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Abstract 

In Computer Science, n-tuples and lists are usual tools; we investigate both notions in the 
framework of first-order logic within the set of  nonnegative integers. Grdel had firstly shown 
that the objects which can be defined by primitive recursion schema, can also be defined at 
first-order, using natural order and some coding devices for lists. Second he had proved that 
this encoding can be defined from addition and multiplication. We show this can be also done 
with addition and a weaker predicate, namely the coprimeness predicate. The theory of integers 
equipped with a pairing function can be decidable or not. The theory of decoding of lists (under 
some natural condition) is always undecidable. We distinguish the notions encoding of n-tuples 
and encoding of lists via some properties of decidability-undecidability. At last, we prove it 
is possible in some structure to encode lists although neither addition nor multiplication are 
definable in this structure. @ 1999 Elsevier Science B.V. All rights reserved. 

R~sum~ 

On utilise couramment en informatique les n-uplets et les listes sur un ensemble donn~; nous 
&udions ces deu× notions dans le cadre de la logique du premier ordre et pour l 'ensemble des 
entiers naturels. G6del a montr~ que les objets d~finis par un schema de r~currence primitive 
sont d6finissables au premier ordre avec la relation d'ordre et le codage des listes, eux-m~mes 
d6finissable avec l'addition et la multiplication; nous montrerons que ce codage peut ~galement 
s'effectuer avec l'addition et un pr6dicat plus faible que la multiplication, fi savoir la coprimarit& 
On montre aussi que les notions de n-uplets et de listes se distinguent par des arguments de 
d~cidabilit~-ind~cidabilit& La th~orie des entiers munis d'une fonction de couplage peut-&re -ou 
non- d6cidable. Par contre la th~orie du d~codage des listes, soumise / tune  certaine condition 
naturelle, est toujours ind~cidable. On montre enfin qu'il  existe des structures dans lesquelles 
on peut coder les listes sans pour autant que l'addition (et donc l'ordre) et la multiplication ne 
soient d~finissables. @ 1999 Elsevier Science B.V. All rights reserved. 
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O. Motivations 

In the 1960s, John MacCarthy decided of using recursion within programming lan- 

guages, and nowadays it becomes quite natural and even efficient to present ob- 

jects by using a structurally inductive definition. Thanks to the notion of data struc- 

tures of  stacks, Edsger Dijkstra had realized in 1960 the implementation of recursion 
within the Algol language. From that time, the usual way of implementing recur- 

sion lies on the notion of a stack. At a more general level, Kurt Grdel, in 1931, 
had already proved the arithmetical definability of certain recursively defined objects 

within first-order logical structures via some coding of finite sequences of  nonnegative 

integers. 
This fundamental method deserves a detailed investigation and quite many questions 

arise: for instance, ordered pairs being the shortest nontrivial lists, one can ask whether 

coding lists could be reduced to pairing. The use of known coding devices for lists 
seems to unavoidably lead to undecidable theories. Hence, a second question consists 

of knowing whether this is an unavoidable consequence. In case of  a positive answer, 

one may ask whether there exists some pairing coding with decidable associated theory 
on nonnegative integers. Actually, this happens and we must know whether it is always 
the case, but we shall show that it does not. Coding finite sequences and other kinds 
of  abstract fundamental data structures which are of  frequent use in Computer Science 

(such as stacks, trees, graphs) so provides a whole problematic. 

A first step of this investigation consists of  formalizing what we consider to be an 

actual coding, before looking, as a second step, at above mentioned problems we put 
in the framework of first-order logic. We restrict our interest only to finite sequences 
of nonnegative integers. 

1. Definitions and notations 

1.1. What to code 

At first, we need to precise what objects are to be coded, i.e. what notions of  ordered 
pair, finite sequences and what kinds of  list we shall make use of. 

Definition 1.1. Let A a non-empty set. 

(1) An ordered pair on A is an element of  the cartesian product (or cross product) 
A × A  orA 2. 

(2) More generally, for any nonnegative integer n, we call set of n-tuples on A the 
set A n. By definition, the set A ° only contains the empty tuple (/ .  

(3) We call set o f  lists or set o f  finite sequences on A, the union A* = U n ~  An. For 
a list L, the unique nonnegative integer n such that L E A n is called length of the 
list, and is denoted by lh(L). 

(4) We call list with header or headed-list any ordered pair (n,L), where L is a list 
on A and n- -  lh(L). 
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Mathematically speaking, there is no difference between the object we call n-tuple 

and the object we call list of length n. On the contrary, the set of  lists is not re- 

stricted to a set of  n-tuples since A* CA n for each n. In the programming languages 

we have to distinguish in the very declaration between a n-tuple which is claimed to 
be an array (static data structure) and a list considered as a linked-list (dynamical data 
structure). 

1.2. Encoding 

Roughly speaking, coding n-tuples is just replacing n informations (as integers for 

instance) by one from which we can recover the n previous data. Of  course, we need 
a mathematical formalization of it. 

1.2.1. Encoding and integer encoding 
In set theory, encoding is just one-to-one mapping. In Computer Science, encoding 

usually deals with integers and is an arithmetical notion. More precisely: 

Definition 1.2. (1) Let E and F be sets. An encoding of E into F is any one-to-one 

mapping from E into F. 

(2) Let E be a set. An integer encoding of E is any encoding from E into ~. 

Remark. (1) Intuitively, as said above, the interest of an encoding is of summarizing 

several informations in a sole one, i.e. looking for the situation in which F is less 
complicated in a sense than E. 

(2) The restriction of an encoding for lists to n-tuples is an encoding of n-tuples. 
On the contrary the union of encodings of n-tuples (or n-tupling) for all n E ~ does 
not provide any encoding for lists, but just to some enumeration of lists by layers (see 

Example 4). 

1.2.2. Integer pairing functions of  nonnegative integers 
Here, the base set A is ~2. 

Definition 1.3. A pairing function is any one-to-one mapping from ~2 into N, which 

is nothing but an integer encoding of ordered pairs. 

Example 1. The first pairing function was given by Cantor in 1873: 

(x + y )(x + y + 1) 
J(x, y)  = 2 + y" 

The function J is not only an injection but is also onto, hence is a bijection. 

Example 2. A second pairing function (which is also a bijection) is 

f ( x ,  y)  = U(2y  + 1 ). 
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Remark. This later encoding seems, a priori, to provide largest codes compared to the 
previously presented ones, which seems to be a reason why it is avoided in practice. 
But in fact the largest size of this coding f ( x ,  y ) =  2X(2y + 1) is just an appearance, 
and does not exist. Obviously, for a given Y0, the mapping associating f ( x ,  Yo) to x 
increases faster than J(x, yo). 

More generally, we want to prove that 

Proposition 1.1. Any pairing bijective function cannot be ultimately greater than an- 
other. 

Proof. In a first step, we show that there is no bijection h from N onto ~ satisfying 

the following condition (C): 

3noE t~ VnC ~ ( n > n o ~ h ( n ) > n ) .  

Suppose such an h exists. For n>no, we have h(n)>no. Consequently, any integer 
belonging to the interval [0, no ÷ 1 ] would be the range of some integer of the interval 
[0, no] in order to respect the surjective character of h. But this contradicts the one-to- 
one character of h. 

Now we reduce the existence a pair { f , g }  of bijections from N 2 onto N, satisfying 

~(x0, Y0) C [~2 V(x, y)  E ~2[(x >x0 or y > Yo) ~ f (x ,  y)  <g(x, y)] 

to the existence of a bijection h from ~ into ~ verifying condition (C) above. It 
suffices to take h = g o f  -1, and no=Max{f([O,  xo] x [0,y0])}. [] 

Example 3. There are other encodings which were introduced for various reasons. For 
instance, in [21] the coding defined by f ( x , y ) = ( p x )  y, where px is the (x + 1)th 
prime integer, is used for constructing an inner (M, ®, ®} model of Peano isomorphic 
to (N,+,  x) for which D E F ( ~ , + ,  x ) ¢ D E F ( ~ , ® ,  ®). (For a given language 5(', 
DEF(~,5~)  is the set of relations on 1~ which are 5C-definable.) 

1.2.3. Integer encodings of  n-tuples of  nonnegative integers 
The set A we are considering is ~n for a given integer n > 0. 

Example 4. For a given pairing function C, one can easily define by induction the 
family (Cn)n~>2 of n-tuplings as follows: 

C2(a, b) = C(a, b), 

Cn+l (al . . . .  , an, an+~ ) = C( Cn(al . . . . .  an), an+l ). 

This has been immediately noted by Cantor in 1873. 
But there is another way to encode n-tuples (for instance, a restriction of some 

encoding of lists, as G6del's one in Example 5 below). 
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Example 5. The Cantor pairing is based on the idea of counting anti-diagonals x + y = k 
and then of counting within a given diagonal by increasing ordinates. This geometrical 
device can be generalized to n-tupling, which we call Cantor n-tupling function Kn 
which is a bijection from Nn onto N. At first, we use the level k of the hyperplane 
Hk of the equation Xl + x2 + "  - + xn = k and then the level h in the hyperplane Hk, 
having in turn for equation x~ + - . .  +xn-1 =h ,  and so and up to obtaining the line 
xl +x2 =constant. One can check that Cantor n-tupling K, is expressed via binomial 
coefficients as follows: 

(x+ +n 
K~(xl . . . . .  xn) = + + " "  

17 n - -  t 

Remark. The Cantor pairing function C (which does encode n-tuples for a given 
integer n) is polynomial, whose variables are the coordinates of n-tuples. Moreover, as 
Skolem has already noticed, this pairing function is a polynomial of degree 2 and the n- 
tupling function obtained from the previous, is a polynomial of degree n in Example 5 
but 2 ~ in Example 4. 

More precisely, we get two Cantor pairing functions C and C t, defined by Ct(x, y )  = 

C(y ,x ) ,  and by generalizing, by composition, this situation there are n! polynomial n- 
tupling functions of degree 2 ~ which can be constructed using permutations of coordi- 
nates. Actually, they are the only n-tupling polynomials we know. Fueter proposed, in 
1923, four conjectures about the set of polynomial pairing functions (see [28, p. 24]). 

1.2.4. Integer encodings o f  nonnegative inteyer lists 

The base set A is (N)* of nonnegative integer lists, namely the finite sequences of 
nonnegative integers. 

Example 6. The first encoding was given by G6del in 1931: 

f ( ( ) )  = 1, 

f ( ( ao  . . . . .  an)) = pg°+' . . ,  pa.+l, 

where Pi denotes the (i + 1)th prime and Po = 2. 

Example 7. An encoding which results from Ackermann set-theoretical interpretation 
of ([~,+, ×) given in 1937 (see [1]) is the following: 

f ( ( ) )  = 1, 

f ( ( ao  . . . . .  an) )=  2~=o(a/+l).  
i=0 
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Example 8. In 1946 (cf. [19]), Quine was encoding lists of integers represented in 
unary expression. This encoding uses binary expansion of integers to represent, say, 
the sequence (1,2,3,4,5)  by 110111011110111110111111. 

The aim of Quine was in particular to prove that the theory of words with concate- 

nation is undecidable. 
We have already seen that there exist n-tupling functions for a given integer n 

(namely the functions constructed from the pairing function C) which are polyno- 
mial. A question arises to know whether there is an encoding function of lists with 

header (respectively of lists) of nonnegative integers which is polynomial. To be 
more precise, is there a coding f of lists and a polynomial p(X)  of the sole vari- 
able X such that, for all nonnegative integers n and all n-tuple (al , . . . ,an),  we 

have 

f ( ( a l  . . . . .  a,))<~p(al + . . .  +an). 

Actually, we prove below that polynomials encoding for lists do not exist: 

Proposition 1.2. There is no encoding function for lists with headers, or for lists, 
which is polynomial. 

Proof. Let p be such a function. For a given integer n ~>2, there exist (n + 1)n lists 
with length n such that all their components are not greater than n. Since f is one-to- 
one, we have 

(n + 1 )n >~ p(n 2) 

which is impossible for any polynomial p. [] 

1.3. Decodin9 

We begin by defining an intrinsic decoding notion without explicitely refering to a 
given encoding function. 

1.3.1. The case of  ordered pairs 

Definition 1.4. Let J be a given pairing function. We call the associated depairing 
function, or associated projections, the mappings K and L, which satisfy in N, 

Vx Vy ( K ( J ( x , y ) ) = x  and L ( J ( x , y ) ) = y ) .  

These notations J, K, and L are conventional concerning pairing functions and as- 
sociated projections since they were introduced by Robinson in 1949. 
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Example  9. The projections associated to the Cantor pairing function J = C are easily 
expressed by just using an existential quantifier: 

K(z)=x ¢~ 3y [J(x,y)=z] ¢~ 3y [(x÷ y) (x+ y +  1 ) ÷ 2 y = 2 z ] ,  

L(z )=y  ¢¢, ~c [J(x,y)=z] ¢~ ~3x [(x + y)(x + y +  1 ) + 2 y = 2 z ] .  

Of  course, we have a more explicit way for depairing this function C: let us put 
d = x + y .  We have 

d(d + 1)~<2z<(d  + 1)(d ÷ 2 ) .  

There exists a unique d satisfying the previous conditions so that 2y = 2 z -  d(d + 1 ) 
providing y; then x = d - y. 

1.3.2. The case of n-tuples 

Definition 1.5. For any given integer n ~> 2, a n-tuple fn of  functions f f  from ~ into 

(namely fn = ( f~ . . . . .  f ~ ) )  is called a decoding function for n-tuples if  and only if 

V(al . . . . .  an) E ~n 3cE ~(fin(c)=ai) 

for each i such that 1 <~i<~n. The integer c is called a f,-code of  (al . . . . .  an). 

This definition in a sense generalizes n-tuples Definition 1.4 concerning ordered 
pairs. 

Example  10. The depairing functions K and L provide a family (f,),>~l o f  decoding 
functions for n-tuples: 

f~(c)=c,  

K(c)  if  i = l ,  

f/2(e) = L(e) i f  i = 2, 

f f~n(K(c)) if  1 <~i<~n, 
" l  

LL(c) if  i = n + l .  

1.3.3. The case of lists with header (or headed lists) 

Definition 1.6. A map f from t~ 3 into ~ is called a decoding headed-lists function 
(abbreviated as dhl-functions) if  and only if 

VnE t~ V(a0 . . . . .  an) E ~n+l ~cE ~ ViE N (f(c,n,i)----ai for i<.n). 

The integer c is called an f-code of  (n + 1,a0 . . . . .  an). 
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E x a m p l e  11. Such a decoding function was given at first in 1931 by G6del, who had 

considered an auxiliary ternary function fl, now called G6del fl-function, defined by 

fl(c,d,i) is the remainder of  c modulo [1 + (1 + i)d]. 

It can be shown that, for any finite sequence (a0 . . . . .  an) of nonnegative integers, 

there exist c E ~ and d E 3~ such that Vi ~<n (fl(c, d, i ) =  ai). 
We must emphasize the fact that we do not control the values of fl(c,d, i) for 

i ~>n ÷ 1. This provides the decoding headed lists function f determined by 

f (a ,  n, i) = fl(K(a), L(a), i). 

Remark. In the previous definition of a decoding headed lists function, there are two 

side-effects worth noticing: 

- on the one hand, there are integers c which are not f-codes;  

- on the other, we do not control the values f (c ,  n, i) for i greater than n. 
But Definition 1.6 suffices for applications dealing with the definability within a first- 

order language of inductively defined notions, which was at that time the purpose of 
G6del. Nevertheless, many decoding functions do have the so-called compact support 
property we define below: 

Definition 1.7. A function f from ~3 into ~ is said to have a compact support 
(dhlcs-function) if  this function satisfies 

Vc Vn 3M 3a Vi [i>M--~ f ( c , n , i ) : a ] .  

Example 12. The decoding headed-lists function f (c ,n ,  i )= fl(K(c),L(c), i) is a dhlcs- 
function. 

Definition 1.8. One says that a dh/-function f from ~3 into N has the strongly com- 
pact support property if this function satisfies 

Vc Vn Vi [i>n---+ f(c,n, i)=O].  

Such a function is called a dhlScs-function. 

Example 13. The dhl-function fl(K(c),L(c),i) is not a dhlScs-function but it is easy 
to obtain such a function g from fl itself by putting 

g(c ,n , i ) :  ~ f (c 'n ' i )  if i<~n, 

L 0 if i>n. 

1.3.4. The case of  nonnegative integer lists 
Sometimes, it is more convenient to consider an ordered pair of  functions rather than 

a unique dhl-function. 
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Definition 1.9. An ordered pair ( f ,g )  of mappings from ~2 into ~ is called an or- 
dered pair of decoding (integer) lists function (dl-functional) ordered pair if and only 

if we have 

VnE t~ V(a0 . . . . .  an) E ~n+l 3cE ~ ViC N 

( f ( c , i ) = a i )  when i~<n and 

1 if i<~n, 

9(c, i) = 0 otherwise. 

The integer c is called an (f,o)-code of (a0 . . . . .  an). 

Definition 1.10. A dl-functional ordered pair ( f ,9 )  of functions from N2 into 
satisfies the compact support property (dlcs-functional ordered pair) if and only if 

Vc 3M 3a [ i>-M--~( f (c , i )=aAg(c , i )=O].  

We have similarly the notion of dh-functional ordered pair. 

Definition 1.11. A dl-functional ordered pair (f ,  9) satisfies the strongly compact sup- 
port property if and only if y verifies 

Vc Vi Vj [(g(c,i)=O V g(c, i)= 1) A ((g(c,i)=O A j>~i)--~ g(c,j)=O)]. 

We must note that actually, by the very definition, a dhl-functional is only use- 
ful when the (eventually weak) arithmetical structure M to which f belongs allows 
simultaneously to define the natural order within M. 

At this step, and except for pairing functions, we have separately defined encodings 
and decodings without using any relationship existing between them. For investigating 
these links, we must remind the reader of some first-order logical notions. 

1.4. Basic notions of first-order logic 

The basic notions of first-order logic can be found in any good textbook (as [8] for 
instance). Let us just recall what concerns definability. 

Definition 1.12. Let L be a logical first-order language, S a symbol (symbol of individ- 
ual constant, function symbol or predicate) and L * - - L  U {S}. Let J///be an L-structure 
with domain M. 
(1) We say that an element a of M is definable in the structure Jg if and only if 

there exists an L-formula q5 with one free variable such that 

(,/g,a) ~ x = a  <=~ cb(x). 

(2) We say that an n-ary function f over M is definable in the structure , g  if and 
only if there exists an L-formula ~b with n + 1 free variables such that 

(~/ ,  f )  ~ y = f ( x l  . . . . .  xn) ¢e~ 49(Xl,... ,xn, y). 
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(3) We say that an n-ary relation R over M is definable in the structure J/I if and 

only if there exists an L-formula ~b with n free variables such that 

(~,R) pR(x~,...,xn)c, 4)(x~ . . . .  , x , ) .  

In this paper we are only interested in arithmetical structures since we only deal 
with integer n-tuples or lists. 

Definition 1.13. By arithmetical structure, we mean any structure ([~, 58) where 58 

is a set of constants, relations or functions which are definable in (~,  +, .). 

Also we remind the reader that recursive or recursively enumerable functions are 

arithmetical. The converse is far from being true since there is a (strict) arithmetical 

hierarchy. We denote by D E F ( ~ , 5 8 )  the set of constants, functions and relations 
which are first-order definable within the structure (~,  58). 

2. Arithmetical encoding of lists 

2.1. G6del's results 

One important part of the interest of decoding lists functions stems from the fol- 
lowing classical Grdel 's  result. First, we recall the well-known notion of a primitive 

recursive "definition" leads to the notion of primitive recursive closure. 

Definition 2.1. An arithmetical structure is closed under primit ive recursion if and 

only if for any ordered pair (9, h) in which 9 and h are definable in this structure and 
are, respectively, the (n + 1)-ary function f defined (or, more precisely, presented by 
a primitive recursive schema) by 

f ( a l  . . . . .  an ,O)=g(al  . . . . .  an), 

f ( a l  . . . . .  an, k + 1 ) = h(k, al . . . . .  an, f ( a l  . . . . .  an, k ) ) ,  

is also first-order definable in this structure. 

Proposition 2.1 (Grdel [9]). A n y  arithmetical structure within the natural order <~ 

and a decoding headed lists funct ion (or a decoding lists funct ion)  that are definable 

is closed under primit ive recursion. 

Proof. Let us prove it in the case of a dhl-function D. Indeed, we define f ( a l  . . . . .  an, k )  

= r  by 

3c[D(c, k, O) = g(al . . . . .  an ) A D(c,  k, k )  = r A Vi < r [D(c, k, i + 1 ) 

= h(i, al . . . . .  an, D(c, k, i))]]. 

(Of course, the successor function S is ([~, ~< )-definable). [] 
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Corollary 2.1. The theory of  a structure (~, ~<,D}, where D is a dhl-function or 
a dl-function, is undecidable. 

Proof. Addition and multiplication are successively defined by the well-known primi- 
tive recursive schema: 

x + 0 = x  and x + S y = S ( x + y ) ,  

x . 0 = 0  and x. S y = x .  y + x ,  

so that the corollary follows from Proposition 2.1 and the undecidability of (N,+,.} 
[5] [] 

The previous G6del's result takes out its importance from the fact there do exist 
arithmetical structures which are not closed under primitive recursion. For instance, 
addition + is not (N-S}-definable ([15]; see for instance [8]) and multiplication . is 
not (N, +}-definable ([18]; see also, for instance, [8]); hence (~,S}, ( ~ , + )  are not 
closed under primitive recursion. 

Proposition 2.2. Let J be a pairing function (of  nonnegative integer ordered pairs). 
I f  J is (N, 5~}-definable then the associated projections K and L, and the n-tupling 
functions and their associated decoding functions for n-tuples are also (N,ie}- 

definable. 

Proof. Obvious. [] 

We have the following partial converse. 

Proposition 2.3. Let n be a given nonnegative integer. I f  the natural order ~ and a 
decoding function for n-tuples are (N-~)-definable, then there is a canonically encod- 
ing function (we call associated encoding function), which is also (N,~}-definable. 

ProoL Let us prove it for n = 2. We have 

Va Vb 6 N, 3c 6 N [K(c) = a A L(c) = b]. 

Let us note that the code c is not necessarily unique. We can (~, <~,K,L}-define J 
by J(a, b)= #c [K(c )=  a A L(c)= b], where pc means (the least c such that), operator 
which is ( ~< )-definable. [] 

Problem 1 (Open). How to avoid the use of the (N, 5a)-definability of ~< in Propo- 
sition 2.3? 

Fundamental Remark. An encoding function for lists with header (of nonnegative inte- 
gers) is a mapping from ~ × (N)* into ~. Therefore, the base set is not a subset of ~, 
so that one cannot define such coding function in any arithmetical structure (N,Ae), 
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except after ... encoding. This has two consequences in what we are concerned: 
- there is no possible analogue of Propositions 2.2 and 2.3 about encoding lists and 

headed lists; the encodings for lists we use in Section 1 are not mappings; 
- this also explains why we specially insist on decoding lists and decoding headed 

lists functions in the frame of first-order logic. 

2.2. Arithmetical encoding in a sublanguage 

We just have seen that within the full structure (~, +, .) we can encode any list. 
There is no reason for which one can do the same in a given substructure of (~, +,.). 
Indeed, we have reminded the reader that it is not possible say in (~, + ). Neverthe- 
less, we give below an example of a substructure, namely (~, +, l ) ,  which encodes 
all lists. It turns out that multiplication is also definable in this structure; the proof of 
this definability lies on this very encoding. The question whether arithmetical substruc- 
ture allowing encoding of lists do define both addition and multiplication arises. The 
negative answer is developed in Section 4. 

Denote by ± the coprimeness predicate defined by x ± y if and only if gcd(x, y)  = 1. 
To show that the structure (~, + , ± )  is closed under primitive recursion we have to 
construct an encoding for any list. Actually, we construct at first an encoding for certain 
lists of primes, each prime being itself the code of some special type of ordered pair. 
This devices allow us to define multiplication and to apply the results of G6del for 
obtaining a general encoding of lists and the primitive recursive closure of (~, +, ±).  

Proposition 2.4 (Richard [23]). Multiplication is {+, ±}-definable. 

Proof. We just give the sketch of the proof which is detailed in [23]. 
Step 1: We define a pairing function g of the following set, 

A = { ( p , x ) ] p  is prime and l < x < p } .  

By definition J ( p , x )  is the smallest prime integer q which satisfies 

q =  l[modr] for all prime integers r < p  and q = x  [modp]. 

One can prove d is one-to-one. Consider c (x )=  l-If---1 J(pi ,  i + 1), where pi is the 
( i+  1 )th prime and p0 = 2. We see that c(x) is the least integer y such that J(3, 2 ) =  5 
divides y and for all prime integers p and all integers k < x  + 1, i f J ( p , k )  divides y, 
then J ( p ' , k  + 1) also divides y, where p~ is the smallest prime greater than p. We 
notice that all the following notions and relations, x < y ;  x=y[modp]  where p is 
a prime; p is prime and p divides x; p is a product of a finite set of coprime integers 
are easily {+, &}-definable. 

Step 2: It consists of defining the mapping x~--~px from J.  
Step 3: We introduce d ( x , y ) =  I~i-~' J(pix, i+  1) and we note in order to {+ ,±} -  

define this function d that d(x ,y)  is the smallest t such that [J(px,2) divides t and, 
for all prime integers pj and for all k < y + 1, if J(pj ,  k) divides t, then J(pj+x, k + 1 ) 
also divides t]. 
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This property enables us to express a {+, ±}-formula and permits to {+, ±}-define 
the graph of multiplication by using again the {+, ±}-definability of {+, ±}. [] 

3. Decidability properties separating n-tupling and encoding of lists 

3.1. Undecidability o f  theories definin9 a decodin9 of  headed lists 

Theorem 3.1. I f  f is a decoding headed lists with strongly compact support function, 
then the theory T h ( ~ , f )  is undecidable. 

Proof. We define the constant 0 by x=O~--~c 3n Vi [ f (c ,n , i )=x] .  Then we de- 
fine the natural order by x < y  ~ Vc ( f (c ,x ,  y ) =  0) so that the successor function S 
is also (~,f)-definable. Now we define, following G6del (1931), addition by x + 
y = z  ~-~ 3c [f(c,  y , O ) = x A  f (c ,  y , y ) = z  A Vi < y ( f (c ,  y, S i ) = S ( f ( c ,  y,i)))]. 

At last multiplication is similarly presented by primitive recursion in a schema using 
order and addition. Hence, by Proposition 2.1, addition and multiplication are (~, f ) -  
definable and Th(~, f )  is consequently undecidable. [] 

Remark. Corollary 2.1 is not implied by Theorem 3.1 since we use the strong com- 
pactness in this theorem to define natural order. Corollary 2.1 is in a sense more general 
because D is a decoding headed list function, whose support is not supposed to satisfy 
the strong compactness property. 

Theorem 3.2. I f  ( f  , g) is an ordered pair o f  decodin9 headed list functions with stron9 
compact support then Th(~, ( f ,g )  ) is undecidable. 

Proof. We define the constant 0 by x =  0 ~ 3c Vi [9(c,i)=x]. Then 1 is defined by 
x = 1 ~-~ 3c 3i [9(c, i) = x/x 9(c, i) ¢ 0]. The natural order is defined by x ~< y +-~ Vc [9 
( c , y ) =  1 --~9(c,x)= 1]. Then we achieve the proof just as in Theorem 3.1. [] 

Corollary 3.1. No functional ordered pair o f  decodin9 headed lists functions with 
strongly compact support can be defined in the structure (~,+,n~-~2n). 

Proof. The fact to define some dhlses-functional ordered pair contradicts Semenov's 
result insuring Th(~,+,n~--~2 n) is decidable (see [26]). [] 

Analogous corollaries hold for ([~,+), (~,.), (~,., ~<p) (where ~<,~ denotes the 
natural order restricted to primes), due, respectively, to [15, 18, 17]. 

Problem 2 (Open). What happens if we remove the strongly compact property? 

Let us notice that, however, we know that Th(~,f l )  for fl-G6del function is unde- 
cidable (cf. [21 ]). 
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3.2. Decidability and undecidability of  theories defining a pairing function 

Having recourse to first-order theories allows us to clearly separate encoding devices 

for n-tuples and for lists. Indeed, we shall see below there do exist decidable theories 

within which one can define a pairing function (and consequently also a depairing 

function and a decoding for n-tupling function for any fixed integer n) and within it 

is impossible to define any decoding lists function. 

Theorem 3.3. There exists a pairing function J such that Th(~,J)  and Th(~ ,+,J )  
are decidable. 

Proof. As we said above, in 1983, Semenov has shown Th(~,+,n~--~2n), namely the 

theory of ~ equipped with addition and exponentiation of basis 2, is decidable. We 
easily define the pairing function J in the usual Ackermann's way in (~,+,nw-~2 n) 

as follows: 

j ( x , y ) = 2  x+l +2x+y +2 

what achieves the proof. [] 

From Theorem 3.3 above, it tums out we must know whether Th(~,J)  is decidable 
for any pairing function J .  The answer is proved to be negative in Theorem 3.7 below. 

However, to introduce the technics of proof, we begin by showing weaker results just 
needing simple arguments. 

Theorem 3.4. There exists a recursive pairing function J such that Th(~,J,+ ) is 
undecidable. 

Proof. Let us remind the reader that there exists a finite cofinite binary recursive 

relation R on N such that Th(N,R) is undecidable. (For instance Xy ~ 0 which means 
that the (y + 1)-prime divides x, is undecidable since it has the so-called isomorphic 
re-interpretation property (see Definition 4.2 below and [21])). We put 

A = {(a,b) E ~2/1R(a,b) }, 

B = {(a,b) C ~2/R(a,b)}. 

These two sets are infinite and we enumerate them as follows: 

A = {co, e l , . . . ,  cn . . . .  }, 

B={do,  dl . . . . .  d. . . . .  } .  

With this definition A and B are disjoint and [~2 =A t..JO. So we can define a pairing 
function J as follows: 

f 2i if (a,b)=ci,  
J (a ,b )= 

2 i + 1  if ( a , b ) = d i .  
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The theory Th(~, +,J) is undecidable since we can define the relation R within the 

structure ( N , + , J )  by using the logical equivalence R(a,b) ~ 3x [J(a,b)= 
x + x +  1]. [] 

Theorem 3.5. There exists a recursive pairing function J such that Th(~,S,J)  is 
undecidable (where S denotes as usual the successor function). 

P r o o f .  

Step 1: There is a set W such that Th(~,S, W) is undecidable. Take any recur- 

sively enumerable nonrecursive set W, for instance, the indices o f  Turing machines 

which do halt on their own index. In the theory Th(~,S, W), one can ask whether 

n C W by a question of  the form W(~), where fi is SSSS...SO with n occurrences 

o f  S. 

Step 2: The set W above is necessarily infinite. Let us recursively enumerate W, i.e. 

let us define a recursive mapping g from ~ into W, so that W = g[~] .  Let C be the 

usual Cantor pairing function. We put J(a,b)=g(C(a,b)), which determines a new 

recursive pairing function J from ~2 into ~.  To ask whether n E W turns out into the 

question 

3a 3b [J(a, b) = fi] 

which is a first-order (~ , J ,S) - formula  so that Th(~,J,S) is undecidable since W is 

not recursive. [] 

Remark.  Actually, the J o f  Theorem 3.5 is even primitive recursive and probably o f  

lower complexity. Now we can obtain a pairing function with undecidable theory, more 

precisely: 

Theorem 3.6. There exists a recursive pairing function J such that Th(~,J) is 
undecidable. 

Proof.  It can be proved by two steps. 

Step 1: There is a bijection f o f  ~ such that Th(~ , f )  is undecidable. Let us con- 

sider a recursive enumeration g o f  some recursively enumerable nonrecursive 

set W: 

W = {g(O), g(1) . . . . .  g(n) .. . .  }. 

We determine a (recursive) bijection f as follows: 
- considering the ( 9 ( 0 ) + 2 )  first integers o f  ~ ,  we define the restriction o f  f to these 

elements by a cycle 

f(0)----1, f ( 1 ) = 2  . . . . .  f (g(O))=g(O)+l ,  f ( g ( 0 ) + l ) = 0 ;  
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- considering the ( 9 ( 1 ) +  2) next integers, we define the restriction of f to these 
elements by a cycle 

f ( g ( O ) + 2 ) = g ( O ) + 3 ,  f ( 9 ( O ) + 3 ) = g ( O ) + 4  .. . . .  

f ( 9 ( O ) + Z + g ( 1 ) ) = 9 ( O ) + 2 + g ( 1 ) + l ,  

f(g(O) + 2  + 9(1) + 1 ) = 9 ( 0 ) +  

- then we determine similarly f ( x )  
9(3) + 2 next elements, and so and 
The theory Th(t~,f) is undecidable 

the following question expressed by a 

2; 

for the 9 ( 2 ) +  2 next integers x, then for the 
, , ,  

since to know whether n C W, it suffices to ask 
first-order (t~, f)-formula: 

3xo 3Xl ... 3Xn+l [f(x0) =x l  A f ( x l )  =X2 A . . .  A f ( X n )  ~-Xn+l A f(Xn+l) =x0]. 

Step 2: Using any recursive pairing function J0, we obtain a second recursive pairing 
function JI defined by 

Jl(2n+ l ,2n+ l ) = 4 n +  l; Jl(2n,2n)=2n 

and J1 (a, b) = 4J0(a, b) + 3 if a ~ b. So we get a recursive pairing function J such that 
J(a,b)=Jl(a ,b)  for any ordered pair which is not of the form (2n,2n) and such that 
J(2n,2n) =-2f(n), where f is the recursive bijection f we have exhibited in the first 
step. 

Such a pairing function J is, by its very construction, recursive. Consequently, 
Th(t~,J) is undecidable since to know whether n c W, it suffices to ask the following 
question in a first-order form, namely, for instance, by the question of the truth-value 
of the sentence 

3xO3Xl ... 3Xn+l[J(xo,xo) = Xl AJ(Xl,Xl )=x2 A "'" AJ(xn,xn) = xn+l 

A J(Xn+l ,Xn+l ) = X0], 

noting that the xi's are necessarily even when the answer is positive. [] 

The pairing functions being arithmetical, they are (N, +, x )-definable. One knows 
multiplication is not (+)-definable. Hence, it is natural to ask whether there exists a 
recursive pairing function J such that multiplication is (~, +,J)-definable. The answer 
yet is positive: 

Theorem 3.7. There ex&ts a primitive recursive pairing function J, namely the Cantor 
pairing function C, such that multiplication is (~,+,J)-definable. 

Proof. We have C(x,x + 1 ) =  2(x + 1) 2. Hence, the mapping which associates to 
an integer n its square n 2 is (N,+,J)-definable. As already noted by Tarski, the 
definition of multiplication in this language follows from the formula (x + y ) 2 =  
X 2 + y2 + xy + xy. [] 
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4. Undecidability levels of structures with decoding lists functions 

A somewhat more difficult question is to know whether arithmetical substructure 

allowing encoding of lists do define both addition and multiplication. A negative answer 
is given in the present section. 

In Section 3, we have seen that every arithmetical structure in which a decoding 

headed lists with compact support function is definable has an undecidable theory 
on N. However, one can distinguish several levels of  undecidability according to sev- 

eral possible criteria. The first criterium coming to mind is certainly the level within 

the arithmetical hierarchy. Actually, this is not the one we shall deal in the present 

paper; we deal more with a criterium which is linked to the means used to prove an 

arithmetical theory is undecidable. 
The Church-Turing's result on the undecidability of Th(N, +, × ) has permitted to 

show that lot of  arithmetical structures have undecidable theories by proving DEF 
(~,  c~)= DEF(N, +, x ). We can call it the level of  arithmetical substructure having 

the complete definability property. 
Nevertheless, this method is not convenient to conclude for certain arithmetical struc- 

tures. The second author has introduced the method called isomorphic re-interpretation 
property (IRP). Generalisation of this within computer science is nothing but simu- 
lation. For more details, one can see [4]. Let us call IRP the level of  arithmetical 

substructures having the isomorphic re-interpretation. 

4.1. Definitions and problems 

Definition 4.1. An arithmetical structure (M, 5 a) is said def-complete if  and only if 
DEF([~, 5°) = DEF(N,+, × ). 

We know lot of  def-complete arithmetical structures. For a detailed survey about 

them, one can consult the Korec's monograph (see [14]). In the framework of de- 
coding functions, one necessarily comes to the question of knowing whether the nat- 
ural order relation (and consequently addition and multiplication by Corollary 2.1) is 

(N,~a)-definable in any arithmetical structure within which a decoding lists function 

is definable. We shall prove that the answer is negative. 

Definition 4.2. (i) A structure (A, Cl . . . .  ,cn) is emulatable in a structure J / ,  with do- 

main M, iff there exists a structure (B, d l , . . . , d n , - )  isomorphic to (A, cl . . . . .  Cn, =) ,  
where B is a subset of  M, - is a binary relation on A, such that B, dl . . . . .  dn, - are 

JZ-definable. 
(ii) A structure # /  has the isomorphic re-interpretation property iff the structure 

(~,  +, ×, = ) is emulatable in ~/ .  

Remark. If  a structure has only finitely many constants, functions and relations and has 
an undecidable theory, and is emulatable in a structure . g ,  then Th(J/¢) is undecidable. 
In particular, Th(dg) is undecidable if J¢  has the isomorphic re-interpretation property. 
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The isomorphic re-interpretation property was introduced and used to prove that many 
structures ~ /  with domain ~ have an undecidable theory (see [20, 22,24]). This no- 
tion is weaker than def-completeness because, in fact, the isomorphic re-interpretation 
property does not imply definability of + and ×,  and the converse is obviously 
true. 

Now one can ask whether every arithmetical structure (~, L~ a) within which a de- 
coding lists function is definable has the isomorphic re-interpretation property. Still the 
answer is negative. 

4.2. Decoding functions for lists without IRP  

The aim of this section is to prove that there is a level of arithmetical substructure 
not having the IRP but such that one can decode any integer list within them. 

Theorem 4.1. There exists a decoding lists function f such that IRP does not hold 

for ([~, f ) .  

Let us begin by some definitions and classical results. 

Definition 4.3. The alphabet of ~ ( P A )  (the language of Peano arithmetic) is 
A = { ~ ,  V, A,V,~, × , ' , ( , ) ,  = ,S ,+ , . } .  A variable is nothing but a word of the form 
x" " .  The G6del numbering defined from A is any one-to-one mapping g from A into 
N\{0}, for instance, 

g ( ~ ) = l ,  g ( V ) = 2 ,  g (1 )=3 ,  g(V)=4,  g ( 3 ) = 5 ,  g (x )=6 ,  g ( ' ) = 7 ,  

g ( ( )=8 ,  g ( ) ) = 9 ,  g ( = ) = 1 0 ,  g ( S ) = l l ,  g ( + ) = 1 2 ,  g( . )=13.  

The G6del coding of  a word on A is the injection ng :A + ---+ ~* defined by 

ng(wl . . .wn)=  p~(Wl) × . . .  × pan(W,) ' 

where Pi is the (i + l )-th prime number with P0 = 2. Due to the fact £~'(PA)-formulas 
and ~°(PA)-sentences are words on the alphabet A this provides us with a G6del 
numbering (or coding) of 5e(PA)-formulas and Sa(PA)-sentences. 

Definition 4.4. Let (~, ®, ®) be an arithmetical structure consisting of the set ~ of 
nonnegative integers with two binary operations. The satisfaction function of this struc- 
ture is the mapping SAT from ~2 into {0, 1} satisfying SAT(m,n) = 1 if and only if 

(i) m=ng(c~(vl . . . .  ,v~)) for some ~c#(PA)-formula ~b; 
(ii) n---ng((al . . . . .  ak)) for some n-tuple (al . . . . .  ak) of ~; 

(iii) ( ~ , ~ ,  ®)  ~ ~b[al . . . . .  an]. 

Remark. The function SAT may be recursive but this is generally not the case. It 
can belong to the arithmetical hierarchy (and consequently be An, 2;n or Hn for some 
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nonnegative integer n) or it may not be arithmetical at all (this is the case for the stan- 
dard model according to Tarski's theorem we remind the reader below). A discussion 
of arithmetical hierarchy is given by Enderton in [8]. 

Definition 4.5. An arithmetical structure (N,®, ®) is a An-structure (respectively 
a Xn-structure a Hn-structure) if and only if its satisfaction function is An (respectively 
Sn, //n). 

Proposition 4.1 (Hilbert-Bernays' Theorem [12]). The Peano Arithmetic has a Az- 
model. 

Proof. See, for instance, ([27], p. 860). [] 

Definition 4.6. The truth function of an arithmetical LP-structure J /  is the function 
TRUE from ~ into {0, l} defined by TRUE(n)= 1 if and only if; 

(i) n - -ng (a )  for a sentence a of ~ ;  
(ii) J{  ~ ~r. 

Remark. (1) In contrast to the definition of satisfaction function, we do not need to 
assume the structure is denumerable to define its truth function. 

(2) If the satisfaction function SAT of a given stucture is An (respectively Sn, Hn) 
then its truth function is also An (respectively Sn, Hn). We shall make use of the 
following classical theorem. 

Theorem 4.2 (G6del [10] and Tarski [29]). The truth function of the standard 
model (~J, +, .} is not arithmetical. 

Proof of Theorem 4.1. The function fl of G6del is defined by 

fl(K(c),L(c),i) if i<~n, 
f ( c , n , i ) =  

t 0 if i>n. 

This function is a decoding headed lists function with strongly compact support. 
This function is (N, +, x )-definable by a formula q$ with four free variables, so that 

f(c,n,i)=d+-+c~(c,n,i,d), or in order to deal with sentences f(c,n,i)=d*-+c~(-~,~, 
7, d), putting as usual ~ -- SSSS...  SO with n occurrences of symbol S and the constant 
0 which are both {N, +, .}-definable. 

Now consider a structure (N, ®, ® ) which is a A2-model of Peano arithmetic. Let 
us denote by ~(~,~,7,d) the formula obtained by replacing + and. ,  respectively, by 
@ and ® within (~(-d,-~,i,d). Let us denote by g the function of domain ~ defined by 
the logical equivalence 

- m 

g(c,n,i)=-d ~ ~k(~,-~,i,d). 
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The PA-provable sentences show that g is actually a function, and a decoding function 
for headed lists with the strongly compactness property. The structure ([~,g) does not 
have the IRP, otherwise one could define an isomorphic model to ([~,+,.) within 
([~, g) and consequently within (~, ®, ® ). Due to the fact the truth function of (~, g) 
is arithmetical, the truth function of (~, +,.) would be in turn, at least, arithmetical 
(namely A2) This contradicts Tarski's Theorem. [] 
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