) |= ∃X1 . . . ∃Xn(U (X1, . . . , Xn) ∧ ϕ∗))

where ϕ∗ is obtained from ϕ by replacing every atomic formula of the form Pi(x)
by x ∈ Xi . 	
2.3. Elements of composition method. In this paper we rely heavily on compo-
sition methods, which allow to compute the theory of a sum of structures from
the ones of its summands. For an overview of the subject see [4, 22, 16]. In this
section we recall useful definitions and results. The quantifier depth of a formula ϕ
is denoted by qd (ϕ). Let n ∈ N, ∆ any finite signature that contains only relational
symbols. and M1,M2 be ∆-structures. We say that M1 and M2 are n-equivalent,
denotedM1 ≡n M2, if for every sentence ϕ of quantifier depth at most n,M1 |= ϕ
iffM2 |= ϕ.
Clearly,≡n is an equivalence relation. For any n ∈ N and ∆, the set of sentences of
quantifier depth≤ n is infinite. However, it contains only finitely many semantically
distinct sentences, so there are only finitely many≡n-classes of ∆-structures. In fact,
we can compute representatives for these classes.

Lemma 2.5 (Hintikka Lemma). For each n ∈ N and a finite signature ∆ that
contains only relational symbols, we can compute a finite setHn(∆) of ∆-sentences of
quantifier depth at most n such that:

• If �1, �2 ∈ Hn(∆) and �1 �= �2, then �1 ∧ �2 is unsatisfiable.
• If � ∈ Hn(∆) and qd (ϕ) ≤ n, then � → ϕ or � → ¬ϕ. Furthermore, there is an
algorithm that, given such � and ϕ, decides which of these two possibilities holds.

• For every ∆-structureM there is a unique � ∈ Hn(∆) such thatM |= �.
Elements ofHn(∆) are called (n,∆)-Hintikka sentences.

Given a∆-structureM wedenote byTn(M ) the unique element ofHn(∆) satisfied
in M and call it the n-type of M . Thus, Tn(M ) determines (effectively) which
sentences of quantifier-depth≤ n are satisfied inM .
As a simple consequence, note that theMSO theory of a structureM is decidable
if and only if the function k �→ Tk(M ) is recursive.
The sum of chains corresponds to concatenation. Let us recall a general defini-
tion.

Definition 2.6 (sum of chains). Consider an index structure Ind = (I,<I )where
<I is a linear ordering. Consider a signature ∆ = {<,P1, . . . , Pl}, where Pi
are unary predicate names, and a family (Mi)i∈I of ∆-structures Mi = (Ai ;<i ,
P1
i , . . . , Pil ) with disjoint domains and such that the interpretation<

i of < in each
Mi is a linear ordering. We define the ordered sum of the family (Mi)i∈I as the
∆-structureM = (A;<M,P1M, . . . , PMl ) where
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• A equals the union of the Ai ’s
• x <M y holds if andonly if (x ∈ Ai and y ∈ Aj for some i <I j), or (x, y ∈ Ai
and x <i y)

• for every x ∈ A and every k ∈ {1, . . . , l}, PMk (x) holds if and only if Mj |=
Pjk(x) where j is such that x ∈ Aj .

If the domains of theMi are not disjoint, replace them with isomorphic chains that
have disjoint domains, and proceed as before.
We shall use the notation M =

∑
i∈I Mi for the ordered sum of the family

(Mi )i∈I .
If I = {1, 2} has two elements, we denote∑i∈I Mi byM1 +M2.

We shall use Shelah’s composition method [20, Theorem 2.4] (see also [11, 22])
which allows to reduce the MSO theory of a sum of chains to the MSO theories of
the summands and the MSO theory of the index structure.

Theorem 2.7 (Composition Theorem [20]). There exists a recursive function f
and an algorithmwhich, givenk, l ∈ N, computes thek-type of any sumM =

∑
i∈I Mi

of chains over a signature {<,P1, . . . , Pl} from the f(k, l)-type of the structure
(I,<I ,Q1, . . . , Qp)

where

Qj = {i ∈ I : Tk(Mi) = �j} j = 1, . . . , p

and �1, . . . , �p is the list of all (k,∆)-Hintikka sentences with ∆ = {<,P1, . . . , Pl}.
The two following results ([20, Sections 5 and 6], see also [25, Theorem 5.6 p. 41])
specifies Theorem 2.7 in case I = � and all sets Qi are either empty or dense in �.

Theorem 2.8 (Shuffle). Let k, l ∈ N, and S be a nonempty set of k-types over the
signature ∆ = {<,P1, . . . , Pl}. For every sumM =

∑
i∈� Mi of chains over ∆ such

that S = {Tk(Mi) : i ∈ �}, and {i ∈ � : Tk(Mi ) = �} is dense in � for every � ∈ S,
the k-type ofM is completely determined by S, k and l . Moreover it can be computed
from S, k and l . This k-type is called shuffle of S and is denoted by shuffle(S).

2.4. Decomposition of a chain. Let M be a chain and let ∼ be an equivalence
relation on the domain ofM . If the∼-equivalence classes are intervals inM we say
that∼ is a convex equivalence relation. In this case the set of ∼-equivalence classes
can be naturally ordered by i1 ≤ i2 iff ∃x1 ∈ i1∃x2 ∈ i2(x1 ≤ x2). We denote by
M/∼ the linear order of ∼-equivalence classes. The mapping that assigns to every
x ∈M its ∼-equivalence class is said to be canonical.
Let ∼ be a convex equivalence relation onM . ThenM =∑

i∈M/∼Mi , whereMi
is the subchain ofM over the equivalence class i .

Lemma 2.9. If ∼ is a convex equivalence relation which is definable inM , then
1. M/∼ is interpretable inM .
2. Let ϕ1, . . . ϕk be sentences in the signature ofM . Let a chainC be the expansion
ofM/∼ by unary predicates Qϕ1 , . . . , Qϕk defined as

Qϕl = {i ∈M/∼ |Mi |= ϕl}.
Then C is interpretable inM .
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§3. Non-maximality for MSO theories of countable chains.
3.1. Main result. An expansion ofM by a predicate R is non-trivial if R is not
MSO-definable inM .
The next theorem is our main result.

Theorem 3.1. Let M = (A,<,P) be an infinite countable chain. There exists
a non-trivial expansion M ′ of M by a monadic predicate such that MSO(M ′) is
recursive in MSO(M ). In particular if MSO(M ) is decidable, then MSO(M ′) is
decidable.

In this section we prove Theorem 3.1. We shall use the following result from [3].

Lemma 3.2. Let M = (A,<,P) be an infinite chain which contains an interval
of order type � or −�. There exists a non-trivial expansion M ′ of M such that
MSO(M ′) is recursive inMSO(M ).

In the rest of this section we prove Theorem 3.1.
Let P = (P1, . . . , Pt). We can assume w.l.o.g. that P is a partition of A. The
structureM ′ will be defined as the expansion ofM with some unary predicate R.
Consider the equivalence relation ≈ defined on A which holds between x and
y if either [x, y] is finite, or [x, y] is contained in an open dense interval which is
C -uniform with respect to the coloring C : A→ {1, . . . , t} which maps every x ∈ A
to the unique i such that x ∈ Pi . Observe that the relation x ≈ y is MSO-definable
inM . Each ≈-equivalence class has one of the following forms:
1. orderings of type −�, or �, or �;
2. an interval of order type � which is C -uniform;
3. finite orderings.

We denote by J the linear order M/≈ of the ≈-equivalence classes. We can write
M =

∑
j∈J Mj (respectively M

′ =
∑
j∈J M

′
j), where for every j ∈ J the domain

ofMj (resp.M ′
j) corresponds to an ≈-equivalence class.

Hence, at least one of the following cases holds:

1. At least one ≈-equivalence class has order-type−�, or �, or �;
2. at least one ≈-equivalence class has order-type �;
3. all ≈-equivalence classes are finite.
We prove Theorem 3.1 for each of these cases separately.
If there exists at least one ≈-equivalence class of order-type−�, or �, or �, then
the result follows from Lemma 3.2.
The case when at least one ≈-equivalence class has order-type � is considered in
the next subsection. The case when all≈-equivalence classes are finite is considered
in subsection 3.3.
3.2. Second case: there exists at least one ≈-equivalence class of order type �.
In this case we can expand M with any predicate R which satisfies the following
conditions:

1. If j is an ≈-equivalence class of type (1) or (3) then R ∩ j = ∅.
2. If j is an ≈-equivalence class of type (2) and Yj = {l | Pl ∩ j �= ∅}, then R
is dense and co-dense in j ∩ Pl for every l ∈ Yj .

Lemma 3.3. The set R is not definable inM .
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Proof. Assume that a unary predicate H is definable in a chainM by an MSO
formula ϕ(x). Let g be an automorphism on M . Then H should be invariant
under g, i.e., g maps H ontoH .
Let j be an ≈-equivalence class of type (2). It is order-isomorphic to �. LetMj
be the substructure ofM over j. For every l ∈ Yj , Pl is dense and co-dense in j.
Then, by (2), there are a1, a2 ∈ j such that a1 ∈ Pl ∩ R and a2 ∈ Pl \ R for some
l ∈ Yj , and there exists an automorphism f ofMj , which maps a1 to a2. Hence, R
is not invariant under f. We can extend f to an automorphism g ofM . Since R is
not invariant under g, we derive that R is not MSO-definable inM . 	
The next definition introduces notations which will be used throughout the paper.

Definition 3.4 (Chains Nk and N ′
k). Let M be a chain in a signature ∆ and let

M ′ be an expansion ofM by a predicate R. For k > 0 we define chains Nk and N ′
k

as follows. Let (J,<) be the chainM/≈ of ≈-equivalence classes.
1. Nk is the expansion (J,<) by predicates {Typek,� | � ∈ Hk(∆)} defined as:
Typek,�(j) holds iff T

k(Mj) = �.
2. N ′

k is the expansion (J,<) by predicates {Type′k,� | � ∈ Hk(∆ ∪ {R})} defined
as: Type′k,�(j) holds iff T

k(M ′
j) = �.

Note thatNk andN ′
k are chains over the samedomain, however they havedifferent

signature. The following lemma is a consequence of Lemma 2.9.
Lemma 3.5. 1. Nk is interpretable inM .
2. N ′

k is interpretable inM
′.

3. Nk is interpretable in Nm for every m ≥ k.
Lemma 3.6. MSO(M ′) is recursive inMSO(M ).
Proof. We show how to reduce Tn(M ′) to MSO(M ) for every n ≥ 3. Note that
T 0(M ′) is always empty (since there is no sentence with quantifier depth 0 in the
signature of M ′), and moreover T 1(M ′) and T 2(M ′) clearly reduce to T 3(M ′).
The main reduction steps can be represented as follows:

Tn(M ′)→MSO(N ′
n)→MSO(Nn)→MSO(M ).

Let n ≥ 3. By Theorem 2.7, Tn(M ′) is recursive in MSO(N ′
n).

By Lemma 3.5 there is an interpretation of Nn in M , therefore MSO(Nn) is
recursive in MSO(M ).
It remains to show that MSO(N ′

n) is recursive in MSO(Nn).
Let us prove that for every j ∈ J , Tn(M ′

j) can be computed from T
n(Mj). First

of all, using T 3(Mj) we can check whether the ≈-class j has type (2). Indeed, only
classes of type (2) are dense, thus

T 3(Mj)→ ∀x∀y(x < y → ∃z(x < z ∧ z < y))
iff j has type (2).
If j is not of type (2), then by definition of R we have R ∩ j = ∅. In this case
for every sentence ϕ we haveM ′

j |= ϕ iffMj |= ϕ∗ where ϕ∗ is obtained from ϕ by
replacing every atomic formula of the form R(x) by ¬(x = x). This shows that in
this case Tn(M ′

j) can be computed from T
n(Mj).

Assume now that j has type (2). Let Yj = {i : Pi ∩ j �= ∅}. The set Yj
is computable from T 1(Mj). Let us denote by i1, . . . , it the (distinct) elements
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of Yj . For u = 1, . . . , t, let Piu ,1 = Piu ∩ R and Piu ,2 = Piu \ R. It follows
from our assumptions that all sets Piu ,1 and Piu ,2 are non-empty and dense in the
domain of Mj (which we identify with �). By Corollary 2.4 it follows that the
MSO theory of the structure S = (�,<,Pi1 ,1, Pi2 ,2, . . . , Pit ,1, Pit ,2) is decidable. We
have R = ∪1≤u≤tPiu ,1, and Piu = Piu ,1 ∪ Piu ,1, thus R and all predicates Pi,u are
MSO-definable in S. It follows that MSO(M ′

j) is recursive in MSO(S).
We proved that for every j ∈ J , Tn(M ′

j) is computable from T
n(Mj). This

implies that every predicate Type′k,� in the signature ofN
′
n is equivalent to a boolean

combination of predicatesTypek,� in the signature ofNn , and thus is definable inNn.
It follows that N ′

n is interpretable in Nn , and Lemma 2.2 yields that MSO(N
′
n) is

recursive in MSO(Nn). 	
This completes the proof for the second case.
3.3. Third case: all ≈-equivalence classes are finite. The construction in this case
shares some ideas with the previous one but is more involved.
Since every ≈-equivalence class is finite, there are no consecutive ≈-equivalence
classes. Therefore, the ordering J of≈-equivalence classes is infinite, countable and
dense (i.e., it is isomorphic with �, 1 + �, � + 1 or 1 + � + 1).
We shall expandM with a unary predicate R which will be defined “at the level
of J”, i.e., for every j we will have (j ∩R) ∈ {∅, j}. Thus we actually define a set
R′ ⊆ J , and then define R by: j ∩R = j if j ∈ R′, and j ∩R = ∅ otherwise.
For every n > 0 let Cn denote the coloring which maps every j ∈ J to Tn(Mj).
Consider the equivalence relation j ∼n k which holds between elements j, k ∈ J
iff (j = k, or there exists a Cn-uniform open interval of J which contains both j
and k). Each ∼n-equivalence class is either a singleton, which we call an n-point,
or a (maximal) Cn-uniform open interval, which we call an n-interval. If I is an
n-interval and S = {� | there is j ∈ I such that Tn(Mj) = �}, then I is said to be
an S-interval. Note that if I is an S-interval and � ∈ S, then {j | Tn(Mj) = �} is
dense in I .
The main idea is to define R′ in such a way that the following property holds:

For every n > 0, every n-interval I of J ,
and every n-type � ∈ {Tn(Mi) | i ∈ I },
the set R′ is both dense and co-dense in I ∩ {i | Tn(Mi) = �}.

(*)

This propertywill ensure thatR′ is not definable inM (see Proposition 3.12), and on
the other hand, will allow to reduce the computation of the n-type of the expansion
ofM by R to MSO(M ) (see Proposition 3.13).
For every n > 0 let Πn (respectively, In) denote the set of n-points (respectively

n-intervals), and let Π =
⋃
nΠn. The definition of R

′ proceeds in two main stages:
we first define the restriction of R′ to J \Π, and then the restriction of R′ to Π (by
defining it on every Πn , by induction over n).
The following is easy:

Lemma 3.7 (properties of Πn). 1. Πn isMSO definable in Nm for m ≥ n.
2. Πn is nowhere dense in J .

Proof. (1) is immediate. (2) Assume for a contradiction that Πn is dense in
some open interval I of J . Then by Proposition 2.1, the interval I contains some
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Cn-uniform open subinterval I ′, and I ′ is simultaneously contained in some n-
interval, and contains n-points, which is impossible. 	
First stage: definition of R′ on J \Π:
Let J ′ = J \ Π. If J ′ is empty then we are done. Otherwise, let ≈1 be an
equivalence relation on J defined as follows: x ≈1 y if x = y or there is an open
interval I ⊆ J of order type � such that x, y ∈ I , Mx and My are isomorphic,
and the set {z ∈ I \ Π | Mz andMx are isomorphic} is dense in I . Note that an
≈1-equivalence class is either a singleton or of order type �.
Now we define R′ on J ′ as any set that contains all singleton ≈1-equivalence
classes and is dense and co-dense in every ≈1-equivalence class of order type �.
The following lemma is crucial in order to prove (∗).
Lemma 3.8. Let n > 0, I be an open sub-interval of an n-interval, � be an n-type
which appears (densely and co-densely) in I , and

Y� = I ∩ {j: Tn(Mj) = �}.
If Y� ∩ Π = ∅, then every element x of Y� belongs to an ≈1-equivalence class C of
order type �, and Y� has a non-empty intersection with both R′ and its complement.

Proof. Let x ∈ Y�. The structure Mx is finite. Therefore, there is a sentence
ϕ such that a chain satisfies ϕ iff it is isomorphic to Mx . Let m = qd (ϕ). Since
x /∈ Πm, it follows that x belongs to an m-interval Im. Hence, the set Ex = {z |
Mz andMx are isomorphic} is dense in Im ∩ I . Now every element z of Ex satisfies
Tn(Mz) = �, thus Ex ∩ I ⊆ Y�. By our assumption Y� ∩ Π = ∅, from which it
follows that all elements of Ex ∩ I ∩ Im (which is an infinite set) are ≈1-equivalent
to x. Thus the≈1-equivalence class of x is of order type �, hence Ex ∩ I ∩ Im has a
non-empty intersection with both R′ and its complement. 	
Second stage: definition of R′ on Π:
Wedefine by induction on n the setR′

n ⊆ Πn\Πn−1, and define then the restriction
of R′ to Π as ∪n∈NR

′
n .

Let us first explain the definition informally. We want that eventually R′ satis-
fies (∗). Let us start with a simple example. Consider the case n = 1, and the
partition of J into 1-intervals and 1-points. Consider a 1-interval I . It does not
contain any 1-point (by definition), but it can contain m-points for some m > 1.
Thus if we want that (∗) holds for n = 1 and I , we have to ensure that the definition
of R′ form-points is compatible with (∗). If the set I ∩Π is finite, or even nowhere
dense in I , then the definition of R′ on I \Π given during the first stage suffices to
ensure that (∗) holds for n = 1. Thus we could simply choose to put all elements
of I ∩ Π in R′ (or all in the complement of R′). However it can happen that all
elements of I belong to Π. Thus we need some convenient strategy for defining R′

on I ∩Π.
Let us consider the following example.

Example 3.1. Let (Aj)j>0 be a family of disjoint subsets of �. For every i > 0 let
A≤i = ∪ij=1Aj . Assume that the two following properties hold:
1. for every i > 0, A≤i is order-isomorphic to a subset of the integers.
2.

⋃
i>0

Ai is dense in �.
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We define the sets Ri ⊆ Ai as follows:
• R1 = ∅

• for every i > 0, x ∈ Ri+1 iff x ∈ Ai+1 and there are y, z ∈ A≤i such that
1. y < x < z and (y, z) ∩ A≤i = ∅ (note that this implies that y and z are
unique) and

2. y and z belong to the complement of ∪ij=1Rj .
It is easy to see that Ri is MSO-definable in (�,<) with parameters A1, . . . , Ai .
Let us show that the set R = ∪i>0Ri is dense and co-dense in the set A = ∪i>0Ai .
Take any open interval I ⊆ �. We have to show that there is a point in I ∩A∩R
and a point in (I ∩ A) \R.
Toward a contradiction assume that I ∩ A ∩ R = ∅. Since A is dense in � there
is i such that I ∩A≤i contains at least two points. These points do not belong toR.
Let us consider two consecutive points y < z in I ∩ A≤i . Since I ∩ A ∩ R = ∅

we obtain that y, z /∈ ∪ij=1Rj . Since A is dense in (y, z) there is a minimal m > i
such that Am ∩ (y, z) �= ∅. Then according to the definition of Rm all points of
Am ∩ (y, z) should be in Rm and hence in R. This contradicts the assumption that
I ∩A ∩R = ∅.
Similar arguments show that (I ∩ A) \ R �= ∅. Hence R is dense and co-dense
in A.

Our definition of R′
i refines the definition of Ri in the above example. First

obstacle we have to overcome is to generalize the definition given for the family
(Ai )i>0 to the family (Πi)i>0. Note that a set Πi is not necessarily order isomorphic
to a subset of integers, though Πi is nowhere dense. The second obstacle, in order
to prove (∗), is that even in the case when J = Π = �, we have to ensure that R′

is dense in � ∩ Y� and the construction in the example only ensures that R is dense
in �.
For every n > 1 let An = Πn \Πn−1. We say that y is an (m, n)-left bound for x
(and denote it as BLnm(y, x)) if the following conditions hold:

1. y < x
2. x ∈ An
3. y ∈ Πn−1
4. [y, x] is a subinterval of some m-interval and Tm(Mx) = Tm(My)

Note that by (4) if BLnm(y, x) thenm < n. The predicate BR
n
m(y, x) for the relation

“y is an (m, n)-right bound for x” is defined similarly.
Define lranknm(x) and rrank

n
m(x) as

lranknm(x) := ∃yBLnm(y, x) ∧ ¬∃yBLnm+1(y, x).
rranknm(x) := ∃yBRnm(y, x) ∧ ¬∃yBRnm+1(y, x).

If lranknm(x) (respectively, rrank
n
m(x)) we say that the left rank (respectively, right

rank) of x is (m, n).
We are going to define R′

n ⊆ An by induction on n.
We say that R′

<n holds at the left bound for x if lrank
n
m(x) and

• either {y | BLnm(y, x)} has a maximal element z and z ∈ ∪n−1j=1R′
j

• or {y | BLnm(y, x)} ∩ ∪n−1j=1R′
j is co-final in {y | BLnm(y, x)}.
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One defines similarly “R′
<n holds at the right bound for x”.

We define the sets R′
i ⊆ Ai as follows

• R′
1 = ∅.

• For every i > 0 and x ∈ Ai+1, x /∈ R′
i+1 iff (lrank

i+1
m1
(x) and rranki+1m2 (x) hold

for some m1, m2, and R′
<i+1 holds at the left bound for x, and R

′
<i+1 holds at

the right bound for x).
Recall that the structure Nk was defined in Definition 3.4. The following lemma
is immediate.
Lemma 3.9. For every m ≥ n ≥ 1 the relation R′

n isMSO definable in Nm.
The following lemma describes a property of R′ which is an instance of (*) and
is central for our proof of (*).
Lemma 3.10. Let n > 0 and let I be an open subinterval of an n-interval. Let � be
an n-type such that the set Y� = I ∩ {x : Tn(Mx) = �} is dense in I . Assume thatΠ
is dense in Y�. Then, R′ is both dense and co-dense in Y� .
Proof. We are going to prove that Y� contains a point in R′ and a point outside
R′. Since I is an arbitrary non-empty open interval this implies the conclusion of
the lemma.
Since Π is dense in Y�, the set Π ∩ Y� contains at least two points a < b. Let
a ∈ Ak1 ∩ Y� and b ∈ Ak2 ∩ Y� . Note that k1, k2 > n.
Toward a contradiction assume

R′ ∩Y� ∩ (a, b) = ∅.(1)

We shall prove the following:

for every s > max(k1, k2) and every x ∈ As ∩ Y� ∩ (a, b),
there exists l ≤ k1 such that lranksl (x) holds.(2)

Let s, x be as in (2). Both elements a and x belong to I , thus [a, x] is a subinterval
of an n-interval. Moreover we have Tn(Ma) = Tn(Mx) since a, x ∈ Y�. Finally
we have a ∈ Ak1 with k1 < s , thus a ∈ Πs−1. It follows that BLsn(a, x) holds.
Therefore, lranksl (x) holds for some l ≥ n. Since a ∈ Πk1 , by condition 4 in the
definition of BLsl we obtain that ¬BLsk1 (a, x). Therefore,

If l > k1 and y satisfies BLsl (y, x) then y > a.(3)

By (1) we have x /∈ R′
s , therefore by the definition of R

′
s , we obtain that R

′
<s

holds at the left bound for x. If l > k1 then by (3) and (1), it follows thatR′
<s does

not hold at the left bound for x. Hence, a contradiction. Therefore, l ≤ k1, which
yields (2).
Recall that Π is dense in Y�. It follows from (2) that there exists l1 ≤ k1 and
a non-empty open interval V ⊆ (a, b) such that {x ∈ Π | lranksl1 (x) ∧ s > k1} is
dense in V ∩Y� .
Since for every i the set Πi is nowhere dense andAi+1 = Πi+1 \Πi , we obtain that
for every r, there exist integers s1 < s2 < · · · < sr and elements x1 < x2 < · · · < xr
of V ∩Y� such that lranksil1 (xi) holds for every i .
Let u be the number of (l1, {<,P})-Hintikka sentences, and let r > 2u. We
obtain that there is an l1-type �′ and xi < xp < xj such that

�′ = T l1(Mxi ) = T
l1 (Mxj ) = T

l1 (Mxp).
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First observe

{y | y > xi ∧ BLsjl1 (y, xj)} �= ∅(4)

Indeed, on the one hand if BLsjl1 (xi , xj), then (xi , xj) is a sub-interval of an l1-
interval, and therefore BLsjl1 (xp, xj). Since xi < xp it follows that

xp ∈ {y | y > xi ∧ BLsjl1 (y, xj)},
and therefore (4) holds.
On the other hand, if ¬BLsjl1 (xi , xj) then (xi , xj) is not a sub-interval of any
l1-interval, and in this case {y | y > xi ∧ BLsjl1 (y, xj)} = {y | BLsjl1 (y, xj)} �= ∅.
Next, observe that, by (1), no element of (a, xj) ∩ Y� belongs to R′, and hence
no element of (xi , xj) ∩ Y� belongs to R′.
Recall that for every s > max(k1, k2) and every x ∈ As ∩ Y� ∩ (a, b) we proved
that lranksl (x) holds for some l ≥ n. Therefore, l1 ∈ [n, k1) and �′ → �. In addition,
(xi , xj) is an sub-interval of an n-interval, therefore (xi , xj) ∩ Y�′ ⊆ (xi , xj) ∩ Y�.
Hence, no element of (xi , xj) ∩ Y�′ belongs to R′, and

{y | y > xi ∧ BLsjl1 (y, xj )} ∩R′ = ∅.(5)

Finally by (4) and (5), R′
<sj does not hold at the left bound for xj , and by the

definition of R′
sj , we obtain that xj ∈ R′

sj . This contradicts (1).
We have proved that Y� contains a point in R′. The proof that Y� contains a
point outside R′ is similar. 	
Lemma 3.11. R′ satisfies (∗).
Proof. Let n > 0 and let I be some n-interval. Then I is an S-interval for some
set S = {�1, . . . , �p} of n-types. We have to prove that for every � ∈ S the set R′ is
both dense and co-dense in the set Y� = I ∩{x : Tn(Mx) = �}. Let us fix �, and let
us consider an open interval Z of I . We shall prove that Z ∩ Y� has a non-empty
intersection with both R′ and the complement of R′.
If Π is not dense in Z ∩ Y�, then there exists an open interval K of Z such that
K contains no element of Π. Then, by Lemma 3.8, K ∩Y� contains both elements
from R′ and the complement of R′.
If Π is dense in Z ∩ Y� , then the result follows from Lemma 3.10. 	
Proposition 3.12. R is notMSO definable inM .
Proof. The proof is similar to the one of Lemma 3.3. Assume for a contradiction
that R is definable inM by some formula ϕ(x) with quantifier depth k. For every
j ∈ J we have j ∈ R′ iff there exists x in j ∩R, i.e., iff Tk+1(Mj)→ ∃yϕ(y). The
latter property is expressible in the structure Nk+1. Therefore R′ is definable in the
structure Nk+1 (even with a quantifier-free formula).
Let n = k + 1, and let K ⊆ J be an infinite Cn-uniform interval. The set R′ is
dense and co-dense in every set Sc = {a ∈ K | Cn(a) = c} for c in the range of Cn,
thus there exist a1 ∈ R′ ∩ Sc , and a2 ∈ Sc \ R′. Now K is Cn-uniform, thus there
exists an automorphism g of the sub-structure ofNn with domainK which maps a1
to a2, andR′ is not invariant under g, which contradicts the fact thatR′ is definable
in Nn . 	
Proposition 3.13. MSO(M ′) is recursive inMSO(M ).
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Proof. We show how to reduce Tn(M ′) to MSO(M ) for every n ≥ 1.
Let us denote by (Jn,<) the linear order of∼n-equivalence classes. Let �n : J→Jn
denote the corresponding canonical mapping. For I ∈ Jn let �n(I ) = ∪j∈I j. Note
that �n(I ) is an interval in M . We denote by O′

n,I the subchain ofM
′ over �n(I ).

Observe that

O′
n,I =

∑
j∈I
M ′
j

and

M ′ =
∑
I∈Jn
O′
n,I

Let O′
n be the expansion of (Jn,<) by monadic predicates

{Qn,�′ | �′ ∈ Hn(∆ ∪ {R})},
where ∆ is the signature ofM , and Qn,�′(I ) holds iff Tn(O′

n,I ) = �
′.

The main reduction steps can be represented as follows:

Tn(M ′)→MSO(O′
n)→MSO(Nn)→MSO(M ).

The first reduction step is a consequence of Theorem 2.7, which shows that the
computation of Tn(M ′) reduces to the one of Tf(n,l)(O′

n).
By Lemma 3.5 there is an interpretation of Nn in M , therefore MSO(Nn) is
recursive in MSO(M ).
To complete the proof it is sufficient to show that that MSO(O′

n) is recursive in
MSO(Nn). This immediately follows from the next Lemma.

Lemma 3.14. There exists an interpretation of O′
n in Nn . Moreover, there is an

algorithm which computes such an interpretation from n.
Proof. We consider the interpretation map I = �n. The domain D = J , the
relation EQI , as well as the ordering relation between ∼n-equivalence classes, are
definable inNn . Thus it remains to provide an interpretation inNn of each predicate
Qn,�′ , i.e., to show that for every n-type �′ in the signature ofM ′, one can define in
Nn the predicate Pn,�′ which holds at j iff (j ∈ I ∈ Jn and Tn(O′

n,I ) = �
′).

First note that for every � ∈ Hn(∆) there are �R, �¬R ∈ Hn(∆ ∪ {R}) such that
�R ↔ (� ∧ ∀tR(t)) and �¬R ↔ (� ∧ ∀t¬R(t))

Moreover, �R, �¬R are computable from �.
We claim

Pn,�′(j) iff




�′ = �R and j is an n-point such that
Typen,�(j) and j ∈ R′

≤n
�′ = �¬R and j is an n-point such that

Typen,�(j) and j /∈ R′
≤n

�′ = shuffle({�R | � ∈ S} ∪ {�¬R | � ∈ S}),
where S ⊆ Hn(∆) and j belongs to an S-interval

(6)

Observe that

• Predicates Typen,� for � ∈ Hn(∆) are in the signature of Nn.
• the set R′

≤n = ∪1≤i≤nR′
i is definable in Nn, by Lemma 3.9.
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• for every subsetS = {�1, . . . , �p}of n-types in the signature ofM , the predicate
“j belongs to an S-interval of Nn” is definable in Nn .

These observations together with (6) imply that the predicates Pn,�′ are definable
in Nn , thus O′

n is interpretable in Nn.
It remains to show that (6) holds.
Assume that j is an n-point. Let I be the∼n-equivalence class of j. Then j is the
only element of I . If j ∈ R′

≤n then O
′
n,I is the expansion ofMj by R which holds

at every point. Therefore, if Tn(Mj) = �, then Tn(O′
n,I ) = �

R. Hence, (6) holds in
this case. The case when j is an n-point and j /∈ R′

≤n is similar.
Assume now that j is not an n-point. Then the ∼n equivalence class I of j is an
S-interval for some S ⊆ Hn(∆). Hence, I is order-isomorphic to �, the predicates
Typen,� (for � ∈ S) partition I , and each of these predicates is dense in I .
Recall thatR′ satisfies (∗), thusR′ is both dense and co-dense in each Typen,� ∩ I
(for � ∈ S). If j ∈ Typen,� ∩ I ∩R′, then Tn(M ′

j) = �
R; if j ∈ (Typen,� ∩ I ) \ R′,

then Tn(M ′
j) = �

¬R.
Since O′

n,I =
∑
j∈I M

′
j , we obtain by Theorem 2.8 that

Tn(O′
n,I ) = shuffle({�R | � ∈ S} ∪ {�¬R | � ∈ S}).

This completes the proof of (6), of Lemma 3.14 and of Proposition 3.13. 	
Third case follows from Proposition 3.12 and Proposition 3.13. 	

§4. Further results and open questions. We proved that if the monadic second-
order theory of a countable chainC is decidable, thenC has a non-trivial expansion
with decidable monadic second-order theory.
It would be interesting to obtain a version of our result for first-order logic.
However, such a proof requires some new ideas. One obstacle is that there is no
first-order formula that expresses that an interval (x, y) is finite. This is expressible
in MSO and allowed us to consider three types of intervals.
We also do not know whether the main result of [3] can be extended to first-order
logic, namelywhether decidability of the first-order theory of a chainwhich contains
an interval of order type � or −� implies that it has non-trivial expansion with
decidable first-order theory.
Another interesting issue is to remove the assumption that the ordering is count-
able and to prove that every chain C has a non-trivial expansion C ′ such that the
monadic theory of C ′ is recursive in the monadic theory of C . Note that the MSO
theory of the real line is undecidable [20].
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UNIVERSITÉ PARIS-EST
LABORATOIRE D’ALGORITHMIQUE, COMPLEXITÉ ET LOGIQUE
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