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Abstra
t

The unde
idability of the additive theory of prime numbers is an open ques-

tion. We show the unde
idability of Th(N;+; n 7! nf(n)) where f is a good

approximation of the enumeration n 7! p

n

=n and where p

n

is the (n + 1)-th

prime.

Résumé

L'indé
idabilité de la théorie additive des nombres premiers est une question ou-

verte. Nous montrons l'indé
idabilité de Th(N;+; n 7! nf(n)) où f est une bonne

approximation de la fon
tion n 7! p

n

=n des nombres premiers et où p

n

est le (n+ 1)-

ième premier.

Introdu
tion - The questions of de
idability and of arithmeti
al de�nability raised by the

multipli
ative theories of prime numbers su
h as Th(N; �;P) and Th(N; j;P) where P denotes

the set of prime numbers, was solved in 1930 by Skolem sin
e P is (�)-de�nable and (j)-

de�nable. Moreover, the theories Th(N; �; n 7! p

n

) and Th(N; j; n 7! p

n

) where p

n

denotes

the n-th prime number (p

0

= 2, p

1

= 3; et
.) have re
ently been shown to be unde
idable

in [CMR℄. On the other hand the additive theory of prime numbers is a well-developed

theory whi
h enables us to express su
h well known problems as Goldba
h's 
onje
ture

or Poligna
's 
onje
ture [RIB,p.250℄ (the in�nity of twin primes is a spe
ial 
ase here), or

many other 
lassi
al questions or results like the S
hnirelman Theorem. From the logi
al

point of view, the additive theory of prime numbers 
onsists in investigating the �rst-

order stru
ture hN;+;Pi. Two re
ent arti
les ([BJW℄ and [BOF℄) in the JSL have shown

that the unde
idability of the �rst-order theory Th(N;+;P) 
an be proved under 
ertain

assumptions as, for instan
e, the linear 
ase in S
hinzel's Hypothesis. In order to further

the study of this theory without assuming any 
onje
ture su
h as S
hinzel's Hypothesis,

we solve the de
ision problems for some �rst-order theories 
lose in a sense to Th(N;+;P).

Instead of studying hN;+;Pi itself, our investigation 
on
erns Th(N;+; n 7! p

n

). This leads

us immediately to the following.

Open problem :

Is the natural enumeration of prime numbers n 7! p

n

de�nable in the stru
ture hN;+;Pi ?

z
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A

ording to the prime numbers theorem (Hadamard-de la Vallée Poussin, 1896) we know

p

n

� n log(n), so that we begin by 
onsidering Th(N;+; n 7! nblog(n)
) and Th(N;+; n 7!

nblog

2

(n)
), where log(n) and log

2

(x) respe
tively denote neperian and binary logarithms

of x, putting 0: log(0) = 0 and 0: log

2

(0) = 0.

The general framework of de�nability 
an be found, for instan
e, in [END℄ or is presen-

ted in a more detailed way in the survey 
arried out by the �rst author [CEG℄. For a

stru
ture M, we denote by DEF(M) the set of 
onstants, fun
tions and relations whi
h

are �rst-order de�nable within M. Sin
e Th(N;+; �) is unde
idable (Turing, 1936) a

method for proving the unde
idability of the theory of a stru
ture M 
onsists in sho-

wing DEF(M) = DEF(N;+; �). The set DEF(N;+; �) is well-known and the in
lusion

DEF(M) � DEF(N;+; �) is very often trivial, whi
h is the 
ase in the present paper. In

fa
t, the only problem is to know whether the 
onverse in
lusion holds.

Proposition 1. The equality DEF(N;+;n 7! n:blog

2

(n)
) = DEF(N;+; �) holds so that

Th(N;+;n 7! n:blog

2

(n)
) is unde
idable.

This result is a 
orollary of Proposition 2 below whi
h we shall prove after the introdu
tion

of the mappings used.

De�nition 1. For any positive integer k, we de�ne f

k

and exp

k

as mappings respe
tively

from a �nal segment of N into N whi
h are su
h that

f

k

(n) = n:blog

2

(log

2

(: : : log

2

(n) : : :))


exp

k

(n) = 2

2

:

:

:

2

n

with k o

urren
es of log

2

for f

k

and k o

urren
es of 2 for exp

k

(n) ; the domain of

f

k

will be fn 2 N=n � n

k

g where n

k

is the smallest integer n satisfying f

k

(n) � 0.

Proposition 2. The equality DEF(N;+; f

k

) = DEF(N;+; �) holds so that Th(N;+; f

k

) is

unde
idable for any integer k.

Proof : For any su�
iently large integer x there exists an integer n su
h that

exp

k

(n) � x < exp

k

(n+ 1), then we have f

k

(x) = x:n,

f

k

(x� 1) =

�

(x� 1)(n� 1) if x = exp

k

(n)

(x� 1)n otherwise;

and 
onsequently

f

k

(x)� f

k

(x� 1) =

�

n+ x� 1 > x if x = exp

k

(n)

n < x otherwise:

Therefore the set A

k

= fexp

k

(n)=n 2 Ng is de�nable within hN;+; f

k

i sin
e x 2 A

k

if and

only if [f

k

(x)� f

k

(x� 1) > x℄.

The mapping exp

k

is 
onsequently de�nable within hN;+; f

k

i sin
e y = exp

k

(x) is

equivalent to

[y 2 A

k

^ f

k

(y + 1)� f

k

(y) = x℄:
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The fun
tion n 7! n

2

from Dom(f

k

) into N is de�nable within hN;+; f

k

i sin
e we have

f

k

(exp

k

(n) + n) = n:(exp

k

(n) + n) = f

k

(exp

k

(n)) + n

2

:

The 
lassi
al result of Putnam insuring DEF(N;+; n 7! n

2

) = DEF(N;+; �) allows us to


on
lude. 2

Proposition 2 is in a sense an improvement of the result of Bateman-Jo
kus
h-Woods

[BJW℄ expressing the fa
t DEF(N;+; f) = DEF(N;+; �) for some polynomial fun
tions f

with a degree not smaller than 2. Here we have a result for fun
tions whi
h in
rease but

remain as 
lose as we want to the zero fun
tion. This proof itself suggests a more general

proposition whi
h is our fundamental Lemma and permits us to generalize Proposition 2

to other fun
tions approximating more pre
isely than n 7! n logn the natural enumeration

of primes. For this purpose, we introdu
e a 
lass of real fun
tions 
ontaining the usual

approximations of n 7! p

n

=n.

De�nition 2. The 
lass C is the set of all (invertible) real fun
tions f : [a

0

;+1[! R

satisfying the following 
onditions :

1) f is 
ontinuous ;

2) f is stri
tly in
reasing ;

3)

lim f(x)

x!+1

= +1 ;

4) for every x whi
h is positive real, f(x) < x.

5) There exists x

0

2 (R

�

)

+

su
h that for all reals x � x

0

the inequality f(x+1) < f(x)+1=2

holds.

Examples : The fun
tions x 7! log

2

(x), x! log

2

(x)+ log

2

(log

2

x)�1, x 7! log(x) and

x 7! log(x) + log(log x)� 1 belong to C.

Conditions 1), 2), 3) and 4) are obviously veri�ed and for 5), we have, for log

2

with

x

0

= 2= log(2) and 0 < � < 1 using the Taylor formula :

log

2

(x+ 1)� log

2

(x) =

log(x+ 1)� log(x)

log 2

<

1

(x+ �) log 2

<

1

2

:

Similar arguments work for the three other examples.

The main result of this paper is a straightforward 
orollary of the following

Proposition 3. (Fundamental Lemma). For any fun
tion f of the 
lass C (see De�nition

2), we have DEF(N;+;n 7! nbf(n)
) = DEF(N;+; �) so that Th(N;+;n 7! nbf(n)
) is

unde
idable.

Some notations : By de�nition

~

f = bf
 is the fun
tion from N into N whi
h asso
iates

to n the greatest integer bf(n)
 smaller than f(n).

Let

g

f

�1

be the fun
tion from N into N determined by

g

f

�1

(n) = � m(f(m+1)) > n, where

� means as usual �the smallest : : : su
h that : : :�.

Let

d

f

�1

be the fun
tion from N into N whi
h asso
iates to n the smallest integer df

�1

(x)e

greater than f

�1

(x).

Below, we list some useful fa
ts about the previous mappings.

Fa
t 1. The range of

~

f 
ontains [

~

f(0);+1[\N .

Proof : Let p

0

be the greatest integer p su
h that bf(p)
 = n

0

. Then bf(p

0

+1)
 � n

0

+1.

But, following Condition 5) of De�nition 2, f(p

0

+ 1) < f(p

0

) +

1

2

so that bf(p

0

+ 1)
 �

bf(p

0

) +

1

2


 � n

0

+ 1 and

~

f(p

0

+ 1) = n

0

+ 1. 2
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From Fa
t 1, we 
an dedu
e the existen
e of a fun
tion h : N ! N su
h that h(n) is the

greatest integer q satisfying

~

f(q) = n. It is easy to prove h is in
reasing.

We leave to the reader the proof that h(n+2)�h(n) > 2n+1 is true for ea
h h determined

by a fun
tions f we gave as examples above. Consequently we assume from now onwards :

Condition 6. For every non negative integer n, the inequality h(n+ 2)� h(n) > 2n+ 1

holds.

Fa
t 2. For every positive integer,

~

f(n+ 1) �

~

f(n) + 1.

It trivially follows from Condition 5) of De�nition 2.

Fa
t 3. For every f 2 C and for all positive reals we have f

�1

(x+ 1)� f

�1

(x) � 1:

Indeed, for y = f

�1

(x), we have f(y+1)� f(y) < 1=2 < 1 whi
h implies f(f

�1

(x) + 1) <

x+ 1. Then f

�1

(f(f

�1

(x) + 1)) < f

�1

(x+ 1) and f

�1

(x) + 1 < f

�1

(x+ 1).

Fa
t 4. We have

~

f(h(n)) = n and h(

~

f(n)) � n for every integer n �

~

f(0).

The �rst equality 
omes from Fa
t 1 whi
h implies fq �

~

f(0) su
h that

~

f(q) = ng 6= ;.

By de�nition every member of the former set satis�es

~

f(h(n)) = n. Sin
e h(

~

f(n)) is the

greatest integer q su
h that

~

f(q) =

~

f(n), we have q � n.

Proof of Proposition 3. We begin by showing that the set h(N) belongs toDEF(N;+; n 7!

n

~

f(n)). Indeed, if q

0

2 h(N), there exists p 2 N su
h that

~

f(q

0

) = p and

~

f(q

0

+ 1) = p+ 1

as a 
onsequen
e of Fa
t 1. Let us put g(n) = n

~

f(n), so that g(q

0

) = q

0

p and g(q

0

+ 1) =

(q

0

+ 1)(p+ 1). Therefore g(q

0

+ 1)� g(p

0

) = q

0

+ p+ 1 > q

0

.

Conversely if q

0

=2 h(N), then p satis�es

~

f(q

0

) = p, and also

~

f(q

0

+ 1) = p, implying

g(q

0

+ 1)� g(q

0

) = (q

0

+ 1)p � q

0

p = p < q

0

(by De�nition 2(4)). Finally q 2 h(N) if and

only if g(q + 1)� g(q) > q, a 
ondition whi
h is obviously de�nable in the stru
ture

hN;+; n 7! n

~

f(n)i.

Now, the fun
tion h itself is de�nable in the former stru
ture through the logi
al equiva-

len
e between h(p) = q and p+ q + 1 = g(p+ 1)� g(p).

The next step in the proof of Proposition 3 is to show the hN;+; gi-de�nability of

~

f . For

this purpose, we intend to prove �rstly that for every n �

~

f(0), the inequality

~

f

�1

(n�1) �

h(n) <

d

f

�1

(n+1). Sin
e f is in
reasing we have f(df

�1

(n+1)e) � f(f

�1

(n+1)) = n+1,

therefore

~

f(

d

f

�1

(n + 1)) = bf(df

�1

(n + 1)e)
 � n + 1 sin
e n + 1 is an integer. Now,

assume by redu
tio ad absurbum the inequality h(n) �

d

f

�1

(n + 1). We should get from

this hypothesis the inequality

~

f(h(n)) �

~

f(

d

f

�1

(n + 1)) � n + 1 (sin
e

~

f is in
reasing)

whi
h 
ontradi
ts the equality

~

f(h(n)) = n (Fa
t 4) and thereby proves the inequality

h(n) <

d

f

�1

(n+ 1).

By de�nition of the 
eil-fun
tion, we have

d

f

�1

(n � 1) = df

�1

(n � 1)e < f

�1

(n � 1) + 1.

But we know (Fa
t 3) that f

�1

(n � 1) + 1 � f

�1

(n) providing

d

f

�1

(n � 1) � f

�1

(n).

Sin
e f and f

�1

are (stri
tly) in
reasing and sin
e, for n �

~

f(0), we have

~

f(h(n)) = n,

we get f

�1

(n) = f

�1

(

~

f(h(n))) � f

�1

(f(h(n))) = h(n); proving the desired inequality

d

f

�1

(n� 1) � h(n).

The (N;+; g)-de�nability of x 7! x

2

uses Condition 6 we have imposed on h. We 
an

distinguish two 
ases.

First 
ase. Suppose n 2 N satis�es h(n+1)�h(n) > n. In this 
ase,

~

f(h(n)+n) = n+1

sin
e, by de�nition of h the integer h(n) is the greatest q su
h that

~

f(q) = n, we have

4



on the one hand

~

f(h(n) + n) � n + 1. On the other hand, h(n) + n � h(n + 1) implies

~

f(h(n) + n) �

~

f(h(n+ 1)) = n+ 1 by de�nition of h(n+ 1). It follows

g(h(n) + n) = (h(n) + n)

~

f(h(n) + n) = (h(n) + n)(n+1) = h(n):n+ n

2

+ h(n) + n. From

n =

~

f(h(n)), we get g(h(n)+n) =

~

f(h(n))h(n)+n

2

+h(n)+n = g(h(n))+n

2

+h(n)+n and

�nally, n

2

= g(h(n))�h(n)�n whi
h leads, in the �rst 
ase, to an easy hN;+; gi-de�nition

of the square.

Se
ond 
ase. Suppose n does not satisfy h(n + 1) � h(n) > n and therefore veri�es

h(n + 1) � h(n) � n. Using the former inequality and Condition 6, the inequality h(n +

2)� h(n+ 1) > n+ 1 holds, and 
oming ba
k to Case 1, we 
an hN;+; gi-de�ne (n+ 1)

2

.

Consequently, both 
ases lead to a hN;+; gi-de�nition of the relation m = n

2

whi
h is

logi
ally equivalent to

f[(h(n + 1)� h(n) > n) ^ g(h(n) + n) =

g(h(n)) + h(n) + n+m℄ _ (h(n+ 1)� h(n) � n) ^ [g(h(n + 1) + n+ 1) =

g(h(n + 1)) + h(n+ 1) + n+ 1 +m+ n+ n+ 1℄g: 2

Proposition 3 has appli
ations 
on
erning the additive theory of primes. Indeed the best

known approximation of n 7! p

n

is the following ([RIB℄ p.249) :

p

n

= n: log(n) + n:(log(log(n))� 1) +O

�

n: log(log(n))

log(n)

�

:

This approximation does not seem to be su�
ient to prove the unde
idability of Th(N ;+; n 7!

p

n

). However we have :

Proposition 4. The equality DEF(N;+; n 7! n:blog(n)+log(log(n))�1
) = DEF(N;+; �)

holds so that Th(N;+;n:blog(n) + log(log(n))� 1)
) is unde
idable.

Corollary For any of the restri
tions to R

�+

of the real fun
tions f 2 flog; log

2

; log + log(log)�

1 ; log

2

+ log

2

(log

2

)� 1g, we have DEF(N;+;n 7! nbf(n)
) = DEF(N;+; �) and the theory

Th(N;+;n 7! nbf(n)
) is unde
idable.

Proof : We are going to expli
it the proof for f = log+ log(log) � 1 and to show this

fun
tion belongs to the 
lass C so that we 
an apply our fundamental Lemma. It is 
lear

f satis�es Conditions 1), 2), 3), 4) and 5) of De�nition 2. We 
he
k Condition 6. Sin
e

q

0

= h(n) = Maxfq 2 N su
h that 9�

q

(0 � �

q

< 1) and f(q) = n+�

q

g, we also get h(n) =

Maxfq 2 N su
h that 9�

q

(0 � �

q

< 1) and log q + log(log q)� 1 = n+ �

q

g = Maxfq 2 N

su
h that 9�

q

(0 � �

q

< 1) and e

n+�

q

+1

= e

log q

e

log(log q)

= q log qg. Similarly q

2

= h(n+2)

is equal to Maxfq

0

2 N su
h that 9�

q

0

(0 � �

q

0

< 1) and e

n+�

q

0

+3

= q

0

log q

0

g. Therefore

h(n+ 2)� h(n) = q

2

� q

0

=

e

n+3+�

q

2

log q

2

�

e

n+1+�

q

0

log q

0

a lower bound of whi
h is

e

n+1

log q

2

(e

2+�

q

2

� e

�

q

0

) �

e

n+1

(e

2

� e)

log q

2

:

We know log q

2

+ log(log q

2

)� 1 = n+3+�

q

2

, hen
e log q

2

� n+5 and h(n+2)� h(n) �

e

n+1

n+5

(e

2

� e) > 2n+ 1, for all nonnegative integers. 2
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Remark - Inspe
ting the de�nition of multipli
ation in the proof of Proposition 3, we see

the obtained formula of de�nition is existential (only order appears). Consequently the

Pi

2

-theory of hN;+; n 7! n

~

f(n)i is unde
idable.
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