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Abstract

We survey definability and decidability issues related to first-order frag-
ments of arithmetic, with a special emphasis on Presburger and Skolem arith-

metic and their (un)decidable extensions.
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1 Introduction

This paper deals with arithmetical definability, which aims to study the expres-
sive power of first-order fragments of arithmetic. A classical example is Presburger
arithmetic, which is the elementary theory of 〈N; +,=〉. More generally arithmeti-
cal definability deals with theories of structures 〈N;R〉 where R denotes a set of
functions, relations, constants, which are arithmetical, i.e. elementary definable in
〈N; +,×,=〉. Some examples of arithmetical relations and functions are: order re-
lation <, successor function S : x 7→ x+ 1, the function π which enumerates prime
numbers, the divisibility relation |, the relations “to be a prime”, “to be a square”,
etc...

The subject is obviously related to the study of decidability of logical theories,
as one often proves (un)decidability of a theory by means of definability arguments;
let us also note that (un)decidability results in the context of logical theories are
usually considered for definability (and more generally model-theoretical) properties
they imply rather than for practical purposes.

Some classical examples:

• Presburger’s proof of decidability for the elementary theory of 〈N; =,+〉 implies
that a set X ⊆ N is definable in 〈N; =,+〉 if and only ifX is ultimately periodic
(see next section);

• a key-argument in Gödel’s proof of undecidability of Th(N; =,+,×) is the
definability of exponentiation function;

• in the same way the negative solution given by Matiyasevich to Hilbert’s Tenth
Problem relies on the fact that exponentiation function is existentially defin-
able in 〈N; =,+,×〉.

In spite of the first two examples, which come respectively from the 20’s and
30’s, one can consider that arithmetical definability was initiated by Julia Robin-
son’s 1949 paper [Rob49], in which she proved that + and × are definable in 〈N;S, |〉,
and proposed several related questions, among which stands one of the most famous
open problems in the field, namely whether one can define + and × in the struc-
ture 〈N;S,⊥〉, where ⊥ is interpreted as the relative primeness relation (i.e. x⊥y
iff gcd(x, y) = 1); this question received considerable attention in the 80’s, and the
partial answers given by Woods and Richard showed nice connections between arith-
metical definability and number theory. Another recent achievements in the field are
the results of Muchnik, and Michaux-Villemaire, who exploit the strong connection
(discovered by Büchi in the late fifties) between definability in Presburger arithmetic
and recognizability of sets of natural numbers by finite automata.

Our aim here is to present classical results and techniques in the field, as well
as less known results and proofs (in particular Woods’ proofs of results related to
〈N;S,⊥〉). We shall consider various sets R of arithmetical relations and functions,
and address the following questions: can we describe relations definable in 〈N;R〉
? In particular, can we define +, and × ? Is the elementary theory of 〈N;R〉
decidable ? Starting from the language of arithmetic R = {=,+,×}, it is quite
natural to consider then the languages {=,+} and {=,×}. We concentrate on these
two languages and their extensions.
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We will focus on “full” definability and only mention a few existential definability
related results and questions; we refer the interested reader to the survey paper
[Phe94].

The papers [Rab77], [Gri91], [Ceg96], [Res00], [Kor97], and the book [Smo91],
are closely related to the subject treated here - and allow to escape from the rather
monomaniac viewpoint adopted in the present paper.

The first section deals with Presburger Arithmetic, namely the (first-order) the-
ory of 〈N; =,+〉. We recall Presburger’s quantifier elimination result and its conse-
quences. We then consider extensions of Presburger arithmetic obtained by adding
a unary predicate which is interpreted as the range of a polynomial function, or
by adding a “weakening” of multiplication, e.g. the relative primeness predicate,
or the set of prime numbers (i.e. the unary relation interpreted as “to be a prime
number”). Then we recall the main results of Semënov, who described a large class
of decidable extensions of 〈N; =,+〉 (an example: 〈N; +,=, f〉, with f(x) = 2x). The
last part of the section deals with connections between definability in (extensions of)
Presburger arithmetic, finite automata and numeration systems; this is the place to
present some recent successful applications of definability due to Muchnik, as well
as Michaux and Villemaire.

The next section deals with Skolem Arithmetic, i.e. the multiplicative the-
ory of integers, and its extensions. We recall Mostowski’s proof of decidability of
Th(N;×,=), then explain Feferman-Vaught composition theorem, which consists in
a refinement of Mostowski’s notion of products of structures, and appears as a nice
tool for constructing decidable extensions of 〈N;×,=〉. An example, due to Maurin,
is the (decidable) theory of 〈N;×,=, <P 〉 where <P denotes order relation restricted
to prime numbers. We then use the automata techniques that were introduced in
the previous sections to give an alternative proof for decidability of the latter theory.
We also state some undecidability results for extensions of Skolem arithmetic, such
as 〈N;×,=, <Π〉 where <Π denotes order restricted to primary numbers (a result
due to D.Richard and the author), and the result of Cegielski, Matiyasevich and
Richard about structures 〈N;×,=, p〉 where p denotes any injection from N to the
set of primes.

The last section is devoted to Julia Robinson’s famous open problem, which we
already mentioned: can we define + and × in 〈N;S,⊥〉, where S denotes successor
function and x⊥y iff gcd(x, y) = 1 ? As shown by Woods, this question turns out
to be equivalent with a difficult number-theoretic problem, known as Erdös-Woods
Conjecture. We first recall Julia Robinson’s proof of undecidability of Th(N;S, |),
then detail Woods’ main results on 〈N;S,⊥〉 (as far as we know, until now the proofs
could only be found in Woods’ PhD Thesis). We finally state related definability
results obtained by Richard.

Let us specify our logical conventions and notations. We work within first-order
predicate calculus without equality1. We will confuse formal symbols and their
interpretations. The symbols <,+, |,×, . . . are interpreted in their usual way.

1Most structures considered in the paper will have equality relation = in their language, but =
is considered as a non-logical symbol.



4 A. Bès

Given a L−structure 〈M ;L〉, and a n−ary relation R over M , recall that R
is elementary definable (shortly: definable) in 〈M ;L〉 if there exists a first-order
L−formula ϕ with n free variables such thatR = {(a1, . . . , an) :〈M ;L〉 |= ϕ(a1, . . . , an)}.
We will say that a function is definable in a structure if its graph is definable.

Examples :

• the order relation on N is definable in 〈N; =,+〉, since x < y iff

∃z
(
¬(z + z = z) ∧ x+ z = y

)
;

• the unary relation “x is prime” is definable in 〈N; =,×〉 by the formula

∀y∀z
(
x = yz =⇒ [(∀t t = ty) ∨ (∀t t = tz)]

)

(we will simply say that the set of primes is definable in the structure).

We shall only use this basic notion of definability; more advanced definability
notions and techniques can be found e.g. in [Ceg96] (non-definability techniques, in
particular).

Given a structureM, we denote by Def(M) the set of relations definable inM,
and by Th(M) the elementary theory of M.

The main symbols and notations used in the paper can be found in the table at
the end of the paper.

2 Presburger Arithmetic and extensions

2.1 Presburger Arithmetic

Presburger proved in [Pre29] the decidability of the theory of 〈N; =,+〉 by means of
quantifier elimination. We only state the result, whose proof can be found in many
introductive textbooks on mathematical logic (see e.g. [End72]).

As usual with quantifier elimination, we have to extend the language: we add
constant symbols for 0 and 1, and an infinite set of binary relations <n for n ≥ 1
defined by: for all x, y ∈ N,

x <n y holds iff (x < y and x ≡ y (mod n)).

Theorem 1. The theory Th(N; =,+, 0, 1, (<n)n≥1) admits quantifier elimination.

Let us state two important corollaries of Presburger’s result.

Corollary 2. The elementary theory of 〈N; =,+〉 is decidable.

We will state another proof of this result in paragraph 2.5, using arguments from
automata theory.

Theorem 1 allows to describe definable subsets of N.
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Corollary 3. A subset X ⊆ N is definable in 〈N; =,+〉 iff X is ultimately periodic,
i.e. if there exist M,p ≥ 1 such that for every n ≥M , n ∈ X ⇐⇒ n + p ∈ X

This characterization was generalized by Ginsburg and Spanier [GS66] as follows.

Theorem 4. For every n ≥ 1, a subset X ⊆ Nn is definable in 〈N; +,=〉 if and only
if X is semilinear, i.e if X is definable by a finite disjunction of formulas ϕ(−→x ) of
the form

∃y1 . . .∃yn (−→x = −→a 0 +−→a 1 · y1 + · · · +−→a j · yj)
where −→x is the n−tuple (x1, . . . , xn), −→a , −→a 0, . . .−→a j ∈ Nn are constants, and −→a · y
stands for the product (a1y, . . . , any).

Two alternative (recent) characterizations of definable relations in 〈N; +,=〉, and
their applications, will be stated in paragraph 2.5.

2.2 Addition and polynomials

A straightforward consequence of Corollary 3 is that, among polynomial functions in
one variable (with coefficients in N), only the linear ones are definable in 〈N; =,+〉.
In other words, adding a linear function f (or the range of f) to the language {=,+}
does not increase the expressive power. As the next results show, the situation is
quite different for non-linear polynomials. The first result is due to Putnam [Put57].

Let × denote the multiplication function.

Proposition 5. Let C denote the set of squares. The function × is definable in
〈N; =,+, C〉; therefore Th(N; =,+, C) is undecidable.

Proof. First define the constants 0 and 1. Then the relation y = x2 is definable by
the formula

C(y) ∧ C(y + x+ x+ 1) ∧ ¬∃z[C(z) ∧ y < z < y + x+ x+ 1].

Finally one defines z = x× y by the formula (x+ y)2 = x2 + z + z + y2.
�

The result was generalized by Büchi [Buc60].

Proposition 6. Let P (x) be a polynomial with coefficients in N, with degree ≥ 2,
and let XP = {P (n) : n ∈ N}. Then × is definable in 〈N; =,+,XP 〉.

Proof. by induction on the degree deg(P ) of P . The case deg(P ) = 2 follows from
the same idea as in the previous proof. For the induction step, observe that the
range of the polynomial Q(n) = P (n+ 1)− P (n) is definable in 〈N; =,+,XP 〉, and
that Q has degree deg(P )− 1. �

It is not known whether the existential theory of 〈N; =,+, C〉 is decidable. As
shown by Büchi (see [Buc90, Section 8, p.677]) this question is connected with the
following one :
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Is there some n ≥ 2 such that for all integers a0 < a1 < · · · < an if

a2
i+2 + a2

i = 2a2
i+1 + 2 for every i ≤ n − 2, then a0, a1, . . . , an are consecutive

integers ?

Indeed if this question had a positive answer then one could define existen-
tially the relation “x, y are consecutive squares”, then the squaring function, and
finally × as above. Now by Matiyasevich-Davis-Robinson-Putnam theorem [Mat70],
the existential theory of 〈N; +,×,=〉 is undecidable, thus the existential theory of
〈N; +, C,=〉 would be undecidable too. We refer to the survey paper [Maz94] where
the question is discussed (up to now it is known that n must be ≥ 3).

We saw that extending Presburger arithmetic by a predicate for the range XP of
a polynomial function P of degree ≥ 2 suffices to define full arithmetic and obtain
undecidability for the corresponding theory. A nice related result due to Korec
[Kor00] is that there are polynomials in two variables which alone suffice to define
both + and ×. Let us state one of the examples he gave (the proof uses a result
from section 3).

Theorem 7. Let f : N2 → N be defined by f(x, y) = x2 + y2. We have

Def(N; f,=) = Def(N; +,×,=).

Proof. The first step is to define the function g(x) = 2x. This can be done by
defining the constants 0 and 1 (easy), then intermediate polynomial functions (in
x) that are listed below:

x2, 2x2, 4x4, 5x4, 8x4, 3x4, 7x4, 34x8, 9x8, 12x8

36x8, 6x4, 9x4, 3x2, 18x4, 17x4, 16x4, 4x2, 2x.

For example one defines y = x2 thanks to the equivalence (y = x2 ⇐⇒ y =
f(x, 0)), then we use (y = 2x2 ⇐⇒ y = f(x, x)), then (y = 4x4 ⇐⇒ y = (2x2)2),
then (y = 5x4 ⇐⇒ y = f(2x2, x2)) and so on.

Once x 7→ 2x is defined, the function h(x, y) = |x2 − y2|, and then ×, can be
defined by

z = h(x, y)⇐⇒ f(z, f(x, y)) = 2f(x2, y2)

z = xy ⇐⇒ f(h(x, y), 2z) = ((f(x, y))2

Then one defines the binary relation Neib(x, y), interpreted as |x− y| = 1, by the
formula

(x = 0 ∧ y = 1) ∨ (x = 1 ∧ y = 0)∨

∃z (h(y, z) = 4x ∧ f(y, z) = 2f(x, 1))

Now by Theorem 46 (see Section 3) we have
Def(N; =,Neib,×)=Def(N; =,+,×).

�
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2.3 Extending 〈N; =,+〉 with “fragments” of multiplication

It is rather natural to consider, among languages laying between {=,+} and {=
,+,×}, those having the form {=,+, R} where R is definable in 〈N; =,×〉. Some
natural candidates for R are: divisibility relation |, coprimeness relation ⊥ (recall
that x⊥y iff gcd(x, y) = 1), and the set P of primes (i.e. the unary relation “to be
a prime”).

The following proposition is left as an exercise.

Proposition 8. (i) ⊥ and P are definable in 〈N; |〉;
(ii) | is definable in 〈N; =,×〉.

We shall study the structures 〈N; =,+,⊥〉 and 〈N; =,+, P 〉.

2.3.1 Addition and relative primeness

The question of whether Th(N; +,⊥,=) is decidable was asked by J.Robinson [Rob49].

Theorem 9. Def(N; =,+,⊥)=Def(N; =,+,×), thus Th(N; =,+,⊥) is undecidable.

We shall give two proofs of this result, as an illustration of classical techniques
used in the field. The first one is due to Woods [Woo81] and has been independently
found by J.Robinson (unpublished). It rests on a strong number-theoretical result.

Proof. The constants 0, 1, 2 are easily definable in 〈N; =,+,⊥〉 (even in 〈N; =,+〉).
The relation “x is prime”, denoted by P (x), is definable by the formula

(x 6= 0) ∧ (x 6= 1) ∧ ∀y[(y 6= 0 ∧ y < x) =⇒ y⊥x].

Now consider the ternary relation “x and y are prime integers, and z = x× y”,
denoted by MULTP (x, y, z) (a restriction of the graph of multiplication). Note that
if x and y are two distinct primes, then xy is the least positive integer which is not
prime to both x and y. Moreover if x is prime then x2 is the least integer greater
than x which has the same prime divisors as x. These facts lead to the following
definition for MULTP (x, y, z):

P (x) ∧ P (y)∧

{x 6= y =⇒ [¬z⊥x ∧ ¬z⊥y ∧ ∀t((¬t⊥x ∧ ¬t⊥y) =⇒ (t = 0 ∨ z ≤ t))]}∧
{x = y =⇒ [∀t(t⊥x ⇐⇒ t⊥z) ∧ ∀u∀v[(v⊥x ⇐⇒ v⊥u) =⇒ (u = x ∨ u ≥ z]]}.

We now use Schnirelmann-Vaughan [RV83] theorem which asserts that there
exists a constant c such that any integer greater than 1 can be written as the sum of
at most c primes. Multiplication of two integers, thanks to this theorem, reduces to
the addition of a bounded number of products of two primes. This allows to define
z = xy in 〈N; =,+,⊥〉 by the formula

[(x = 0 ∨ y = 0) =⇒ z = 0] ∧ [x = 1 =⇒ z = y] ∧ [y = 1 =⇒ z = x]∧
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{(x ≥ 2 ∧ y ≥ 2) =⇒
∨

1≤ i,j ≤c
∃x1 . . .∃xi ∃y1 . . .∃yj ∃z1,1 . . .∃zi,j

[(x =
i∑

k=1

xk) ∧ (y =
j∑

l=1

yl) ∧ (
∧

1≤k≤i
1≤l≤j

MULTP (xk, yl, zk,l)) ∧ (z =
i∑

k=1

j∑

l=1

zk,l)]}.

�

Reisel and Vaughan proved that a convenient value for the constant c of the
previous proof (known as Schnirelmann’s constant) is 19. Since then the value has
been reduced to 7 (Ramare [Ram95]). It is conjectured that 3 is the best possible
value.

The second proof of Theorem 9 is partly inspired by Richard’s proof [Ric89].
This time we use the classical technique of encoding finite sequences of integers.

Second proof. By Theorem 5 it suffices to define the set of squares C in 〈N; =,+,⊥〉.
One defines, as it was done in the previous proof, the set of primes P , the constants
0, 1, 2, the relation <, and then the function F : N × P → N which maps (n, p) ∈
N× P to the (non-negative) integer m < p congruent to n modulo p.

Now x ≥ 1 is a square iff x satisfies the following property: there exist integers
c,m, t, t ≥ 1 such that

• F (c, π(m)) = 0 ;

• F (c, π(m+ 1)) = 1 ;

• F (c, π(m+k+2))−F (c, π(m+k+1)) = F (c, π(m+k+1))−F (c, π(m+k))+2
for every k such that 0 ≤ k ≤ t− 2;

• F (c, π(m+ t)) = x

(the integer c encodes the sequence of consecutive squares 0,1,4,. . . up to x). On
one hand it is clear that if x satisfies the above property then it is a square, and
conversely if x is a square, say x = y2, then x satisfies the above property if we take
m ≥ x, t = y, and c such that c ≡ i2 (mod π(m+ i)) whenever i ≤ t (such a c exists
by Chinese Remainder Theorem). �

Remark. From the decidability of the existential theory of 〈N; =,+, |〉, independently
proved by Beltyukov [Bel76] and Lipshitz [Lip78], one can infer decidability of the
existential theory of 〈N; =,+,⊥〉.

The additive theory of primes.

We now turn to the theory of 〈N; =,+, P 〉. The language {=,+, P} allows to
express famous open problems of number theory, such as the twin-prime conjecture,
or Goldbach’ conjecture. Thus a decidability result for Th(N; =,+, P ) would be
rather surprising.
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Up to now the only result on 〈N; =,+, P 〉 rests on a strong number-theoretical
hypothesis known as Dickson’s Hypothesis [Dic04]:

(D) Let Pi(x) = aix + bi, with ai, bi ∈ N and ai ≥ 1, for i = 1, . . . , k. Assume
that there is no prime p which divides all products P1(n)·P2(n)·· · · ·Pk(n) for n ∈ N.
Then there is infinitely many positive integers n such that P1(n), P2(n), . . . , Pk(n)
are simultaneously prime.

Dickson’s hypothesis is true for case k = 1: this is nothing but Dirichlet’s Theo-
rem. (D) implies e.g. the twin-prime conjecture. We refer to [Rib96] for a discussion
of (D) and related conjectures (such as Schinzel’s hypothesis).

The following result was proved by Woods [Woo81], and appeared in a paper by
Bateman, Jockusch and Woods [BJW93].

Theorem 10 (assuming (D)). Multiplication is definable in 〈N; =,+, P 〉. There-
fore Th(N; =,+, P ) is undecidable.

We first need the following consequence of (D):

Lemma 11 (assuming (D)). Let b0, . . . , bn be positive integers such that b0 < · · · <
bn, and assume that for every prime p the set {b0, . . . , bn} is not a complete residue
system modulo p. Then there exist infinitely many a ∈ N such that a+ b0, . . . , a+ bn
are consecutive primes.

Proof. Let a1, . . . , ar be the integers between b0 and bn which are not of the form bi
(with a1 < · · · < ar). We shall apply (D) to the polynomials fj(x) = cx + a0 + bj

(j = 0, . . . , n), where c =
bn+r∏

i=0

π(i) (recall that π(i) is the i−th prime number) and

a0 is chosen such that
(i) a0 is not congruent to any element of {−b0,−b1, . . . ,−bn} modulo π(i) (i =

0, . . . , bn).
(ii) a0 ≡ −ai (mod π(bn + i)) (i = 1, . . . , r).
Such a choice is possible by Chinese Remainder Theorem and our assumptions

on b0, . . . , bn.
Let us show that f1, . . . , fn satisfy the assumptions of (D).
Assume for a contradiction that some prime p is such that for every x we have

p|fj(x) for some j.
First we must have p ≤ π(bn+r). Indeed if p > π(bn+r), then let x be such that

cx+a0 ≡ 1 (mod p) (such a x exists since c⊥p). Let j be such that p|fj(x), then we
have p|cx+a0+bj−(cx+a0−1), that is p|bj+1, which implies p ≤ bn+1 ≤ π(bn+1),
from which we get a contradiction.

Therefore we have p ≤ π(bn+ r). If p = π(i) for some i ≤ bn then p divides fj(x)
iff p|a0 + bj, which is impossible by our assumption on a0. Now if p = π(bn + i) with
1 ≤ i ≤ r then p|fj(x) iff p|a0 + bj iff p| − ai + bj, which is impossible since

0 < | − ai + bj| < bn < π(bn + i).

We have shown that the fi’s satisfy the assumptions of (D), thus there are infinitely
many x ≥ 1 such that f1(x), . . . , fn(x) are simultaneously prime; for those x the
integers f1(x), . . . , fn(x) are actually consecutive primes, since cx+ a0 + ai is always
divisible by π(bn + i) (by our assumptions on c and a0) and greater than π(bn + i)
(since x ≥ 1). Taking a = cx+ a0 yields the required result. �
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Proof of Theorem 10. We shall define the range Xg of g(n) = n2 + n which will
yield the result by Proposition 6. Take n ∈ N, and bi = g(i) for every i ≤ n. The
bi’s satisfy the assumptions of the previous Lemma, since g(0) ≡ g(−1) (mod p) for
every prime p. Consider the binary relation T (x, y) which holds iff x is prime, x ≤ y,
and the only primes lying in [x, y] are x+b0, . . . , x+bn = y, for some n ≥ 1. The fact
that the second differences of consecutive elements of Xg are all equal to 2 allows to
show that the relation T is definable in 〈N; =,+, P 〉. Now Xg(y) is definable by the
formula y = 0 ∨ ∃xT (x, x+ y). Indeed if this formula holds then obviously x ∈ Xg,
and conversely if x = g(n) for some n ≥ 1 then the formula holds by the previous
Lemma (with bi = g(i) for i = 0, . . . , n). �

Boffa recently proved ([Bof98], see also [LM00]), again assuming (D), that The-
orem 10 still holds if we replace 〈N; =,+, P 〉 by 〈N; =,+, Pm,r〉, where Pm,r = {p ∈
P : p ≡ r (mod m)}, where m > 2 and r⊥m; note that Dirichlet’s Theorem implies
that Pm,r is infinite.

Up to now nothing is known about 〈N; =,+, P 〉 in the absence of a special hy-
pothesis. The same is true for 〈N;<,P 〉, whose expressive power is weaker than the
one of 〈N; =,+, P 〉2, but already allows to express difficult open problems such as the
twin-prime conjecture. Bateman, Jockusch and Woods [BJW93] show that (D) im-
plies not only undecidability of Th(N; =,+, P ), but also decidability of Th(N;<,P ).

The decidability question still is open for the theory of 〈N; =,+, π〉 (recall that
π(n) is the n−th prime), which is a priori stronger than 〈N; =,+, P 〉 in terms of
definability. A partial answer was given by Cegielski, Richard and Vsemirnov who
proved [CRV00] that × is definable in 〈N; =,+, f〉 for a class of functions f which
asymptotically behave like π.

2.4 Semënov’s work on decidable extensions of 〈N; =,+〉

Semënov gave in [Sem79] a criterium for decidability of theories of the form 〈N; =,+, R〉,
where R ⊆ N. It applies e.g. when R denotes the set of factorials, or the set of
Fibonacci numbers, or the set {benc : n ∈ N} (where bxc denotes the integral part
of x). We shall only state this criterium and omit all proofs; see [Mae00b] for a
detailed presentation of Semënov’ ideas.

Given a finite alphabet Σ, we denote by Σ∗ the set of finite words over Σ, and by
Σω the set of infinite words over Σ (i.e. the set of functions f : N→ Σ). The finite
factors of a word W ∈ Σω are the finite words (over Σ) obtained by restricting W
to a finite segment. We denote by WX the characteristic function of a set X ⊆ N;
we have WX ∈ {0, 1}ω.

Definition 12. An infinite word W ∈ Σω is said to be almost-periodic if for every
finite factor u of W

• either the factor u does not occur after some position ∆;

2It can be shown that + (and even a function like x 7→ 2x) is not definable in 〈N;<,P 〉, and
more generally in any structure 〈N;<,R〉, with R unary. See e.g. [Tho79].
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• or u occurs infinitely many times in W , and there is a bound ∆ between two
consecutive occurrences of u in W .

Moreover, if there is an algorithm which decides for every u which case holds, and
produces a convenient value for ∆, then W is said to be effectively almost periodic3.

Examples (see [Mae00b]):

• if X ⊆ N is ultimately periodic then WX is almost periodic.

• a classical example of an almost-periodic word which is not ultimately periodic
is the Thue-Morse word W ∈ {0, 1}ω whose i−th letter is a 1 iff i has an even
number of non-zero digits in its binary expansion

W = 100101100 . . .

• if X is the set of powers of 2 then the word WX is not almost-periodic: e.g.
u = 1 occurs infinitely many times in WX but obviously there is no bound
between two consecutive occurrences of u in WX .

The argument still holds for any infinite set X ⊆ N such that the set of
differences between consecutive elements of X is unbounded (such a set is said
to be expanding, see next subsection).

Given R ⊆ N, let eR : N → R enumerate the elements of R in increasing order.
For all c,m ∈ N, m ≥ 2, we set

Rc,m = {n ∈ N : eR(n) ≡ c (mod m)}.
As an example, if R = P2 then we have we have e.g. WR1,2 = 100000 . . . ,

WR0,2 = 0111111 . . . , WR1,3 = 1010101 . . . , etc...

We can stack up WR0,2 and WR1,3 , forming the infinite word
0 1 1 1 1 . . .
1 0 1 0 1 . . .

over the alphabet {0, 1}×{0, 1}. The process of stacking up n infinite words (n ≥ 2)
is defined in a similar way.

We set
ER = {WRc,m : c ≥ 0,m ≥ 2}.

We say that ER is almost-periodic (respectively effectively almost-periodic) if every
word of ER, or which can be obtained by stacking up a finite number of words of
ER, is almost-periodic (respectively effectively almost-periodic).

It can be shown for example that if R denotes the set of power of 2 then ER is
effectively almost-periodic.

Definition 13. ([Sem79, section 3]) Let R ⊆ N; we call operator on R any
function AR : R → Z for which there exist t ∈ N and a0, . . . , at ∈ Z such that

AR(eR(n)) = ateR(n + t) + at−1eR(n+ t− 1) + · · · + a0eR(n)

for every n ∈ N.
3Semënov proves that there exist almost-periodic words which are not effectively almost-periodic

[Sem79].
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Definition 14. ([Sem79, section 3]) We say that a set R ⊆ N is sparse if every
operator AR on R satisfies the following conditions:

(i) either AR = 0, or one of the sets {n : AR(n) ≤ 0}, {n : AR(n) ≥ 0} is
finite.

(ii) if {n : AR(n) ≤ 0} is finite, then there exists ∆ ∈ N such that AR(y+ ∆)−
eR(y) > 0 for every y ∈ N.

The set R is said to be effectively sparse if it is sparse, and if

• there is an algorithm which tells, for every operator AR, which condition of (i)
holds;

• in case {n : AR(n) ≤ 0} is finite, this algorithm provides a value of ∆ for
which (ii) holds.

Examples ([Sem79, section 3], see also [Mae00b]):

• if R is the set of powers of 2 then an operator AR on R has the form

AR(2n) = at2
n+t + at−12

n+t−1 + · · ·+ a02
n = 2n(at2

t + · · ·+ a0)

The sign of AR depends on the expression in parenthesis. Moreover if {n :
AR(n) ≤ 0} is finite then ∆ = 1 is a convenient value. Thus R is effectively
sparse.

• if R is the set of factorials, then the sign of an operator AR of the form

AR(n!) = at((n+ t)!) + at−1((n+ t− 1)!) + · · ·+ a0(n!)

ultimately depends on the sign of at. Moreover if case (ii) holds, which occurs
iff at ≥ 1, then a convenient value for ∆ can be recursively computed from the
coefficients a0, . . . , at. Thus R is effectively sparse.

More generally if R satisfies limn→∞ eR(n + 1)/eR(n) = ∞ then R is sparse,
and it is effectively sparse if in addition the limit is effective (i.e if there is a
computable function f : N → N such that for every m, eR(n + 1)/eR(n) > m
whenever n > f(m)).

• the Fibonacci sequence (Un)n∈N defined by U0 = 1, U1 = 2 and Un+2 =
Un+1 + Un for every n, forms an effectively sparse set.

Theorem 15 (Semënov). Let R ⊆ N be sparse. Then Th(N; =,+, R) is decidable
if and only if R is effectively sparse and ER is effectively almost periodic.

Semënov’s proof consists in showing (in a syntactic way) that some extension
by definition of the theory is existential. Point [Poi00a],[Poi00b] recently gave a
model-theoretic proof of Theorem 15, and exhibited a new class of sparse predicates
for which the above theorem holds.

In the paper [Sem83], Semënov then gave a criterium for decidability of Th(N; =,+, f),
where f denotes a unary function. Again we only state the result.
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Definition 16. ([Sem83, section 2]) We call f−sum any function A : N→ Z of
the form

A(x) =
n∑

i=1

aif(x+ bi)

where n ∈ N and ai, bi ∈ Z.
We say that the function f is compatible with addition if the two following

conditions hold:

• for every m, the values of f are periodic modulo m,

• for every f−sum A, one of the following conditions hold:

(1) A(x) is bounded;

(2) there exists ∆ such that A(x+ ∆) > f(x) holds for all x;

(3) there exists ∆ such that −A(x+ ∆) > f(x) holds for all x.

Moreover if there is an algorithm which tells, for every f−sum A, which one of
the above condition holds, and produces a convenient value for ∆ in case (2) or (3)
holds, then we say that f is effectively compatible with addition.

Examples :

• f(x) = 2x (and more generally f(x) = cx with c ≥ 2) is compatible with
addition;

• if the values of f are periodic modulo m for every m, and if f satisfies
limx→∞

f(x+1)
f(x)

=∞ then f is also compatible with addition

• f(x) = x2 is not compatible with addition. Consider indeed A(x) = f(x +
1)− f(x) = 2x+ 1. Then A does not fulfill any of the conditions (1),(2),(3).

More generally a non-linear polynomial function (with coefficients in N) is not
compatible with addition.

Theorem 17 (Semënov). If f is effectively compatible with addition then Th(N; =
,+, f) is decidable.

Semënov’s proof is a syntactic one. Cherlin and Point [CP86] gave an alternative
proof by constructing an axiom system for the theory and proving that it admits
quantifier-elimination. The paper [Poi00b] (already mentioned) describes a whole
class of new examples of functions f for which the above theorem holds.

2.5 Presburger Arithmetic and finite automata

The connection between definability and finite automata was first explored in Büchi’s
paper [Buc60], in which he considered the theory now known as WS1S, the weak
monadic second-order theory of one successor function, i.e. of 〈N;S〉 (where S de-
notes successor function). Recall that the weak monadic second-order theory of a
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structureM = 〈M ; . . . 〉 arises from its first-order theory by allowing quantification
over finite subsets of M . Büchi proved decidability of WS1S by showing that de-
finable relations in WS1S correspond (in a natural way) to languages recognizable
by finite automata; this correspondence allowed him to reduce the decision problem
for WS1S to the emptiness problem for regular languages, which is known to be
decidable.

Büchi’s decidability technique was extended during the sixties to other monadic
second-order theories, up to Rabin’s celebrated result [Rab69] on the decidability of
S2S, the monadic second-order theory of the binary tree, which is one of the major
results regarding decidability of logical theories (see [Tho97]).

In a more general viewpoint, Büchi opened up the way to descriptive complexity
theory, a very active research area which provides logical characterizations (in terms
of definability) of complexity classes, such as Fagin’s characterization [Fag75] of the
class NP with existential second-order logic (see the survey paper [Pin96]) .

Consider the function that maps any finite set X to the integer nX =
∑
i∈X 2i.

This function establishes a natural correspondence between weak monadic second-
order theories and first-order theories over the natural numbers, which allowed Büchi
to give a new proof of decidability for the first-order theory of 〈N; =,+〉, i.e. Pres-
burger Arithmetic 4. In this paragraph we explain the essence of Büchi’s technique
in the framework of first-order theories. This viewpoint turns to be quite fruitful, as
it allows to construct substantial decidable extensions of Presburger arithmetic and
offers powerful tools in the study of numeration systems. We discuss some recent
related achievements due to Muchnik, as well as Michaux and Villemaire. Finally
we deal with Bruyère-Hansel extension of Büchi’s result to non-classical numeration
systems.

We only touch on the subject, and omit most proofs. We refer the interested
reader to the expository paper [BHMV94] and the survey papers [Bru95],[MV96b].

Finite automata and k−recognizable sets

Let us recall at first some useful notions about regular languages (a serious presen-
tation of the subject can be found in [Per90]).

Let Σ be a finite alphabet. Recall that Σ∗ denotes the set of finite words over
Σ, including the empty word which is denoted by λ. The set Σ∗ equipped with the
concatenation operation · is a free monoid.

We call language any subset of Σ∗. Given L,L′ ⊆ Σ∗, let

L · L′ = {u · u′ : u ∈ L, u′ ∈ L′}

and L∗ be the set of words that can be written as a (finite) product of words of L
(with the convention λ ∈ L∗). The class of regular languages (over Σ) is the smallest
class of languages containing finite languages and closed under the operations ∪, ·
and ∗.

Examples with Σ = {a, b}:
4R.Robinson proved that the weak monadic second-order theory of 〈N; +,=〉 is undecidable

[Rob58].
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• The set L of words having an even number of a is regular, since L = (b∗ab∗ab∗)∗.

• On the other hand it can be shown that the set of words having the same
number of a’s and b’s is not regular.

Regular languages can be described in terms of finite automata. Recall that a
(deterministic) finite Σ−automaton is a quadruple A = (Q, q0, δ,Q

′) where Q is a
finite set (the set of states), q0 ∈ Q is the initial state, Q′ ⊆ Q is the set of final
states, and δ : Q× Σ→ Q is the transition function.

The function δ is inductively extended to a function δ∗ : Q×Σ∗ → Q as follows:
δ∗(q, a) = δ(q, a) for all q ∈ Q, a ∈ Σ;

δ∗(q, aw) = δ(δ∗(q, w), a) for all a ∈ Σ, w ∈ Σ∗.
A word w ∈ Σ∗ is accepted by the Σ-automaton A = (Q, q0, δ,Q

′) if δ∗(q0, w) ∈
Q′.

A subset X of Σ∗ is said to be recognizable if X is the set of accepted words of
some finite Σ-automaton.

Example with Σ = {a, b} : the set L of the previous example can be recognized
by the automaton A = (Q, q0, δ,Q

′) defined by Q = {q0, q1}, δ(q0, a) = δ(q1, b) = q1,
δ(q0, b) = δ(q1, a) = q0 and Q′ = {q0}.

Kleene’s theorem (see [Per90]) asserts the equivalence between regularity and
recognizability.

The notion of k-recognizability has to do with the k-ary expansion of integers.
For every integer k ≥ 2, let Σk = {0, 1, . . . , k − 1}. For every nonzero integer n, if
n =

∑t
i=0 λik

i with λi ∈ {0, 1, . . . , k − 1} and λt 6= 0, then [n]k is the word of Σ∗k
defined by [n]k = λtλt−1 . . . λ0. We set [0]k = λ. For every M ⊆ N we shall denote
by [M ]k the set {[n]k : n ∈M}.
Example 1. If k = 2, we have e.g. [5]2 = 101, [8]2 = 1000; for the set P2 of powers
of 2 we have [P2]2 = 10∗, i.e. [P2]2 is the set of words consisting of a “1” followed
by any number of “0”.

Definition 18. A set M ⊆ N is said to be k−recognizable if [M ]k is regular.

Examples :

• The set P2 is 2−recognizable;

• The set of even numbers is 2−recognizable (more generally Büchi [Buc60]
proved that any ultimately periodic set is k−recognizable for every k ≥ 2);

• The set {2n! : n ∈ N} is not 2−recognizable.

The previous notion can be extended to subsets of Nn. For every u ∈ Σ∗ we shall
denote by |u| the length of u. Given a n−tuple
x = (x1, x2, . . . , xn) ∈ Nn we define [x]k as the word (of n−tuples)

(0m−m1 [x1]k, 0
m−m2 [x2]k, . . . , 0

m−mn [xn]k)
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over Σn
k , where mi = |xi| and m = max{m1, . . . ,mn}.

We have e.g.

[(5, 8)]2 =

(
0

1

)(
1

0

)(
0

0

)(
1

0

)

For every M ⊆ Nn we set [M ]k = {[a]k : a ∈M}.

Definition 19. A set M ⊆ Nn is said to be k−recognizable if [M ]k is regular.

Examples :

• The graph of addition is k−recognizable for every k ≥ 2;

• For every k ≥ 2, the graph of multiplication is not k−recognizable.

Büchi Arithmetic.

For every integer k ≥ 2, we call Büchi Arithmetic of base k the structure 〈N; =,+, Vk〉,
where Vk denotes the function which maps every non-zero integer to the greatest
power of k dividing it (and Vk(0) = 1). The following theorem was stated (in an
incorrect form) by Büchi [Buc60] and proved by Bruyère [Bru85].

Theorem 20. Let k ≥ 2, n ≥ 1. A subset X ⊆ Nn is k−recognizable if and only if
it is definable in the structure 〈N; =,+, Vk〉.

For a detailed proof see [BHMV94]. The part “definable → k−recognizable”
goes by induction on the number of quantifiers of a prenex formula defining X. The
fact that N, as well as the graph of + and Vk, are k−recognizable, allows to initialize
the induction. For the converse “k−recognizable→definable”, assume that the set
[X]k is recognized by a finite automaton A with n states, say q1, . . . , qn. Then the
formula ϕ(−→x ) which defines X expresses that there exist n integers y1, . . . , yn which
encode a successful run of A for [−→x ]k. The integers y1, . . . , yn are chosen such that
the automaton A reaches the state qi after reading the j−th letter of [−→x ]k iff the
j−th letter of [(y1, . . . , yn)]k has the form (0, . . . , 0, 1, 0, . . . , 0) where the “1” is in
i−th position.

Theorem 20 yields a decision procedure for Th(N; =,+, Vk). Consider indeed a
sentence ψ, say e.g. of the form ∃x ϕ(x). The previous theorem allows to find (in
an effective way) a regular language Lϕ ⊆ Σ∗k such that for every integer n,

〈N; =,+, Vk〉 |= ϕ(n)

iff [n]k ∈ Lϕ. Therefore deciding whether ψ holds in 〈N; +, Vk〉 amounts to decide
whether Lϕ is empty. Now the latter problem has been show to be decidable by
Kleene (see [Per90]).

Thus we have the following result (essentially due to Büchi [Buc60]):

Theorem 21. Th(N; =,+, Vk) is decidable for every k ≥ 2.

Theorems 20 and 21 provide useful tools in the study of k−recognizable sets.
Let us mention some easy applications to decision problems.
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1. The subsequent problem was first proved decidable by Honkala [Hon86] in a
combinatorial way.

Instance: k ≥ 2, and X ⊆ N a k−recognizable set;

Question: Is X ultimately periodic ?

IndeedX is ultimately periodic iff the following sentence holds in 〈N; =,≤,+,X〉:

ψ : ∃m ∃p ∀n (n ≥ m =⇒ [X(n)⇐⇒ X(n + p)])

Now X is k−recognizable thus by Theorem 20 it is definable in 〈N; =,+, Vk〉.
Moreover ≤ is definable in 〈N; =,+〉, thus ψ can be transformed in a formally
equivalent sentence ψ′ in the language {=,+, Vk}. Then we use Theorem 21
to decide whether ψ′ holds.

The same result holds if we consider the question “is X almost-periodic ?”.

It still holds too if we consider X ⊆ Nn, for some n ≥ 2, and ask whether
X is definable in 〈N; =,+〉; this is the consequence of a non-trivial result of
Muchnik which is discussed below.

2. (from [Fagn97]) Given an infinite word W ∈ Σω, let Fact(W ) denote the set of
finite factors of W . Recall that, given X ⊆ N, WX denotes the infinite word
over {0, 1} naturally associated with the characteristic function of X.

The following problem is decidable:

Instance: k ≥ 2, and X,Y two k−recognizable subsets of N;

Question: Fact(WX) ⊆ Fact(WY ) ?

We use the same idea as in the previous example. The main observation
is that we have Fact(WX) ⊆ Fact(WY ) iff the following sentence holds in
〈N; =,≤,+,X, Y 〉:

∀m ∀n ∃m′ ∀i (i ≤ n =⇒ [X(m+ i)⇐⇒ Y (m′ + i)]).

Theorem 20 provides an alternative approach to questions regarding k−recognizable
sets (and more generally regular languages). The next paragraph about the Cobham-
Semënov Theorem will deal with one of the main related achievements. A typical
kind of problems where definability techniques appear to be very efficient is when
one wants to show that a given operation preserves k−recognizability, or regular-
ity. In such situations simple definability arguments can replace long and tedious
automata constructions.
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Let us give an example. Consider a k−recognizable setX ⊆ N, and let f : N→ N
map every n ∈ N to the least integer m such that all distinct finite factors of WX

of length n occur at least once before position m (this kind of function occurs
quite often in the study of combinatorics of infinite words). Then the range of f
is k−recognizable. In order to prove this, it suffices to show that f is definable in
〈N; =,+,X〉, which ensures together with Theorem 20 that (the range of) f is also
definable in 〈N; =,+, Vk〉, and thus k−recognizable by virtue of the same theorem.

Büchi’s automata technique for proving decidability led to the notion of auto-
matic structure, which was introduced by Hodgson [Hod83]. Consider a relational
structureM = 〈M ;R1, . . . , Rk〉, and assume you have a correspondance c : M → Σ∗

between elements of the domainM and words over a finite alphabet Σ. The structure
is said to be automatic (for c) if c(M), and c(R1), . . . , c(Rk), are regular languages
(one encodes n−tuples in a similar way as before). Under these conditions, one
proves that c(X) is regular for every relation X ⊆ Mn definable in M, and that
Th(M) is decidable.

Blumensath and Grädel recently studied a similar notion of automatic structure
[BG00].

Let us state now some results about extensions of Büchi arithmetic. Cherlin and
Point proved the following [CP86].

Proposition 22. For every k ≥ 2 we have

Def(N; =,+, Vk, x 7→ kx) = Def(N; =,+,×)

Proof (sketch). By Theorem 5 it is sufficient to define the set of squares. In order to
do this one translates the property “x is a square” by the existence of an integer c of
the form c = k02

+ k12
+ k22

+ · · ·+ kn
2
, such that the greatest power of k appearing

in the k−ary expansion of c is equal to kx. �

Note that the theories of 〈N; =,+, Vk〉 and 〈N; =,+, x 7→ kx〉 both are decidable
(by Theorems 21 and 17, respectively).

Another related problem is to consider the theory of 〈N; =,+, Vk, Vl〉 for k 6= l.
Note that Def(N; =,+, Vk, Vl) is (by Theorem 20) the smallest class of relations over
N which contains both k− and l−recognizable relations and which is closed under
boolean operations and projection. On one hand Büchi [Buc60] proved that if k and l
are multiplicatively dependent (i.e. they have a non-trivial common power) then k−
and l−recognizability are equivalent, thus the graph of Vl, which is l−recognizable, is
also k−recognizable, therefore it is definable in 〈N; =,+, Vk〉 by Theorem 20, which
finally implies that Th(N; =,+, Vk, Vl) is decidable as it is reducible to the decidable
theory Th(N; =,+, Vk).

Villemaire proved ([Vil92a], see also [Vil92b]) that the situation is different when
one considers multiplicatively independent bases.

Theorem 23. If k, l ≥ 2 are multiplicatively independent then multiplication is
definable in the structure 〈N; +, Vk, Vl〉. Therefore Th(N; =,+, Vk, Vl) is undecidable.

We will state below a significant improvement of this theorem.
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Logic and Cobham-Semënov theorem.

One of the most striking applications of definability has to do with Cobham-Semenov
theorem, which states the base-dependence of the notion of k−recognizability.

We mentioned Büchi’s result [Buc60] that if k, l are multiplicatively dependent
then k−recognizability is equivalent to l−recognizability. Moreover he proved that
an ultimately periodic set is k−recognizable for every k ≥ 2. One can ask whether
there are other subsets of N which are k− and l−recognizable for k, l multiplicatively
independent. Cobham answers negatively this question in [Cob69].

Theorem 24 (Cobham’s theorem). Let k, l ≥ 2 be multiplicatively independent
integers. Every subset X ⊆ N which is k− and l−recognizable is ultimately periodic.

Therefore such a X is m−recognizable for any m ≥ 2.

Using Corollary 3 and Theorem 20 we can re-formulate Cobham’s Theorem as
follows: if k, l ≥ 2 are multiplicatively independent, then every subset X ⊆ N which
is definable both in 〈N; =,+, Vk〉 and 〈N; =,+, Vl〉 is actually definable in 〈N; =,+〉.

Cobham’s theorem splits subsets of N into three categories:

• ultimately periodic subsets, which are k−recognizable for every k ≥ 2;

• subsets which are k−recognizable for some k ≥ 2, and l−recognizable only for
l multiplicatively dependent with k;

• subsets which are not k−recognizable for any k ≥ 2 (e.g. the set of prime
numbers –see [Eil74]– or the set of squares5).

Semënov [Sem77] extended Cobham’s result to relations of any arity :

Theorem 25 (Cobham-Semënov theorem). For any n ≥ 1, and all mul-
tiplicatively independent integers k, l ≥ 2, every subset of Nn which is k− and
l−recognizable is definable in 〈N; =,+〉.

Cobham’s proof is quite intricate, and Semënov’s one very hard to follow. Hansel
([Han82], see [Per90]) gave a simpler combinatorial proof of Cobham’s result. Much-
nik [Muc91] used the logical characterization of k−recognizable sets to give an al-
ternative proof of Cobham-Semënov Theorem. We only state here the main result
on which Muchnik’s proof rests (see [BHMV94] for a detailed proof). This result is
a criterium for definability of subsets of Nn in 〈N; =,+〉, which generalizes in all di-
mensions the fact that the subsets of N that are definable in 〈N; =,+〉 are ultimately
periodic (Corollary 3).

Let n ≥ 1, and X ⊆ Nn. A section of X is a subset of Nn−1 of the form
{(x1, . . . , xi, xi+2, . . . , xn) : ((x1, . . . , xi, c, xi+2, . . . , xn) ∈ X}, for some fixed

integer c.

5if C was definable in 〈N; =,+, Vk〉 for some k ≥ 2 then Th(N; =,+, C), undecidable by Theorem
5, would be reducible to Th(N; =,+, Vk), decidable by Theorem 21, which is impossible.
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For every −→x = (x1, . . . , xn) ∈ Nn, let ||−→x || = max(x1, . . . , xn). For −→x ,−→y ∈ Nn,
we denote by −→x +−→y the componentwise addition of −→x and −→y .

For any X ⊆ Nn and −→x ∈ Nn, let us call X−neighbourhood of −→x of size m the
set

UX(−→x ,m) = {−→y ∈ Nn | −→x +−→y ∈ X and ||−→y || ≤ m}.
Muchnik proved the following.

Theorem 26. Let n ≥ 1 and X ⊆ Nn. The set X is definable in 〈N; =,+〉 iff the
two following conditions are fulfilled:

• every section of X is definable in 〈N; =,+〉;

• there exists s ∈ N such that for every k ∈ N, there is l ∈ N such that for every
−→x ∈ Nn satisfying ||−→x || > l, we have

UX(−→x , k) = UX(−→x +
−→
t , k)

for some
−→
t ∈ Nn such that ||−→t || < s.

This result allows to give an alternative proof of the Cobham-Semënov theorem
but also implies the following.

Corollary 27 (Muchnik). The question whether a given k−recognizable set X ⊆
Nn is definable in 〈N; =,+〉, is decidable.

The main idea for the proof, is that the two conditions of Theorem 26 can be
expressed as sentences in the language {=,+,X} 6. Note that in case n = 1,
The first condition vanishes and the second one is equivalent to “X is ultimately
periodic”, a property which is expressible in 〈N; =,+,X〉 (see above). The general
case can be proved by induction over n. Finally we get a sentence φ in the language
{=,+,X} such that 〈N; =,+,X〉 satisfies φ iff X is definable in 〈N; =,+〉. Now X
is k−recognizable, thus by Theorem 20 it is definable in 〈N; =,+, Vk〉, and it follows
from Corollary 21 that Th(N; =,+,X) is decidable. Thus it is decidable whether φ
holds in 〈N; =,+,X〉.

The second alternative proof of the Cobham-Semënov Theorem is due to Michaux
and Villemaire [MV93, MV96a]. Their proof also rests on a fine study of definability
in Presburger Arithmetic.

Recall that an infinite set X ⊆ N is said to be expanding if the set of differences
between consecutive elements of X is infinite. Note that Corollary 3 implies that
expanding sets are not definable in 〈N; =,+〉.

Michaux and Villemaire proved the following.

Theorem 28. A set L ⊆ Nn is definable in 〈N; =,+〉 if and only if every subset of
N which is definable in 〈N; =,+, L〉 is definable in 〈N; =,+〉.

Or, in other words: If L ⊆ Nn is not definable in 〈N; =,+〉 then there exists
M ⊆ N which is definable in 〈N; =,+, L〉 but not in 〈N; =,+〉.

6it is therefore a definable criterium for definability in Presburger Arithmetic



A Survey of Arithmetical Definability 21

Theorem 29. Let M ⊆ N. If M is not definable in 〈N; =,+〉 then there exists an
expanding set M ′ ⊆ N which is definable in 〈N; =,+,M〉.

Note that the two above results do not involve any automata notion.
In addition Michaux and Villemaire gave an alternative proof of the following

useful lemma, which appeared in Hansel’s proof [Han82] of Cobham’s Theorem.

Lemma 30 ([Han82, MV96a]). For all multiplicatively independent integers k, l ≥
2, if A is k− and l−recognizable then A is not expanding.

Now we can state the Michaux-Villemaire proof of the Cobham-Semënov Theo-
rem.

Proof of the Cobham-Semënov theorem [MV96a]. Suppose there exists L ⊆ Nn
not definable in 〈N; =,+〉, and k− and l−recognizable for multiplicatively indepen-
dent integers k, l ≥ 2.

It follows from Theorem 28 that there exists M ⊆ N definable in 〈N; =,+, L〉 but
not definable in 〈N; =,+〉. Now Theorem 29 implies the existence of an expanding
set M ′ ⊆ N definable in 〈N; =,+,M〉; this set is a fortiori definable in 〈N; =,+, L〉.
Now L is k− and l−recognizable from our very hypothesis, thus L is definable in
〈N; =,+, Vk〉 and 〈N; =,+, Vl〉 by Theorem 20. It follows that M ′ is also definable
in 〈N; =,+, Vk〉 and 〈N; =,+, Vl〉, and therefore M ′ is also k− and l−recognizable
by virtue of the same Theorem. This contradicts Lemma 30. �

We proposed a third alternative proof of the Cobham-Semënov theorem, which
uses a decidability argument. It rests on the following improvement of Villemaire’s
Theorem 23.

Theorem 31 ([Bes97b]). Let k, l ≥ 2 be two multiplicatively independent integers
. For every n ≥ 1, if L ⊆ Nn is l−recognizable and not definable in 〈N; =,+〉 then ×
is definable in 〈N; =,+, Vk, L〉. The theory of this structure is therefore undecidable.

The proof uses Michaux-Villemaire Theorems 28 and 29.

A third proof of the Cobham-Semënov Theorem. Suppose there exists L ⊆ Nn
not definable in 〈N; =,+〉, and k− and l−recognizable for multiplicatively indepen-
dent integers k, l ≥ 2. Then the previous theorem implies that Th(N; =,+, Vk, L) is
undecidable. Now L is also k−recognizable, thus by Theorem 20, Th(N; =,+, Vk, L)
reduces to Th(N; =,+, Vk), which is decidable by Theorem 21, from which we get a
contradiction. �

Non-classical numeration systems.

Bruyère and Hansel extended Theorem 20 to a class of non-classical numeration
systems [BH97]. We describe below their result and refer the reader to [Bru95,
Fra85, Fro00] for a nice introduction to numeration systems and links with automata
theory.
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The k−ary numeration system allows to express every integer as a sum of el-
ements of the sequence (kn)n∈N. One can generalize this idea as follows : let us
call numeration system any strictly increasing sequence of integers U = (Un)n∈N
such that U0 = 1 and {Un+1

Un
: n ∈ N} is bounded. Every positive integer x can be

represented as
x = anUn + an−1Un−1 + · · ·+ a0U0

using the Euclidian algorithm: let n be such that Un ≤ x < Un+1, and let xn = x.
For i = n, n− 1, . . . , 1 we compute the Euclidean division xi = aiUi + xi−1. Finally
we get a word (called normalized U -representation of x), ρU (x) = anan−1 . . . a0 over
the canonical alphabet ΣU = {0, 1, . . . , c}, where c is the greatest integer less than
sup{Un+1

Un
: n ∈ N}.

A classical example is the Fibonacci numeration system defined by U0 = 1, U1 = 2
and Un+2 = Un+1 + Un for every n ≥ 0; we have e.g. 14 = U4 + U3 + U0, that is
ρU(14) = 11001.

One can extend the notion of k−recognizability to these numeration systems: let
us say that X ⊆ N is U−recognizable if ρU(X) is regular (this definition is extended
to relations X ⊆ Nn in a similar way as in the classical case).

One shows for example that for Fibonacci number system, ρU(N) is the set of
words over {0, 1} that do not begin with a 0 and do not contain the factor 11 (it is
a regular language).

Some difficulties arise when one deals with non-classical numeration systems. A
first observation is that whereas any integer (essentially) admits a single represen-
tation in classical numeration systems, this does not hold any longer in the general
case. In the Fibonacci numeration system, we have e.g. 14 = U4 +U2 +U1 +U0, i.e.
the word 10111 is also a representation of the integer 14.

The situation can even be worse, as there exist numeration systems U for which
the set ρU(N) of all normalized representations of integers is not regular (see [Bru95])
– a quite disturbing situation, when one recalls that one of the essential arguments
in the proof of Büchi-Bruyère Theorem is that N is k−recognizable.

From the work of Frougny and Solomyak [FS94] on normalization 7 emerged
a class of numeration systems which behave closely to the classical ones: these
are the linear numeration systems whose characteristic polynomial is the minimal
polynomial of a Pisot number.

Recall that a linear numeration system is a numeration system U = (Un)n∈N
defined by a linear recurrence relation

Un = dk−1Un−1 + · · ·+ d0Un−k

for all n ≥ k, with di ∈ Z for i = 0, 1, . . . , k − 1, and d0 6= 0. The polynomial

PU (X) = Xk − dk−1X
k−1 − · · · − d1X − d0

7Normalization consists in mapping any word w over an alphabet A to a word ν(w) over an
alphabet B in such a way that w and ν(w) are representing the same integer. In the Fibonacci
numeration system for example (with A = B = {0, 1}) this function maps 10111 to 11001.

The process of addition can also be seen through normalization. Consider e.g. the classical
binary number system. A possibility to compute the sum of 3 and 5 from their respective binary
representation 11 and 101 is to work momentaneously with the extended alphabet of digits {0, 1, 2},
perform an addition digit by digit without carry, here from 011 and 101 we get 112, and then
normalize the result, i.e. map 112 to 1000 (this time we have A = {0, 1, 2} and B = {0, 1}).
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is called the characteristic polynomial of the system U .
A Pisot number is an algebraic integer θ > 1 such that the roots of its minimal

polynomial, distinct from θ, have modulus less than 1.
As an example, for the Fibonacci numeration system we have PU (x) = X2−X−1,

and θ = 1+
√

5
2

(the golden ratio).
Bruyère and Hansel [BH97] proved that Theorem 20 can be extended to the

previous class of numeration systems.
For any numeration system U = (Un)n∈N, one defines the function VU : N → N

as follows: VU (0) = 1, and if x ≥ 1 then VU (x) is the least Ui appearing in the
normalized U−representation of x with a non-zero coefficient.

Theorem 32 (Bruyère, Hansel). Let U be a linear numeration system whose
characteristic polynomial is the minimal polynomial of a Pisot number. For every
n ≥ 1 a set X ⊆ Nn is U−recognizable if and only if X is definable in the structure
〈N; =,+, VU 〉.

One of the main arguments that allow the authors to adapt Büchi’s proof is that
both N and the graph of + are U−recognizable under those conditions over U .8

Corollary 33. Under the previous assumptions the theory of 〈N; =,+, VU 〉 is decid-
able.

There have been many attempts to generalize the Cobham-Semënov theorem to
non-classical numeration systems – see [Fab94], [PB97], [Dur98], [Fagn00], [Han98],
[Bes00]. The three last references use Theorem 32, together with the very general
theorems 28 and 29. Indeed Michaux-Villemaire results are independent of any
notion of recognizability, and therefore can be used again in this context: while
Theorem 28 allows to reduce the case of relations over N to the case of subsets of N
(i.e. “Semënov’s part” to “Cobham’s part”), Theorem 29 reduces then the difficulty
to the case of expanding subsets of N.

2.6 Notes

• Pascal triangles modulo n. Korec studied theories of structures 〈N; =,+, Bn〉,
where Bn(x, y) equals the remainder modulo n of the binomial coefficient

(
x+y
x

)
. In

[Kor95] it is shown that 〈N; =,+, Bn〉 is decidable whenever n is prime. The proof
proceeds by interpretation into WS1S, and uses Lucas’ theorem (1861): for p prime,
if x =

∑t
i=0 xip

i and z =
∑t
i=0 zip

i, then

(
z

x

)
≡

t∏

i=0

(
zi
xi

)
(mod p)

(in fact Lucas’ theorem essentially tells that the graph of Bp is p−recognizable).
In [Bes97a] it is shown that Korec’s result still holds in case n is a prime power;
however [Kor93] shows that + and × are definable in 〈N; =, Bn〉 if n is not a prime
power (e.g. Def(N; =, B6) = Def(N; =,+,×)).

8Bruyère and Hansel prove these two facts in a direct way; note they are also consequences of
Frougny-Solomyak results [FS94].
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• For recent developments in the study of almost-periodic words and decidability
we refer to [Mae98] and [Mae00a].
• Around Theorem 28. Let us say that a structure M = 〈M ;L〉 has the

1-witness property if the following holds:

for every n ≥ 1, a relation X ⊆Mn is definable inM iff every set Y ⊆M which
is definable in 〈M ;L,X〉 is definable in M.

Theorem 28 simply expresses that Presburger Arithmetic has the 1-witness prop-
erty. It can be shown that 〈N; =,+,×〉, as well as 〈N;<〉, enjoy this property, while
〈N; =, S〉 does not 9 . Let us consider now a stronger property, namely the 1-
encoding property. We say that M = 〈M ;L〉 has the 1-encoding property if for
every X ⊆ Mn there exists some Y ⊆ M such that Def(M ;L,X) = Def(M ;L, Y ).
Observe that if Def(M ;L) ⊆ Def(M ;L′) and 〈M ;L〉 has the 1-encoding property
then 〈M ;L′〉 does. The structures 〈N; =,+,×〉 and 〈N; =,+, x 7→ 2x〉 have the 1-
encoding property (easy), while one proves that 〈N;<〉 does not10. Michaux and
Villemaire ask in [MV96b] whether 〈N; =,+〉 has the 1-encoding property.

Applications of Theorem 28 to o−minimality can be found in [PW00], [BPW00].

• Extensions of 〈N; =,+, Vk〉. The function which maps any finite set X ⊆ N to∑
i∈X 2i allows to transfer any (un)decidability result for the weak monadic second-

order theory of 〈N; =, S,R〉 (where R is a predicate of arity k) to the first-order
theory of
〈N; +, V2, {(2n1 , . . . , 2nk ) : (n1, . . . , nk) ∈ R},=〉. As an example from the decid-

ability of the weak monadic second-order theory of 〈N; =, S, {n! : n ∈ N}〉 (due to
Elgot and Rabin [ER66]) one can derive decidability for the first-order theory of
〈N; =,+, V2, {2n! : n ∈ N}〉.

Both Theorems 23 and 31 involve a Thomas’ result [Tho76] about weak monadic
second-order theories of 〈N; =, S, f〉, where f denotes a unary function.

• The question (attributed to Van den Dries) of whether Th(N; =,+, P2, P3)
is decidable is still open. From Theorems 21 and 31 we can infer, on one hand,
decidability of Th(N; =,+, P2) and Th(N; =,+, P3), on the other hand undecidability
of Th(N; =,+, V2, P3).

3 Skolem Arithmetic and extensions

We now consider the multiplicative theory of integers, which is usually called Skolem
arithmetic, and its extensions.

Skolem claimed decidability for the theory of 〈N;×,=〉 in [Sko30], using quanti-
fier elimination technique; however the paper provided some examples but no real
proof. The first decidability proof appeared in Mostowski’s work [Mos52] on prod-
ucts of theories. It rests on the notion of weak (direct) power of a structure, which
allows the reduction of Th(N;×,=) to Th(N; +,=). Alternative proofs were pro-
posed later by Cegielski who axiomatized the theory and proved quantifier elimi-

9< is not definable in 〈N; =, S〉, but every subset of N which is definable in 〈N; =, S,<〉 is actually
definable in 〈N; =, S〉 –both structures define only finite or co-finite subsets of N, see [End72].

10Note that Th(N; +, x 7→ 2x) is decidable by Theorem 17.
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nation ([Ceg81], see also [Smo91]), and by Hodgson using a mix of automata and
weak powers [Hod82] (we follow a similar viewpoint in paragraph 3.3). We focus
here on Mostowski’s approach (first paragraph) as it introduces key notions for the
subsequent study of decidable extensions of Skolem arithmetic.

In the fifties, the study of the decision problem for the theory of ordinal addition
led Feferman and Vaught [FV59] to introduce a notion of generalized product of
theories extending Mostowski’s one. The results (often called composition theorems
now), while not leading their authors to the solution of the original problem11,
provide however a very helpful method for proving decidability. In our context, they
allow to deal with extensions of Skolem arithmetic for which Mostowski’s method
seem to fail. Feferman and Vaught gave an example in their original paper by proving
decidability for Th(N;×,=,∼), where x ∼ y hold iff x and y have the same number
of distinct prime divisors. As shown by Maurin [Mau97], the method also applies
to Th(N;×,=, <P ), where <P denotes order relation restricted to prime numbers.
These results are detailed in the second paragraph.

In the next one, we stay with 〈N;×,=, <P 〉 and give an alternative (and sim-
pler) proof of decidability for the theory, using the automata techniques that were
introduced in the previous section.

In the final paragraph we turn to undecidable extensions of Skolem arithmetic.
We recall the easy cases of 〈N;×, S,=〉 and 〈N;×, <,=〉, then detail Korec’s proof
for 〈N;×,Neib,=〉, where Neib(x, y) holds iff |x− y| = 1.

We then state results of Cegielski, Matiyasevich and Richard for structures
〈N;×,=, p〉 where p denotes any injection from N to the set P of prime numbers.
Finally we answer Maurin’s question about the structure 〈N; =,×, <Π〉, where Π
denotes the order relation restricted to primary numbers.

Remark. All decidability results mentioned in this section about Th(N \ {0}; . . . )
still hold if we replace the domain N \ {0} by N. They still hold too if we add to the
language a constant symbol for each n ∈ N (note that an automorphism argument
shows that the only definable constants in 〈N;×,=〉 are 0 and 1).

3.1 Skolem Arithmetic

We recall in this paragraph Mostowski’s proof [Mos52] of decidability of Th(N \
{0};×,=). It relies on the notion of weak power of a structure, which allows to
reduce the decidability question for Th(N \ {0}; =,×, 1) to the one for Th(N; =,+).

Let A be a nonempty set, and let e ∈ A. We denote by S+(N) (respectively
S∗(N)) the set of finite (resp. finite or cofinite) subsets of N. We denote by A(N)

e the
set of functions f : N→ A such that {n ∈ N : f(n) 6= e} is finite.

Definition 34. Let A = 〈A;RA, e〉, be a structure in the language LA = {RA, e}
where e is a constant and RA = {R1, . . . , Rk} is a finite set of relations over
A (A is the “factor structure”). The weak power of A is the structure A∗ =
〈A(N)

e , R∗1, . . . , R
∗
k, f〉 where

• f is the element of A(N)
e s.t. for every i ∈ N, f(i) = e;

11The decidability of the theory of ordinal addition was proved by Büchi [Buc65] using automata
techniques.
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• for every i ∈ {1, 2, . . . , k}, if ai denotes the arity of Ri, then for every ai−tuple
(f1, . . . , fai) of elements of A(N)

e ,

A∗ |= R∗i (f1, . . . , fai)

iff
for every n ∈ N, A |= Ri(f1(n), . . . , fai(n)).

The main result of [Mos52] for our purpose is the following one.

Theorem 35. If Th(A) is decidable then so is Th(A∗).

Let us note that Mostowski’s proof of this result rests on the decidability of the
theory of 〈S∗(N);⊆〉, the “index structure”. We shall consider this structure with
more attention in the next paragraph.

Let +g and ×g respectively denote the graph of addition and multiplication (over
N).

As an application of the previous theorem, Mostowski considers Skolem arith-
metic and proves the following.

Theorem 36. The theory of 〈N \ {0};×,=〉 is decidable.

Proof. The decision problem for Th(N \ {0};×,=) obviously reduces to the one for

Th(N \ {0};×g, 1). Now consider the function ψ : N \ {0} → N(N)
0 which maps every

positive integer x to the function fx : N → N such that fx(n) is the exponent of
the n−th prime in the decomposition of x as a product of prime factors. It is quite
easy to check that ψ is one-one and induces an isomorphism between 〈N\{0};×g, 1)
and the weak power of 〈N; +g, 0〉. Now Th(N; +g, 0) is decidable as it reduces to
Th(N; =,+) (Theorem 2), which together with Theorem 35 gives the required result.

�

We add a word on complexity: J.Ferrante and C.Rackoff proved in [FeRa79]
that a lower complexity bound for deciding the truth of a sentence of length n in

〈N \ {0};×,=〉 is 222cn

for some constant c, to be compared with the lower bound
22cn for Presburger arithmetic given by Fischer and Rabin [FiRa74].

3.2 The Feferman-Vaught technique

We now describe Feferman-Vaught notion of generalized weak power of a structure
[FV59], and its application to extensions of Skolem arithmetic.

Mostowski’s notion of weak power involves the factor “structure” A and the
“index structure” 〈S∗(N);⊆〉. Feferman and Vaught generalize this idea by allowing
a more general kind of composition that may use extensions of 〈S∗(N);⊆〉. In case
this extended “index structure”, as well as the “factor structure”, have a decidable
theory, then the structure resulting from the composition has a decidable theory too.
This will allow to construct extensions of Skolem arithmetic by composing 〈N; +g, 0〉
“through” decidable extensions of 〈S∗(N);⊆〉.

Let us now state precisely the above notions and results. We keep the notations
of the previous paragraph.
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Let A = 〈A;RA, e〉, be a structure in the language LA = {RA, e} where e is a
constant and RA is a finite set of relations over A.

Let B = 〈S∗(N);⊆,FIN,RB〉 be a structure in the language LB = {⊆,FIN,RB},
where ⊆ and FIN are interpreted respectively as the inclusion relation and the
relation “to be a finite set”, and RB is a set of relations over S∗(N).

Definition 37. Let R be a k−ary relation over A(N)
e ; we say that R is accessible

in (A,B) if and only if there exist a LB-formula G(X1, . . . ,Xl), and l LA-formulas
with k free variables F1, . . . , Fl such that for every k-tuple (f1, . . . , fk) of elements
of A(N)

e , R(f1, . . . , fk) holds if and only if

B |= G(T1, . . . , Tl)

where

Ti =
{
x ∈ N : A |= Fi(f1(x), . . . , fk(x))} for every i ∈ {1, . . . , l

}
.

Example 2. Take A =〈N; +g, 0〉 and B = 〈S∗(N);⊆,FIN〉 (i.e. RB is empty). Let

M be the ternary relation on N(N)
0 defined by

M = {(f, g, h) : f(n) + g(n) = h(n) for every n ∈ N}.

This relation is accessible in (A,B): indeed M(f, g, h) holds iff the set {n : f(n) +
g(n) 6= h(n)} is empty, or in other words iff

〈S∗(N);⊆,FIN〉 |= ∀X T ⊆ X

where
T = {x ∈ N : 〈N; +g, 0〉 |= ¬(+g(f(x), g(x), h(x)))}.

Definition 38. With the above notations, if R is a set of relations over A(N)
e , we

say that the structure 〈A(N)
e ;R〉 is a generalized weak power of A relative to B if

every relation of R is accessible in (A,B) 12 .

Example 2 (continued) : The structure 〈N(N)
0 ;T 〉 is a weak generalized power of

〈N; +g, 0〉 relative to 〈S∗(N);⊆,FIN〉.

Mostowski’s notion of weak power corresponds to the case B = 〈S∗(N);⊆,FIN〉,
i.e. to the simplest index structure.

Theorem 39 ([FV59]). (i) With the above notations, if Th(A) and Th(B) are
decidable and C is a generalized weak power of A relative to B then the elementary
theory of C is decidable.

(ii) The decision problem for Th(B) reduces to the one for Th(S+(N);⊆,R′B),
where R′B consists in all relations of RB restricted to S+(N).

12Feferman-Vaught’ original definition allows any set B in place of N. Moreover they define the

generalized weak power of A relative to B as the structure 〈A(B)
e ;R〉 where R denotes the set of

all accessible relations.
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As an example Feferman and Vaught prove the following.

Proposition 40. The structure 〈N \ {0};×g,∼〉 where x ∼ y holds iff x and y have
the same number of distinct prime factors, is isomorphic with a generalized weak
power of 〈N; +g, 0〉 relative to 〈S∗(N);⊆,FIN,≈〉, where X ≈ Y holds iff X,Y are
finite and ]X = ]Y .

Proof. Consider again the function ψ : N \ {0} → N(N)
0 defined in the proof of

Theorem 36. This function is one-one and induces an isomorphism between 〈N \
{0};×g,∼〉 and 〈N(N)

0 ;M,E〉, where M(f, g, h) holds iff f(n)+g(n) = h(n) for every
n ∈ N, and E(f, g) holds iff

]{n : f(n) 6= 0} = ]{n : g(n) 6= 0}.

We only have to show that M and E are accessible in (〈N; +g, 0〉, 〈S∗(N);⊆,FIN,≈〉).
The case of M is treated in Example 2. Moreoever E(f, g) holds iff

〈S∗(N);⊆,FIN,≈〉 |= X ≈ Y

where
X = {x ∈ N : 〈N; +g, 0〉 |= ¬(+g(f(x), 0, 0))}

and
Y = {x ∈ N : 〈N; +g, 0〉 |= ¬(+g(g(x), 0, 0))}.

�

Theorem 41. The theory of 〈N \ {0};×,∼,=〉 is decidable.

Proof (main ideas). The theory of 〈N \ {0};×,∼,=〉 clearly reduces to the one of
〈N \ {0};×g,∼〉. Thus by Proposition 40 and Theorem 39 we only have to show
that 〈N; +g, 0〉 and 〈S+(N);⊆,≈〉 have decidable theories.

For 〈N; +g, 0〉, one uses (again) the reduction to Presburger arithmetic. One
shows that Th(S+(N);⊆,≈) also reduces to Presburger arithmetic. The main idea
is the following: to every {⊆,≈}−formula ϕ with n free variables one associates a
{+,=}−formula ϕ∗ with 2n−1 variables such that for all finite sets X1, . . . ,Xn ⊆ N,

〈S+(N);⊆,≈〉 |= ϕ(X1, . . . ,Xn)⇐⇒ 〈N; +,=〉 |= ϕ∗(x1, . . . , x2n)

where each xi corresponds to an integer of the form

]
( ⋂

j∈J
Xj ∩

⋂

k∈K
Xk

)

for a partition (J,K) of {1, 2, . . . , n}, with J 6= ∅.
�

The second example of decidable extension of Skolem arithmetic obtained with
the Feferman-Vaught technique was given by Maurin [Mau97], who proved the de-
cidability of the theory of 〈N \ {0}; =,×, <P 〉 , where <P denotes the usual order
relation restricted to prime numbers. We will see in paragraph 3.4 that on the other
hand Th(N;×,=, <) is undecidable.
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Lemma 42. The structure 〈N \ {0};×g, <P 〉 is isomorphic to a weak generalized
power of 〈N; +g, 0〉 relative to 〈S∗(N);⊆,FIN,�〉, where X � Y iff X = {x},
Y = {y}, with x < y.

Proof. Consider again the function ψ : N \ {0} → N(N)
0 defined in the proof of Theo-

rem 36, which induces an isomorphism between 〈N \ {0};×g, <P 〉 and 〈N(N)
0 ;M,L〉,

where

• M(f, g, h) holds iff f(n) + g(n) = h(n) for every n ∈ N

• L(f, g) holds iff there exist n1, n2 ∈ N such that

– n1 < n2

– f(n1) = g(n2) = 1

– f(n) = 0 whenever n 6= n1

– g(n) = 0 whenever n 6= n2.

We have to show that M and L are accessible in (〈N; +g, 0〉, 〈S∗(N);⊆,FIN,�〉).
The case of M is treated in Example 2.

For L, one checks that L(f, g) holds iff

〈S∗(N);⊆,FIN,�〉 |= ∃X(T1 � X) ∧ ∃Y (T2 � Y ) ∧ T3 � T4

where
T1 = {x ∈ N : 〈N; +g, 0〉 |= ¬(+g(f(x), 0, 0))},
T2 = {x ∈ N : 〈N; +g, 0〉 |= ¬(+g(g(x), 0, 0))},
T3 = {x ∈ N : 〈N; +g, 0〉 |= +g(f(x), 0, 1)),

and
T4 = {x ∈ N : 〈N; +g, 0〉 |= +g(g(x), 0, 1))

(we abusively use the constant 1 to simplify formulas, this constant is definable in
〈N; +g, 0〉).

The first part of the above formula , “∃X(T1 � X) ∧ ∃Y (T2 � Y )” simply
expresses that T1 and T2 are singletons. �

Theorem 43. The elementary theory of 〈N \ {0}; =,×, <P 〉 is decidable.

Proof. The theory of 〈N\{0};×,=, <P 〉 clearly reduces to the one of 〈N\{0};×g, <P

〉. Thus by Proposition 40 and Theorem 39 we only have to show that 〈N; +g, 0〉
and 〈S+(N);⊆,�〉 have decidable theories.

For 〈N; +g, 0〉, one uses reduction to Presburger arithmetic.
Let us show that Th(S+(N);⊆,�) reduces to Th(N; =,+, V2), which together

with Theorem 21 yields the result. Consider the function h : S+(N) → N which
maps every finite set X ⊆ N to h(X) =

∑
i∈X 2i; h is one-one, thus there are binary

relations ⊆∗ and �∗ such that

〈S+(N);⊆,�〉 ∼= 〈N;⊆∗,�∗〉
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Now ⊆∗ and �∗ are 2−recognizable; indeed we have

[⊆∗]2 = A∗ \
((

0

0

)
A∗ ∪A∗

(
1

0

)
A∗
)

where A =

{(
0

0

)
,

(
0

1

)
,

(
1

0

)
,

(
1

1

)}
and

[�∗]2 =

(
0

1

)(
0

0

)∗(
1

0

)(
0

0

)∗
.

Thus by Theorem 20 these relations are definable in 〈N; =,+, V2〉. This shows that
Th(N;⊆∗,�∗) reduces to Th(N; =,+, V2). �

In the next paragraph we propose an alternative proof of the previous theorem
which emphasizes the “automata flavour” of the above proof.

Let us mention that Maurin specified the previous decidability result by showing
that a lower complexity bound for deciding the truth of a sentence of length n
is a tower of exponentials of height cn, for some constant c [Mau97], i.e. it is
not elementary – recall that the lower bound for 〈N;×,=〉 “only” involves a triple
exponential.

One can ask whether Maurin’s result still holds if we replace <P by some “more
expressive” fragment of order relation. In particular Maurin asked whether the same
holds for the order <Π restricted to primary numbers; it is quite easy to check that

Def(N \ {0}; =,×, <P ) ⊆ Def(N \ {0}; =,×, <Π).

We will show in paragraph 3.4 that replacing <P by <Π yields undecidability.

3.3 Revisiting Skolem arithmetic via automata theory

The “automata techniques” of the previous section allow to give an alternative proof
of Theorem 43. Let us explain the main ideas. As we did for 〈N; =,+, Vk〉 we first
need to encode integers, and n−tuples of integers, as words over finite alphabets.

we define c : N \ {0} → {0, 1,�}∗ as follows:

• c(1) = λ;

• if n 6= 1 then n can be written as n =
k∏

i=0

π(i)fn(i) with fn(k) 6= 0. Then we set

c(n) = [f0(n)]2�[f1(n)]2� . . .�[fk(n)]2 (recall that [α]2 is the word over the
alphabet {0, 1} naturally associated with the binary expansion of α – see
paragraph 2.5)

For example we have c(2533) = 101�11, and c(2276) = 10���110.
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We can extend our definition of c to allow encoding of tuples: given a k−tuple
(n1, . . . , nk) of integers, set

c((n1, . . . , nk)) = w0




�
...
�


w1




�
...
�


 . . .




�
...
�


wt

where




�
...
�


 is obtained by stacking k letters �,

wi = [(fn1(i), . . . , fnk(i))]2, i = 0, 1, . . . , t

and (fn1(t), . . . , fnk(t)) 6= (0, . . . , 0). Moreover set c((0, . . . , 0)) as the empty word.
As an example, we have

c((2533, 2276)) =

(
1

0

)(
0

1

)(
1

0

)(
�
�

)(
1

0

)(
1

0

)(
�
�

)(
�
�

)(
0

1

)(
0

1

)(
0

0

)

Lemma 44. For every n ≥ 1, if M ⊆ (N \ {0})n is definable in 〈N \ {0};×, <P 〉
then c(M) is regular.

Proof (sketch). By induction on the number of quantifiers of a prenex formula which
defines M . The main difficulty is to initialize induction, which can be done by
showing that the images of N \ {0}, ×g and <P by c are regular languages (observe
that Def(N \ {0}; =,×, <P ) =Def(N \ {0};×g, <P )).

• c(N \ {0}) is regular since

c(N \ {0}) = B∗ \ (0B∗ ∪ B∗� ∪B∗�0B∗)

with B = {0, 1,�}.

• c({(x, y, z) : ×g(x, y, z)}) is also regular: the required finite automaton essen-

tially checks correctness of binary addition between each block of

( �
�
�

)
.

• the set c({(x, y) : x <P y}) is regular, since

c({(x, y) : x <P y}) =

(
�
�

)∗(
1

0

)(
�
�

)(
�
�

)∗(
0

1

)
.

�

The above lemma expresses that the structure 〈N \ {0};×, <P 〉 is automatic
in the sense of Hodgson. Decidability of the theory then follows (like Büchi Arith-
metic) from the fact that the decision problem for sentences reduces to the emptiness
problem for finite automata, which is decidable by Kleene.

Note that the above ideas are very close to the ones used by Hodgson in [Hod82]
where he proves that automaticity of structures is preserved under weak direct prod-
uct.
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3.4 Undecidable extensions of 〈N; =,×〉

Starting from the (undecidable) theory of 〈N; =,×,+〉 one can replace + by “weaker”
relations or functions. Two natural candidates are the order relation < and the
successor function S; note that we have

Def(N;S,=) ⊆ Def(N;<,=) ⊆ Def(N; +,=)

(indeed an automorphism argument shows that strict inclusions hold).
The following result is due to J.Robinson [Rob49].

Proposition 45. Def(N; =,×, S) = Def(N; =,×, <) = Def(N; =,×,+).

Proof. Since successor function is definable in 〈N;<〉, and < is in turn definable in
〈N; =,+〉, it is sufficient to show that + is definable in 〈N; =,×, S〉. This comes
from the so-called Tarski’s identity: for all x, y, z ∈ N,

[z = 0 ∨ z = x+ y]⇐⇒ (xz + 1)(yz + 1) = z2(xy + 1) + 1.

The right term of this equivalence can easily be expressed in terms of × and S. �

The previous proposition has been sharpened by Korec [Kor96] (recall that
Neib(x, y) means |x− y| = 1).

Proposition 46. Def(N; =,Neib,×) = Def(N; =,+,×).

This result was needed in the proof of Theorem 7.

Proof. Note first that every integer is definable in the structure. We shall therefore
freely use constants in the defining formulas.

The main idea is to use Tarski’s identity to define a relation close to +g, and
then define +.

Consider the formula ψ(x, y, z):

[z 6= 0 ∧ ∃u, v, w(Neib(4xz, u) ∧Neib(4yz, v) ∧ Neib(4xy,w) ∧Neib(uv, 4z2w)]

∨[z = 0 ∧ x = y]

We shall show that ψ defines the relation R = {(x, y, z) : x+y = z or |x−y| = z}.
Indeed assume that ψ(x, y, z) holds. The case z = 0 is obvious. Now if z 6= 0,

then we have

u = 4xz ± 1, v = 4yz ± 1, w = 4xy ± 1, uv = 4z2w ± 1

that is,
16xyz2 ± 4xz ± 4yz ± 1 = 16xyz2 ± 4z2 ± 1.

The last signs in both sides must coincide due to the congruence modulo 4. Thus
after simplification we get |x± y| = z, that is (x, y, z) ∈ R.

Conversely if (x, y, z) ∈ R then for z 6= 0 (the case z = 0 is obvious) we have

• if z = x+ y then ψ(x, y, z) holds for the values u = 4xz + 1, v = 4yz + 1, w =
4xy + 1;
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• if z = x − y, with x ≥ y w.l.o.g., then convenient values are u = xz − 1, v =
4yz + 1, w = xy + 1.

Let us now define the congruence classes modulo 4. We use the notation x ≡4 i
(for 0 ≤ i < 4). We can already define x ≡4 0 and x ≡4 2 by the formulas ∃y(x = 4y)
and ∃y, z(Neib(2y, z) ∧ x = 2z), respectively.

For the two other congruence classes we need to define some intermediate predi-
cates, namely the set OS of odd squares, and the two congruence classes modulo 8,
x ≡8 4 and x ≡8 3 (with similar notations as above).

A defining formula for OS(x) is ∃y, z(Neib(2y, z)∧ x = z2). The relation x ≡8 4
is defined by ∃y, z(Neib(2y, z) ∧ x = 4z).

We shall show that x ≡8 3 can be defined by the formula

∃u, v, w, y, z (OS(u) ∧ OS(v) ∧ OS(w) ∧ ψ(u, v, y)∧

y ≡4 2 ∧ ψ(y,w, x) ∧ ψ(x, 1, z) ∧ z ≡8 4)

On one hand if x ≡8 3 then by [Nar86], x is a sum of three squares u, v, w, all of
them being odd (since every square is congruent to 0 or 1 modulo 4). Thus the
previous formula holds for these values of u, v, w, with y = u+ v and w = x− y.

Conversely if there exist u, v, w, y, z such that the formula holds, then we have
y = |u± v|. The case y = |u− v| is excluded since y ≡4 2 and u, v are congruent to
1 modulo 4. Thus y = u + v, which yields y ≡8 2. We also have x = |y ± w|, and
the case x = |y − w| must be excluded since the two last subformulas using z show
that x must be congruent to 3 or 5 modulo 8. Thus we have x = y+w = u+ v+w,
which implies x ≡8 3 (since u, v, w are all congruent to 1 modulo 8).

We are now able to define the two congruence classes x ≡4 1 and x ≡4 3 by the
formulas ∃y (y ≡8 3 ∧ ψ(y, 2, x)) and ∃y (y ≡4 1 ∧ ψ(y, 2, x)).

Finally we can define z = x+ y by the formula

∃u, v (Neib(4x, u) ∧ u ≡4 3 ∧ Neib(4y, v) ∧ v ≡4 1 ∧ ψ(u, v, 4z)) ∨

∨(x = 0 ∧ y = z).

�

A class of undecidable extensions of Skolem Arithmetic was exhibited by Cegiel-
ski, Matiyasevich and Richard [CMR96], who proved the following result.

Theorem 47. Let p : N→ P be injective. Then Th(N; =,×, p) is undecidable.

In particular Theorem 47 holds if p denotes the prime enumerating function π.

Proof. For every integer x ≥ 1 let ν(x) denote the number of distinct prime divisors
of x. Consider the equivalence relation ∼ on positive integers defined by x ∼ y
iff ν(x) = ν(y). Moreover let x C y mean ν(x) ≤ ν(y), and ⊗(x, y, z) mean that
ν(z) = ν(x)ν(y). The relations C and ⊗ are clearly compatible with ∼. Moreover

〈(N \ {0})/∼;C/∼,⊗/∼〉 ∼= 〈N;<,×g〉.
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Now Th(N;<,×g) is undecidable by Proposition 45, thus in order to prove undecid-
ability of Th(N; =,×, π) it suffices to “define” 〈(N\{0})/∼;C/∼,⊗/∼〉 in 〈N; =,×, π〉.
More precisely we have to show that the set N \ {0}, and the relations ∼,C,⊗ are
definable in 〈=,×, π〉 (see e.g. [Rab65, Ric85a] where this undecidability method is
detailed).

The case of N\{0} is straightforward. The idea for defining x C y is to translate
the existence of an injective map from Supp(x) \ Supp(y) to Supp(y) \ Supp(x).
More precisely a defining formula for x C y expresses the fact that there exists an
integer c such that

Supp(c) = {p(r0s0), . . . , p(rusu)} for some distinct primes r0, . . . , ru, s0, . . . , su
such that {(ri, si)|i ≤ u} is the graph of an injective map from Supp(x) \ Supp(y)
to Supp(y) \ Supp(x).

It is quite clear, on one hand, that the existence of such a c is equivalent to
x C y, and on the other hand that the above properties for c are definable.

¿From C we easily define x ∼ y. Finally for ⊗ one uses almost the same idea
as for C: this time a defining formula for ⊗(x, y, z) asserts the existence of integers
c′, x′, y′, z′ such that:

• x ∼ x′, y ∼ y′, z ∼ z′

• x′, y′, z′ are pairwise coprime

• Supp(c′) = {p(r0s0t0), . . . , p(rksktk)} where r0, . . . , rk, s0, . . . , sk, t0, . . . , tk are
distinct primes such that {(ri, si, ti)|i ≤ k} is the graph of a one-to-one map
between Supp(x′)× Supp(y′) and Supp(z′).

�

Note that the previous proof does not need the full strength of 〈N;×, p〉, indeed
the same result holds for Th〈N; |, p〉.

Let us mention a related open question: is + definable in 〈N; =,×, π〉 (recall that
π enumerates primes) ? Note that [CMR96] provides an example of an injective map
p : N→ P for which + is not definable in 〈N; =,×, p〉.

We close the section by answering Maurin’s question (see paragraph 3.2): does
Theorem 43 about decidability of Th(N \ {0}; =,×, <P ) still hold if we replace <P

by <Π, the order relation restricted to the set Π of primary numbers ?
This question was answered negatively by Richard and the author [BR98].

Theorem 48. Th(N; =,×, <Π) is undecidable.

Proof. We use the same idea as in the proof of Theorem 47, namely we define C
and ⊗ in 〈N; =,×, <Π〉. This time the idea for defining x C y goes as follows: the
formula asserts the existence of an integer c and a prime p such that c can be written
as

c = qa1
1 q

a2
2 . . . qann

where
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• q0, . . . , qn are distinct primes

• Supp(x) \Supp(y) ⊆ {q1, . . . qn} ⊆ (Supp(x)∪Supp(y)) \ (Supp(x)∩Supp(y))

• qa1
1 < qa2

2 < · · · < qann

• for every i < n, qi ∈ Supp(x) \ Supp(y) iff qi+1 ∈ Supp(y) \ Supp(x)

• q0 ∈ Supp(x) \ Supp(y) and qn ∈ Supp(y) \ Supp(x)

The above properties express that {(q2i, q2i+1) : i ≤ n/2} is the graph of an
injection from Supp(x) \ Supp(y) to Supp(y) \ Supp(x).

An analog idea can be used to define ⊗(x, y, z): one introduces pairwise coprime
integers x′, y′, z′ such that x ∼ x′, y ∼ y′, z ∼ z′, and express the existence of an
integer c′ of the form

c′ = q′
b1
1 q
′b2
2 . . . q

′b3m
3m

where the q′i’s are distinct primes, q′b11 < q′b22 < . . . q′b3m3m , and {(q′3i, q′3i+1, q
′
3i+2) :

1 ≤ i ≤ m} is the graph of a bijection between Supp(x′)×Supp(y′) and Supp(z′). �

In fact [BR98] proves a stronger result, namely that + is definable in the struc-
ture.

3.5 Notes

Cegielski proved that the theory of 〈N; =,×〉 is not finitely axiomatizable [Ceg81].
Models of the theory were explored by Chatzidakis [Cha81].

Korec proves [Kor97] undecidability of the theory of 〈N;×,=, Sk〉, where Sk(x) =
x+ k (with k ≥ 1), as well as the theory of 〈N;×,=, Lp,q〉, where Lp,q(x) = px + q
(with p, q ≥ 1). He also asks whether + is definable in 〈N;×,=, x 7→ x2 + 1〉, and
in 〈N;×,=,X〉 where X denotes the range of a polynomial function.

4 A question of Julia Robinson

In the present section we discuss definability issues for structures where + and ×
are simultaneously replaced by weaker relations. We have the following situation:

Def(N; =,⊥,+) ⊆ Def(N; =, |,+) ⊆ Def(N; =,×,+)⋃ | ⋃ | ⋃ |
Def(N;⊥, <) ⊆ Def(N; |, <) ⊆ Def(N; =,×, <)⋃ | ⋃ | ⋃ |
Def(N;⊥, S) ⊆ Def(N; |, S) ⊆ Def(N; =,×, S)

We shall focus on the structures 〈N;S, |〉 and 〈N;S,⊥〉, which were first consid-
ered by Julia Robinson [Rob49]. In this paper she proved that + and × are definable
in 〈N;S, |〉 (see Theorem 49 below) and asked whether the same holds for 〈N;S,⊥〉.
Up to now the question is still open. Woods (and independently Richard) proved
undecidability of the theory, and showed that J.Robinson’s question is strongly con-
nected with a difficult number-theoretic conjecture, today known as Erdös-Woods
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Conjecture, which roughly states that any integer is completely determined by the
set of its prime divisors and the set of prime divisors of some of its neighbours.
These results are discussed in the second paragraph. In the final paragraph we
state some partial answer to Robinson’s question due to Richard, who proved that
all arithmetical relations restricted to the set Π of prime powers are definable in
〈N;S,⊥〉.

4.1 The theory of 〈N;S, |〉

Let us first recall Robinson’s result [Rob49] about 〈N;S, |〉.
Theorem 49. Def(N; |, S) = Def(N; =,×,+). Thus Th(N;S, |) is undecidable.

Proof. Thanks to Proposition 45 it suffices to define × in 〈N; |, S〉. Let us show that
for all positive integers x, y, z, one has z = xy iff the following property, which we
denote (∗), holds :

For every m ∈ N prime to xy there exist coprime integers x′, y′ , both prime to
xyz, such that 




xx′ ≡ −1 (mod m)
yy′ ≡ −1 (mod m)
zx′y′ ≡ 1 (mod m)

Let us show that if z = xy then (x, y, z) satisfies (∗). Let m be prime to x and y.
There exist x′′ and y′′ such that xx′′ ≡ −1 (mod m) and yy′′ ≡ −1 (mod m). The
integers x′′ and y′′ being prime to m, it follows from Dirichlet’s Theorem that there
exist two primes x′ and y′, greater than x, y and z and such that x′ ≡ x′′ (mod m)
and y′ ≡ y′′ (mod m). One checks easily that x′ and y′ satisfy conditions of (∗).

Conversely if (x, y, z) satisfies (∗) then for every m prime to x and y, there exist
x′ and y′ such that

zx′y′ ≡ 1 ≡ (−1) · (−1) ≡ (xx′) · (yy′) (mod m)

which implies
zx′y′ ≡ (xy) · (x′y′) (mod m)

Now, from the congruences of (∗) and the fact that x′y′ is prime to m, one deduces
that

z ≡ xy (mod m).

This is true for infinitely many values of m, thus z = xy.
It remains to express property (∗) in the language {S, |}, which is done easily,

and yields a definition for ×. �

As an immediate corollary we get

Def(N; |, <) = Def(N; =, |,+) = Def(N; =,×,+).

Cegielski [Ceg90] specified Theorem 49 by giving an axiomatization of Peano
Arithmetic in the language {S, |}. Moreover Korec [Kor96] proved that Theorem
49 still holds if we replace the successor function by the relation Neib(x, y) (which
holds iff |x− y| = 1).
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4.2 〈N;S,⊥〉 and Erdös-Woods’ conjecture

We now turn to Robinson’s (open) question of whether + and × are definable in
the structure 〈N;S,⊥〉. Up to now, the main contributions on the subject are due
to A.Woods and D.Richard.

We shall concentrate in this paragraph on Woods’ proofs (as far as we know, the
only source was Wood’s PhD Thesis [Woo81]).

Woods’ first important result is the following (see next paragraph for an alter-
native proof).

Theorem 50. Th(N;S,⊥) is undecidable.

Proof. We use the same technique as the one for Theorem 47, i.e. we show that C
and ⊗ are definable in 〈N;S,⊥〉.

For x ≥ 1, let x be the class of x with respect to the equivalence relation
Supp(x) = Supp(y) . Moreover let δ(x) be the set of classes q ∈ P such that
gcd(x, q) 6= 1.

Note that the set of primary numbers Π, in other words the set of integers x
such that x ∈ P , is definable in 〈N;S,⊥〉 (and even in 〈N;⊥〉).

We shall define the relation “ν(x) ≤ ν(y), x⊥y, and both x, y are odd”, from
which a defining formula for x C y can be derived easily. Given x, y odd and
relatively prime, the idea for defining ν(x) ≤ ν(y) is to translate the existence
of an injection f : δ(x) → δ(y) through the existence of an integer c such that
δ(c) = {q1, q2, . . . , qt} where each qi encodes a unique pair (r, f(r)). For this we
need that each qi “distinguishes” two elements in δ(x) ∪ δ(y), one in each subset.

To this aim let us introduce an encoding technique that allows a class q ∈ P to
distinguish, in a finite set C of elements of P \ {2}, some subset D.

Given q ∈ P , we define Cod(q, C) as the subset D ⊆ C of classes r ∈ P such that
there exists r′, with r′ = r, for which q′ ≡ 1 (mod r′) for every q′ which satisfies
q′ = q.

It follows from Dirichlet’s Theorem that given any finite set C ⊆ P \ {2} and
any D ⊆ C there is some q that satisfies Cod(q, C) = D: indeed if C = {s1, . . . , st}
with si ∈ P (i = 1, . . . , t), then we can choose a prime solution of the system:

q ≡
{

1 (mod si) for all si such that si ∈ D
−1 (mod si) for all si such that si ∈ C \D

We can “define” Cod(q, c) in 〈N;S,⊥〉 in the following sense: the ternary relation
Cod′(u, v, w) which holds iff (u ∈ P , δ(v) ⊆ δ(w) ⊆ P \ {2}, and Cod(u, δ(w)) =
δ(v)) is definable.

This leads to a defining formula for “ν(x) ≤ ν(y), x⊥y and x, y odd”: it expresses
the existence of an odd integer c such that δ(c) = {q1, q2, . . . , qt} where:

• for each i there is a couple (ri, r
′
i) ∈ δ(x)×δ(y) such that Cod(qi, δ(x)∪δ(y)) =

{ri, r′i} ;

• the set {(ri, r′i) : 1 ≤ i ≤ t} is the graph of an injective map f : δ(x)→ δ(y).

For ⊗ one uses the same encoding idea: indeed given integers x, y, z, which we
assume to be odd and pairwise coprime w.l.o.g. , we have ν(x) × ν(y) = ν(z) iff
there exists an odd integer d such that δ(d) = {q1, q2, . . . , qt} where:
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• for each i there is a triple (ri, r
′
i, r
′′
i ) ∈ δ(x)×δ(y)×δ(z) such that Cod(qi, δ(x)∪

δ(y) ∪ δ(z)) = {ri, r′i, r′′i };

• the set {(ri, r′i, r′′i )) : 1 ≤ i ≤ t} is the graph of a bijective map f : δ(x) ×
δ(y)→ δ(z).

�

The difficulty to define C and ⊗ in the previous proof partly has to do with the
fact that the set of primes (and the relation “x is a prime divisor of y”) does not
seem to be definable in the structure 〈N;S,⊥〉 (whereas it is clearly definable in
the structures considered in Theorems 47 and 48). Richard [Ric85a] actually proved
that the set of primes is definable in 〈N;S,⊥〉 –see next paragraph.

The next theorem provides a re-formulation of Robinson’s question.

Theorem 51 (Woods). The following claims are equivalent :
(1) + and × are definable in 〈N;S,⊥,=〉;
(2) Equality relation = is definable in 〈N;S,⊥〉;
(3) There exists k ∈ N such that for all x, y ∈ N,[

Supp(x+ i) = Supp(y + i) for i = 0, 1, . . . , k
]

implies x = y.

Proof. (3)→(2) is obvious.
(2)→(3) : assume ϕ(x, y) defines x = y. Consider the greatest k that appears in

a term Sk(x) in the formula ϕ(x, y) (and set k = 0 if there is no such term). Then
one checks that for all x1, x2, if Supp(x1 + i) = Supp(x2 + i) for i = 0, . . . , k, then
for every y the formula ϕ(x1, y) holds iff ϕ(x2, y) does. Therefore (3) must hold for
this value of k (otherwise we find x1, x2, x1 6= x2, such that ϕ(x1, x2) holds). The
proof for (1)→(3) is similar.

(3)→(1) Assume (3) holds for some integer k. We shall prove that the function
ν−1 is definable in 〈N;S,⊥〉. Indeed we showed in the proof of Theorem 50 that
C and ⊗ are definable in 〈N;S,⊥〉, thus if we could define ν−1 then we would get
a definition for < and ×, from which a definition for + will follow (using Tarski’s
identity, see previous section).

We shall introduce a (definable) relation A(n, z) which holds only if ν(z) = n+k,
and such that for any n there exists z such that A(n, z) holds. From A and ∼ one
then easily defines the function ν−1.

Roughly speaking, z will be defined such that δ(z) = {q1, . . . , qn+k} where each
qi encodes Supp(i).

We define the relation A(n, z) to hold iff either n = 0 and z has exactly k prime
divisors (this case is definable), or z has at least k distinct prime divisors and there
exist two disjoint finite sets C,D of elements of P , a class r ∈ P , r 6∈ C ∪D, such
that:

• The set {Cod(q,D) : q ∈ δ(z)} is totally ordered for the inclusion relation.

Let δ(z) = {q1, q2, . . . , qt}, with Cod(qi, C) ⊆ Cod(qi+1, C) (1 ≤ i < t).
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We set Dec(qi) =

{
Cod(qi, C) ∪ {2} if Cod(qi, {r}) = {r}
Cod(qi, C) otherwise

• (Dec(q1), . . . ,Dec(qk+1)) = (δ(1), . . . , δ(k + 1)) ;

• if
(Dec(qi),Dec(qi+1), . . . ,Dec(qi+k)) = (δ(j), . . . , δ(j + k))

for some integer j, then

(Dec(qi+1),Dec(qi+2), . . . ,Dec(qi+k+1)) = (δ(j + 1), . . . , δ(j + k + 1))

(i ≤ t− k)

• (Dec(qt−k),Dec(qt−k+1), . . . ,Dec(qt)) = (δ(n), . . . , δ(n+ k)).

We leave to the patient reader the easy-but-tedious task to show that A(n, z) is
definable in 〈N;S,⊥〉. Note that in the defining formula one translates the existence
of C by the existence of an integer y such that δ(y) = C; a similar idea is used for
D.

On one hand if A(n, z) holds then the three last conditions, combined with our
assumption that (3) holds for the value k, ensure that ν(z) = n + k.

Conversely given n ∈ N, one can find z such that A(n, z) holds. For this we
first choose n + k prime numbers r1, . . . , rn+k all greater than n + k, and set D =
{r1, . . . , rn+k}. We also choose some prime number r greater than all ri’s. Then we
set C as the set of classes of prime numbers ≤ n+ k; we have C ∩D = ∅. Then we
choose z as an integer with support {q1, . . . , qn+k}, where each qi satisfies :

• Cod(qi,D) = {r1, . . . , ri}

• Cod(qi, {r}) = {r} iff i is even;

• Cod(qi, C) = {p1, . . . , pmi} where {p1, . . . , pmi} = Supp(i) \ {2}.

Then it is clear that z satisfies the conditions required in the definition of A(n, z).
�

Condition (3) in the statement of the previous theorem is known as Erdös-Woods
Conjecture. Let us state it again:

Erdös-Woods Conjecture (EW): There exists k ∈ N such that for all x, y ∈ N,

[
Supp(x+ i) = Supp(y + i) for i = 0, 1, . . . , k

]
implies x = y.

(EW) is closely related to another conjecture formulated by Erdös in [Erd80]; in
this paper he considered the problem to find integers k, l,m, n, with k ≥ l ≥ 3 and
(m,k) 6= (n, l), such that (m+ 1)(m+ 2) . . . (m+ k) and (n+ 1)(n + 2) . . . (n + l),
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with k ≥ l ≥ 3 and (m,k) 6= (n, l) have the same prime factors. For example
2 · 3 · 4 · 5 · 6 · 7 · 8 · 9 · 10 and 14 · 15 · 16 (or 48 · 49 · 50) have the same prime factors.
He conjectured that for k = l ≥ 3 there are only finitely many solutions.

It is known that the constant k in (EW) must be greater than 1. Indeed Erdös
noticed (see problem B19 in [Guy94]) that for any n ∈ N, the integers x = 2n − 2
and y = 2n(2n − 2) have the same support, as well as x+ 1 and y + 1.

Langevin ([Lan92, Lan93], see also [Lan96]) studied connections between (EW )
and other classical conjectures in arithmetic.

Let us mention that Vsemirnov recently proved an analogue of (EW) for poly-
nomial rings [Vse00].

4.3 Definability within 〈N;S,⊥〉

Richard proposed in [Ric85a] another proof for undecidability of Th(N;S,⊥), and
specified the expressive power of 〈N;S,⊥〉 by proving that all arithmetical relations
restricted to the set Π of prime powers are definable in this structure. Recall that
X ⊆ Nk is arithmetical if it is definable in 〈N; =,×,+〉.

This shows for instance that the relations “x and y are consecutive primes” or
“x and y are two primary numbers such that x < y” are definable in 〈N;S,⊥〉.

Richard’s proof uses number-theoretical results which state that an analogue of
(EW ) holds if we assume x, y to be prime powers. The starting point is the following
result due to Bang [Bang].

Theorem 52. Let x ≥ 2. For every n ≥ 1, the integer xn−1 has a primitive divisor,
i.e. a prime divisor which does not divide any integer xm− 1 for 0 < m < n, except
in the following cases.

(i) n = 1, x = 2;
(ii) n = 2, x = 2α − 1 for some α ≥ 1;
(iii) n = 6, x = 2.

Similarly xn + 1 has a primitive divisor, except in the case (x = 2 and n = 3).

Bang’s result has been extended later by Zsigimondy, [Zsi], and also Birkhoff and
Vandiver [BV04] (see [Sha82]), for integers of the form xn − yn, and by Carmichael
[Car14] for integers of the form xn + yn.

Theorem 52 admits the following corollary.

Corollary 53. For every integer x ≥ 2 and all α, β ∈ N the following holds:
(i) The equality Supp(xα + 1) = Supp(xβ + 1) is equivalent to

“α = β or (x = 2 and α, β ∈ {1, 3})”.
(ii) The equality Supp(xα − 1) = Supp(xβ − 1) is equivalent to

“α = β or (x = 2u − 1 for some u ≥ 2, and α, β ∈ {1, 2})”.

Assuming x to be prime in the previous corollary leads to the following weakening
of (EW ) for prime powers.

Proposition 54. Let y, z ∈ Π. If Supp(y+j) = Supp(z+j) for every j ∈ {−1, 0, 1}
then y = z.

The following theorem is due to Carmichael and Lucas [Car14].
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Theorem 55. If x, y ≥ 1 are relatively prime then for all m,n ≥ 1 we have

gcd

[
xm − ym
x− y ,

xn − yn
x− y

]
=
xgcd(m,n) − ygcd(m,n)

x− y .

In the sequel we shall use the following consequence of Carmichael-Lucas theo-
rem.

Corollary 56. For every integer x ≥ 2 and all α, β ∈ N, the inclusion

Supp(xα − 1) ⊆ Supp(xβ − 1)

is equivalent to “α | β or (x = 2u − 1 for some u ≥ 2, and α ∈ {1, 2})”.

Proof. The equivalence is clear if α = 0 or β = 0. Assume now that αβ 6= 0. On
one hand if α|β then xα − 1|xβ − 1 which ensures Supp(xα − 1) ⊆ Supp(xβ − 1).
Moreover if x = 2u − 1 for some u ≥ 2 then obviously Supp(x+ 1) ⊆ Supp(x− 1),
so that Supp(x− 1) = Supp(x2− 1). Now Supp(x− 1) ⊆ Supp(xβ − 1) for every β,
thus Supp(x2 − 1) ⊆ Supp(xβ − 1) for every β, which gives the required result.

Conversely assume that Supp(xα − 1) ⊆ Supp(xβ − 1); then by Theorem 55 we
have

Supp
(xα − 1

x− 1

)
∩ Supp

(xβ − 1

x− 1

)
= Supp

(xgcd(α,β) − 1

x− 1

)

which yields by our hypothesis

Supp
(xα − 1

x− 1

)
= Supp

(xgcd(α,β) − 1

x− 1

)

that is,
Supp(xα − 1) = Supp(xgcd(α,β)− 1)

which by Corollary 53 yields either α = gcd(α, β) i.e. α|β, or (x = 2u − 1 for some
u ≥ 2, and gcd(α, β), α ∈ {1, 2}) from which the result follows. �

Let us state a first definability result (that was promised in the previous para-
graph).

Proposition 57. The set P of primes is definable in 〈N;S,⊥〉

Proof. The relations x = 0, x = 1, and the set Π of primary numbers, are easily
definable in our structure (even in 〈N;⊥〉). Then x = 2 is definable by the formula

Π(x) ∧ Π(S(2)(x)) ∧ ¬(x⊥S(2)(0)).

Then Corollary 53 allows to define the relation x =Π y interpreted as equality
relation restricted to Π, since x =Π y holds iff the following conditions hold:

• x, y are in Π,

• Supp(x) = Supp(y) and Supp(x+ 1) = Supp(y + 1)

• if Supp(x) = 2, then x = 2 iff y = 2.
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From =Π it is easy to define any constant n: Take a prime p > n, then x = n iff
S(p)(0) =Π S

(n−p)(x).

Then we can define the function PredΠ : N→ N which maps every integer x to
x− 1 in case x ∈ Π, and to 0 otherwise.

In order to define the set of primes, consider the sets

A = {pα : p prime, α ≥ 1 and Supp(pα − 1) ⊆ Supp(pβ − 1) for every β ≥ 1}

and

B = {pα : pα ∈ A and Supp(pα + 1) ⊆ Supp(pγ + 1) for every pγ ∈ A};

Both A and B are definable in 〈N;S,⊥〉 (one uses PredΠ). Let us show that B = P .
First of all Corollary 56 yields

A = P ∪ {p2 : p is a prime of the form 2u − 1 with u ≥ 2}.

Moreover if p is a prime of the form 2u − 1 for some u ≥ 2 (i.e. if p is a Mersenne
prime) then

p2 + 1 = 2(2u(2u−1 − 1) + 1).

Now u ≥ 2 thus (2u(2u−1 − 1) + 1) is odd and > 1, therefore Supp(p2 + 1) is not
contained in Supp(p+1) (which equals {2}). It follows that p2 6∈ B. The conclusion
is B = P .

�

Proposition 58. The set P5 of powers of 5, and both relations {(5n, 5n+1) : n ∈ N}
and {(5m, 5n) : m|n} are definable in 〈N;S,⊥〉.

The choice of 5 in the above proposition allows to avoid the case x = 2u − 1 in
corollaries 53 (ii) and 56.

Proof. The set P5 is easily definable, since the constant 5 and the binary relation
“x is prime and y is a power of x” are.

In order to define {(5n, 5n+1) : n ∈ N}, one uses the fact that given n ∈ N, the
integer 5n+1 is the only non-trivial power of 5, say 5t, which satisfies

Supp(5t − 5) = {5} ∪ Supp(5n − 1).

Indeed in this case we have

Supp(5t − 5) = Supp(5(5t−1 − 1)) = {5} ∪ Supp(5t−1 − 1).

It follows that Supp(5t−1 − 1) = Supp(5n − 1), which yields t = n+ 1 by Corollary
53 (ii).

Finally {(5m, 5n) : m|n} is definable thanks to Corollary 56, which ensures that
Supp(5m − 1) ⊆ Supp(5n − 1) iff m|n. �
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As a corollary we get an alternative proof of undecidability of Th(N;S,⊥) (The-
orem 50). Indeed from the previous Proposition and Theorem 49 one can deduce
that both relations Add5 = {(5x, 5y, 5z) : x + y = z} and T imes5 = {(5x, 5y, 5z) :
xy = z} are definable in 〈N;S,⊥〉, and undecidability follows from the fact that
〈P5;Add5, T imes5〉 and 〈N; +g,×g〉 are isomorphic.

The previous fact also implies the following.

Corollary 59. If R ⊆ Nn is arithmetical then the relation {(5x1, . . . , 5xn) : (x1, . . . , xn) ∈
R} is definable in 〈N;S,⊥〉.

Now we can state Richard’s main definability result [Ric85a].

Theorem 60. Let k ≥ 1, and let X ⊆ Nk be an arithmetical relation. The set
X ∩ Πk is definable in 〈N;⊥, S〉.

One may think that the above definability property is strong enough to ensure
that + and × are definable in 〈N;S,⊥〉. This is not true in general, as one can
prove that the structure 〈N;⊥, <Π〉, where <Π denotes order relation restricted to
Π, also enjoys this property, but neither + nor × are definable in the structure (see
[BR98]).

In order to prove Theorem 60, we first need some auxiliary definable relations.

Lemma 61. The two following relations are definable in 〈N;S,⊥〉:
A(x, y): “x = qn − 1 for some prime q and some n ≥ 2, and y is a primitive

divisor of x”
B(x, y): “x, y are distinct primes and Ord(y, x) = x− 1”

Proof (sketch). The main idea for defining A is to use the following consequence
of Corollary 56: for q prime and n ≥ 3, y is a primitive divisor of qn − 1 iff q ∈
Supp(pn−1) and moreover if Supp(pm−1) ⊆ Supp(pn−1) implies q 6∈ Supp(pm−1)
for everym 6= n. For n ≤ 2, note further that all prime divisors of p−1 are primitive,
and that the primitive divisors of p2 − 1 are the prime divisors of p2 − 1 which do
not divide p− 1.

The predicate A allows then to develop the following encoding device: one can
encode any finite set of powers of a prime p, say {pn1 , pn2 , . . . , pnt} with n1 < n2 <
. . . ,< nt, by some integer c whose support consists in the primes qn1, qn2, . . . , qnt
where each qi is a primitive divisor of pni −1. Bang’s Theorem allows to ensure that
such an encoding is coherent.

Using this idea, we can associate with any couple of distinct primes x, y some
integer cx,y which encodes (in the previous sense) the set {yα : α|Ord(y, x)} (note
that by Corollary 56 we have –apart from some exceptional cases– α|Ord(y, x) iff
Supp(yα− 1) ⊆ Supp(yβ − 1) where x is a primitive divisor of yβ − 1). Thus ν(cx,y)
equals the number of divisors of Ord(y, x).

Now one can define B using the fact that Ord(y, x) = x− 1 iff ν(cx,z) ≤ ν(cx,y)
for every prime z 6= x. Indeed for every prime z 6= x we have Ord(z, x)|x − 1, thus
ν(cx,z) is always less than or equal to the number of divisors of x− 1. �
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Lemma 62. The restriction of x 7→ 5x to the set P is definable in 〈N;S,⊥〉.
Proof. By Corollary 59 it suffices to define the restriction to P of the function
x 7→ 5x−1.

We have to recover (by means of definable properties) 5p−1 from a prime p. We
shall distinguish two cases.

First case : p is the only primitive divisor of 5Ord(5,p) − 1
In this case we first recover 5Ord(5,p) from p, using the definable relation

{(x, y) : x is a primitive divisor of 5Ord(5,y) − 1}.

Then we can recover 5p−1 from 5Ord(5,p), using this time the relation

{(5m, 5n) : n is the only primitive divisor of 55m−1}

which is definable by Corollary 59.

Second case : 5Ord(5,p) − 1 has at least two primitive divisors
In this case one uses the fact that 5p−1 is the only power of 5, say 5a, which has

the following property (which we denote by (P )):

There exist two primes t, q such that
(1) t ≥ 7 ;
(2) q 6= p ;
(3) t ≡ 5 (mod q) ;
(4) Ord(t, p) = p − 1 ;
(5) q is a primitive divisor of both and 5a − 1 and tp−1 − 1.

This property is expressible using Lemma 61.
Let us first prove that 5p−1 enjoys (P ). Note that the integer 5p−1 − 1 has at

least a primitive divisor q 6= p:
– if Ord(5, p − 1) = p − 1 then this is a consequence of our very hypothesis
– if Ord(5, p − 1) 6= p − 1, then 5p−1 − 1 has at least a primitive divisor by

Theorem 52, but it cannot be p which is already a primitive divisor of 5Ord(5,p−1)−1.
Consider thus this primitive divisor q. Using the fact that (Z/pZ)∗ is cyclic and

Dirichlet’s Theorem, allows to claim that there exists a prime number t satisfying
(1), (3) and (4). Now (3) implies that Ord(5, q) = Ord(t, q), which together with
(4) implies (5).

Conversely if 5a satisfies (P ) then again (3) implies that Ord(t, q) = Ord(5, q),
and by (5) it follows that q is a primitive divisor of both ta − 1 and tp−1 − 1, which
implies a = p − 1 by Corollary 53(ii). �

Proof of Theorem 60 . By Corollary 59 it is sufficient to show that the
restriction to Π of the function f : x 7→ 5x is definable in 〈N;S,⊥〉. We use Propo-
sition 54 which ensures that a prime power q is entirely determined by the sequence
(Supp(q − 1),Supp(q),Supp(q + 1)).

Let us describe how to “catch” (by means of definable relations) the integer
fΠ(q) = 5p

n
from the prime power q = pn (p prime). First, from pn we get the prime
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p and then fP (p) = 5p, from which we isolate the set of integers of the form 5p
t

(for some t ∈ N) (i.e. we define U(x, y, z): “x is a power of some prime p, y = 5p

and z = 5p
t

for some t ∈ N”). We can define from each integer y = 5p
t

the sets
Z−(y) = {5r : r ∈ Supp(pt − 1)} and Z+(y) = {5r : r ∈ Supp(pt + 1)} (i.e. we
define V (x, y) :“x = 5n and y = 5p for some prime p and some n ∈ N, with p|n”).
Now by Proposition 54, the integer 5p

n
(that is fΠ(pn)) is the only integer of the

form 5p
t

such that Z−(5p
t
) = fP (Supp(pn − 1)) and Z+(5p

t
) = fP (Supp(pn + 1)).

�

4.4 Notes

• Richard proved (see [GR89]) that both + and × are definable in 〈N;S,⊥, R〉 when
R denotes any of the following relations:

- “x is a power of y ”
- “x is a quadratic residue modulo the prime y ”
- “x is prime and x+ y = z ”
- “x is prime and xy = z”.

See also [Nez97] for related definability results.
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Table of main notations

S the successor function
Neib(x, y) holds whenever |x− y| = 1
+ addition function
+g graph of addition
× multiplication function
×g graph of multiplication
| divisibility relation
⊥ relative primeness relation (x⊥y iff gcd(x, y) = 1)
P the set of primes
π(n) the n−th prime ((π(0) = 2, π(1) = 3, . . . )
Π the set of primary numbers (powers of primes)
Supp(x) the set of prime divisors of x (its support)
x ∼ y holds whenever Supp(x) and Supp(y) have the same cardinality
C the set of squares
Pk the set of powers of k
Vk(x) the greatest power of k which divides x (with Vk(0) = 1)
[x]k the k−ary expansion of x (e.g. [12]2 = 1100)
<X the restriction of the usual order relation to X ⊆ N
S+(N) the set of finite subsets of N
S∗(N) the set of finite or co-finite subsets of N
Ae(N) the set of functions f : N→ A such that f(n) = e for almost all n
FIN(X) holds whenever X ⊆ N is finite
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