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Abstract

The undecidability of the additive theory of prime numbers is an open ques-
tion. We show the undecidability of Th(N,+,n — nf(n)) where f is a good
approximation of the enumeration n — p,/n and where p, is the (n + 1)-th
prime.

Résumé

L’indécidabilité de la théorie additive des nombres premiers est une question ou-
verte. Nous montrons 'indécidabilité de Th(N,+,n — nf(n)) ot f est une bonne
approximation de la fonction n + p,/n des nombres premiers et ou p,, est le (n + 1)-
iéme premier.

Introduction - The questions of decidability and of arithmetical definability raised by the
multiplicative theories of prime numbers such as Th(N, ¢, P) and Th(N, |, P) where P denotes
the set of prime numbers, was solved in 1930 by SKOLEM since P is (e)-definable and (|)-
definable. Moreover, the theories Th(N, e, n — p,,) and Th(N,|,n — p,) where p, denotes
the n-th prime number (pg = 2, p1 = 3, etc.) have recently been shown to be undecidable
in [CMR]. On the other hand the additive theory of prime numbers is a well-developed
theory which enables us to express such well known problems as GOLDBACH’s conjecture
or POLIGNAC’s conjecture [RIB,p.250] (the infinity of twin primes is a special case here), or
many other classical questions or results like the SCHNIRELMAN Theorem. From the logical
point of view, the additive theory of prime numbers consists in investigating the first-
order structure (N, +,P). Two recent articles ([BJW] and [BOF]) in the JSL have shown
that the undecidability of the first-order theory Th(N, +,P) can be proved under certain
assumptions as, for instance, the linear case in SCHINZEL’s Hypothesis. In order to further
the study of this theory without assuming any conjecture such as SCHINZEL’s Hypothesis,
we solve the decision problems for some first-order theories close in a sense to Th(N, +, P).
Instead of studying (N, 4, P) itself, our investigation concerns Th(N, +,n — p,,). This leads
us immediately to the following.

Open problem :
Is the natural enumeration of prime numbers n — py definable in the structure (N, +,P)?
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According to the prime numbers theorem (Hadamard-de la Vallée Poussin, 1896) we know
pn ~ nlog(n), so that we begin by considering Th(N, +,n — n|log(n)|) and Th(N, +,n
n|logy(n)]), where log(n) and logs(x) respectively denote neperian and binary logarithms
of z, putting 0.log(0) = 0 and 0.log,(0) = 0.

The general framework of definability can be found, for instance, in [END] or is presen-
ted in a more detailed way in the survey carried out by the first author [CEG|. For a
structure M, we denote by DEF(M) the set of constants, functions and relations which
are first-order definable within M. Since Th(N, +,e) is undecidable (TURING, 1936) a
method for proving the undecidability of the theory of a structure M consists in sho-
wing DEF(M) = DEF(N, +,e). The set DEF(N, +,e) is well-known and the inclusion
DEF(M) C DEF(N, +, e) is very often trivial, which is the case in the present paper. In
fact, the only problem is to know whether the converse inclusion holds.

Proposition 1. The equality DEF(N,4+,n — n.[logy(n)|) = DEF(N, +, e) holds so that
Th(N, +,n — n.|logy(n)|) is undecidable.

This result is a corollary of Proposition 2 below which we shall prove after the introduction
of the mappings used.

Definition 1. For any positive integer k, we define fy and expy as mappings respectively
from a final segment of N into N which are such that

fi(n) = . log, (logs ... logs (n) . .))

L.2n
expy (n) = 2%

with k occurrences of logy for fix and k occurrences of 2 for expy(n); the domain of
fix will be {n € N/n > nyi} where ny is the smallest integer n satisfying fi,(n) > 0.

Proposition 2. The equality DEF(N, +, fi) = DEF(N, +, ®) holds so that Th(N, +, i) is
undecidable for any integer k.

Proof : For any sufficiently large integer x there exists an integer n such that
exp(n) <z < expi(n + 1), then we have fi(z) = z.n,

o= ={ G0 e o)

and consequently

n+z—1>z if z=expg(n)
n<zw otherwise.

fe(z) = fe(z —1) = {

Therefore the set Ay = {exp,(n)/n € N} is definable within (N, +, f) since z € Ay, if and
only if [fi(x) — fu(z — 1) > a].
The mapping exp, is consequently definable within (N, +, fx) since y = exp,(z) is
equivalent to

[y € A A fe(y + 1) — fuly) = =.



The function n — n? from Dom(f;,) into N is definable within (N, 4+, f) since we have
fi(exp(n) +n) = n.(expy(n) + ) = fu(expy(n)) + 7.

The classical result of PUTNAM insuring DEF(N, 4,7 +— n?) = DEF(N, 4, e) allows us to

conclude. a

Proposition 2 is in a sense an improvement of the result of BATEMAN-JOCKUSCH-WOODS
[BJW] expressing the fact DEF (N, +, f) = DEF(N, +, e) for some polynomial functions f
with a degree not smaller than 2. Here we have a result for functions which increase but
remain as close as we want to the zero function. This proof itself suggests a more general
proposition which is our fundamental Lemma and permits us to generalize Proposition 2
to other functions approximating more precisely than n +— nlogn the natural enumeration
of primes. For this purpose, we introduce a class of real functions containing the usual
approximations of n — p,/n.

Definition 2. The class C is the set of all (invertible) real functions f : [ag, +00o[— R
satisfying the following conditions :
1) f is continuous ;

2) f is strictly increasing ;

3) lim f(x) = +00;

X—+00

4) for every x which is positive real, f(x) < x.

5) There ezists xo € (R*)T such that for all reals x > x¢ the inequality f(x+1) < f(x) +1/2
holds.

Examples : The functions z — logy(z), = — logs(z)+logs(logy z) — 1, z — log(z) and
z + log(z) + log(log ) — 1 belong to C.
Conditions 1), 2), 3) and 4) are obviously verified and for 5), we have, for log, with
zo = 2/log(2) and 0 < € < 1 using the TAYLOR formula :

_log(z +1) — log(x) 1 1

logy(z 4+ 1) — logy(z) = Iog 2 < @+ 0)log2 <3

Similar arguments work for the three other examples.

The main result of this paper is a straightforward corollary of the following

Proposition 3. (Fundamental Lemma). For any function f of the class C (see Definition
2), we have DEF(N, +,n — nl[f(n)|) = DEF(N,+,e) so that Th(N,+,n — n|f(n)]) is
undecidable.

Some notations : By definition f = | f] is the function from N into N which associates
to n the greatest integer | f(n)]| smaller than f(n).

Let f~! be the function from N into N determined by f=1(n) = p m(f(m+1)) > n, where
jv means as usual “the smallest ... such that ...”.

Let f=! be the function from N into N which associates to n the smallest integer [f ()]
greater than f~!(z).

Below, we list some useful facts about the previous mappings.

Fact 1. The range of f contains [f(0), +co[NN.

Proof : Let py be the greatest integer p such that | f(p)] = ng. Then [ f(po+1)| > no+1.
But, following Condition 5) of Definition 2, f(po + 1) < f(po) + & so that [ f(po +1)] <

(o) + 5] <no+1 and flpo+1) =mnp +L. -



From Fact 1, we can deduce the existence of a function h : N — N such that h(n) is the
greatest integer ¢ satisfying f(q) = n. It is easy to prove h is increasing.

We leave to the reader the proof that h(n+2)—h(n) > 2n+1 is true for each h determined
by a functions f we gave as examples above. Consequently we assume from now onwards :

Condition 6. For every non negative integer n, the inequality h(n + 2) — h(n) > 2n + 1
holds.

Fact 2. For every positive integer, f(n +1) < f(n) + 1.
It trivially follows from Condition 5) of Definition 2.

Fact 3. For every f € C and for all positive reals we have f~'(z + 1) — f~!(z) > 1.
Indeed, for y = f~!(z), we have f(y+1) — f(y) < 1/2 < 1 which implies f(f (z) +1) <
z+ 1. Then f~Hf(f~Hz)+ 1)) < f~Hz+1) and f~l(z) +1 < f~l(z +1).

Fact 4. We have f(h(n)) = n and h(f(n)) > n for every integer n > f(0).

The first equality comes from Fact 1 which implies {g > f(0) such that f(¢q) = n} # 0.
By definition every member of the former set satisfies f(h(n)) = n. Since h(f(n)) is the
greatest integer ¢ such that f(q) = f(n), we have ¢ > n.

Proof of Proposition 3. We begin by showing that the set h(N) belongs to DEF(N, +,n
nf(n)). Indeed, if gy € h(N), there exists p € N such that f(qo) =p and f(go+1) =p+1

as a consequence of Fact 1. Let us put g(n) = nf(n), so that g(qo) = qop and g(qo + 1) =

(90 + 1)(p + 1). Therefore g(go + 1) — g(po) =qo+p+1>4qo.

Conversely if gy ¢ h(N), then p satisfies f(qo) = p, and also f(qo + 1) = p, implying

9(q0 + 1) — g(q0) = (g0 + 1)p — qop = p < qo (by Definition 2(4)). Finally ¢ € h(N) if and

only if g(¢ + 1) — g(q) > ¢, a condition which is obviously definable in the structure

(N, +,n = nf(n)).

Now, the function h itself is definable in the former structure through the logical equiva-
lence between h(p) =qand p+qg+1=g(p+1) —g(p).

The next step in the proof of Proposition 3 is to show the (N, +, g)—deﬁnabiliNty of f . For
this purpose, we intend to prove firstly that for every n > £(0), the inequality f~'(n—1) <
h(n) < f_\l(n—i—l). Since f is increasing we have f([f '(n+1)]) > f(f '(n+1)) =n+1,
therefore f(f*\l(n +1)) = [f([f~"(n+1)])] > n+ 1 since n + 1 is an integer. Now,
assume by reductio ad absurbum the inequality h(n) > f_\l(n + 1). We should get from
this hypothesis the inequality f(h(n)) > f(f:\l(n +1)) > n+1 (since f is increasing)

which contradicts the equality f(h(n)) = n (Fact 4) and thereby proves the inequality
h(n) < f~Yn+1).

By definition of the ceil-function, we have f/_\l(n —D)=[ftn-D] < fn-1+1.
But we know (Fact 3) that f !(n — 1) 4+ 1 < f~!(n) providing f;\l(n —1) < fYn).
Since f and f~! are (strictly) increasing and since, for n > f([)), we have f(h(n)) =n,
we get fln) = f~Yf(h(n)) < fYf(h(n))) = h(n), proving the desired inequality

Fl(n—1) < h(n).

The (N, +, g)-definability of  ~ x? uses Condition 6 we have imposed on h. We can
distinguish two cases.

First case. Suppose n € N satisfies h(n +1) —h(n) > n. In this case, f(h(n)+n) =n+1

since, by definition of h the integer h(n) is4the greatest ¢ such that f(q) = n, we have



on the one hand f(k(n) +n) > n + 1. On the other hand, k(n) +n < h(n + 1) implies
f(h(n) +n) < f(h(n+ 1)) = n + 1 by definition of h(n + 1). It follows

g(h(n) +n) = (h(n) +n)f(h(n) +n) = (h(n) +n)(n +1) = h(n).n +n? + h(n) +n. From
n = f(h( ), we get g(h(n)+n) = f(h(n))h(n)+n?+h(n)+n = g(h(n))+n?+h(n)+n and
finally, n? = g(h(n)) — h(n) —n which leads, in the first case, to an easy (N, +, g)-definition
of the square.

Second case. Suppose n does not satisfy h(n 4+ 1) — h(n) > n and therefore verifies
h(n + 1) — h(n) < n. Using the former inequality and Condition 6, the inequality h(n +
2) — h(n +1) > n + 1 holds, and coming back to Case 1, we can (N, +, g)-define (n + 1)2.
Consequently, both cases lead to a (N, 4+, g)-definition of the relation m = n? which is
logically equivalent to

{[(h(n + 1) — h(n) >n) Ag(h(n) +n) =
g(h(n)) +h(n) +n+m]V (h(n+1) —h(n) <n)Afg(h(n+1)+n+1) =
glh(n+1))+h(n+1)+n+1+m+n+n+1]}. 0

Proposition 3 has applications concerning the additive theory of primes. Indeed the best
known approximation of n — p, is the following ([RIB] p.249) :

n.log(log(n))
log(n) > '

This approximation does not seem to be sufficient to prove the undecidability of Th(N, +,n
pn). However we have :

pn, = n.log(n) + n.(log(log(n)) — 1) + O(

Proposition 4. The equality DEF(N, +,n — n.|log(n) +log(log(n)) —1|) = DEF(N, +, e)
holds so that Th(N, 4, n.[log(n) + log(log(n)) — 1)]) is undecidable.

Corollary For any of the restrictions to R*™ of the real functions f € {log,log,, log + log(log) —
1; logs + logy(logs) — 1}, we have DEF(N, +,n + n[f(n)|) = DEF(N, +, ) and the theory
Th(N, +,n — n[f(n)]) is undecidable.

Proof : We are going to explicit the proof for f = log+ log(log) — 1 and to show this
function belongs to the class C so that we can apply our fundamental Lemma. It is clear
f satisfies Conditions 1), 2), 3), 4) and 5) of Definition 2. We check Condition 6. Since
go = h(n) = Max{q € N such that 3o, (0 < oy < 1) and f(q) = n+ay}, we also get h(n) =
Max{q € N such that Ja,(0 < oy < 1) and log ¢ + log(logq) — 1 =n + a,} = Max{qg € N
such that Jay (0 < g < 1) and e" e+l = elogaeloglosd) — glog ¢} Similarly go = h(n +2)
is equal to Max{q" € N such that Jay (0 < ey < 1) and "3 = ¢'log ¢'}. Therefore

6n+3+aq2 6n+1+aq0
h(n+2) —h(n) = g2 —q0 = -

log q2 log qo
a lower bound of which is
et 20 _ gta) > e"Tl(e? —e)
log q2 - logge

We know log g2 + log(log ¢2) — 1 = n+ 3+ a,, hence log g2 < n+5 and h(n+2) — h(n)
en+1

>
n+5 =

(e —e) > 2n + 1, for all nonnegative integers.



Remark - Inspecting the definition of multiplication in the proof of Proposition 3, we see
the obtained formula of definition is existential (only order appears). Consequently the
Pig-theory of (N, +,n + nf(n)) is undecidable.
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