Résultats récents sur deux problèmes anciens

Jean Berstel

Institut Gaspard-Monge, Université Paris-Est

Créteil, 15 juin 2009
Outline

1. Hopcroft’s algorithm
 - Éléments d’algorithmique
 - Minimal automata
 - History
 - The algorithm

2. Tiling by Translation
 - Exact Polyominoes
 - Pseudosquares
C’est dans ce livre qu’est paru la première rédaction (et la seule à ce jour, je crois), à l’usage des étudiants d’université, de l’algorithme de Hopcroft.

Cette rédaction a été faite par Danièle Beauquier.
Each state q defines a language $L_q = \{w \mid q \cdot w \text{ is final}\}$.

The automaton is minimal if all languages L_q are distinct.

Here $L_2 = L_4$. States 2 and 4 are (Nerode) equivalent.

The Nerode equivalence is the coarsest partition that is compatible with the next-state function.

Refinement algorithm

Starts with the partition into two classes 05 and 12346.

Tries to refine by splitting classes which are not compatible with the next-state function.

A first refinement: $12346 \rightarrow 1234 \mid 6$ because $6 \cdot a$ is final.

A second refinement: $05 \rightarrow 0 \mid 5$ because of $0 \cdot a$ is final.
History of Hopcroft’s algorithm

History

- Hopcroft has developed in 1970 a minimization algorithm that runs in time $O(n \log n)$ on an n state automaton (discarding the alphabet).
- No faster algorithm is known for general automata.

Question

- Question: is the time estimation sharp?
- A first answer, by Berstel and Carton: there exist automata where you need $\Omega(n \log n)$ steps if you are “unlucky”. These are related to De Bruijn words.
- A better answer, by Castiglione, Restivo and Sciortino: there exist automata where you need always $\Omega(n \log n)$ steps. These are related to Fibonacci words.
- The same holds for all Sturmian words whose directive sequence have bounded geometric means.
\(\mathcal{A} = (Q, i, F) \) automaton on the alphabet \(A \). Let \(\mathcal{P} \) be a partition of \(Q \).

Definition

A **splitter** is a pair \((P, a)\), with \(P \in \mathcal{P} \) and \(a \in A \).

The aim of a splitter is to split another class of \(\mathcal{P} \).

Definition

The splitter \((P, a)\) **splits** the class \(R \in \mathcal{P} \) if

\[
\emptyset \subsetneq P \cap R \cdot a \subsetneq R \cdot a \quad \text{or equivalently if} \quad \emptyset \subsetneq a^{-1}P \cap R \subsetneq R.
\]

Here \(a^{-1}P = \{q \mid q \cdot a \in P \} \).

Notation

In any case, we denote by \((P, a)\mid R\) the partition of \(R \) composed of the nonempty sets among \(a^{-1}P \cap R \) and \(R \setminus a^{-1}P \). The splitter \((P, a)\) splits \(R \) if \((P, a)\mid R \neq \{R\}\).
Example

- Partition $\mathcal{P} = 05 \mid 12346$.
- Splitter $(05, a)$. One has $a^{-1}05 = 06$.
- The splitter splits both 05 and 12346.
- One gets

 $$(05, a) | 05 = 0 \mid 5 \quad \text{and} \quad (05, a) | 12346 = 1234 \mid 6$$
Hopcroft’s algorithm

1: \(\mathcal{P} \leftarrow \{ F, F^c \} \)
 ▶ The initial partition
2: \(\text{for all } a \in A \) do
 ▶ The initial waiting set
3: ADD((\(\min(F, F^c), a) \), \(\mathcal{W} \))
4: while \(\mathcal{W} \neq \emptyset \) do
 ▶ takes some splitter in \(\mathcal{W} \) and remove it
5: \((W, a) \leftarrow \text{TAKE SOME}(\mathcal{W}) \)
6: \(\text{for each } P \in \mathcal{P} \text{ which is split by } (W, a) \) do
 ▶ Compute the split
7: \(P', P'' \leftarrow (W, a)|P \)
 ▶ Refine the partition
8: REPLACE \(P \) by \(P' \) and \(P'' \) in \(\mathcal{P} \)
9: \(\text{for all } b \in A \) do
 ▶ Update the waiting set
10: if \((P, b) \in \mathcal{W} \) then
 11: REPLACE \((P, b) \) by \((P', b) \) and \((P'', b) \) in \(\mathcal{W} \)
12: else
13: ADD((\(\min(P', P'') \), \(b) \), \(\mathcal{W} \))

Basic fact

Splitting all sets of the current partition by one splitter \((C, a)\) has a total cost of \(\text{Card}(a^{-1}C) \).
Danièle Beauquier and Maurice Nivat have characterized those polyominoes that tile the plane by translation. On translating one polyomino to tile the plane Discrete Math. 1991.

The condition is a combinatorial property of circular words.

The complexity of checking whether this condition holds is still open.

In the particular case of so-called pseudo-squares, there exists a linear time algorithm, developed by Srečko Brlek, Xavier Provençal, Jean-Marc Fédou. On the tiling by translation problem, Discrete Applied Math. 2009.
Exact polyominoes

Definition

A polyomino is a finite set of squares in the discrete plane which are simply 4-connected (without wholes).

Example

![Polyomino Example](image)
Exact polyominoes

Definition

A polyomino is **exact** if it tiles the plane by translation.

Example

![Polyomino Example](image)
Definition

The boundary of a polyomino is the circular word obtained by reading the polygonal boundary in counterclockwise manner and encoding it over the alphabet \{a, \bar{a}, b, \bar{b}\}.

Example

The boundary is

\[
\text{aa\bar{b}a\bar{b}ab\bar{b}\bar{a}b\bar{a}b\bar{a}b}
\]
Theorem

We denote by \(\overline{\cdot} \) the mapping defined by \(u \overline{v} = \overline{v} \overline{u} \) for words \(u, v \).

Theorem (Beauquier, Nivat)

A polyomino tiles the plane by translation if and only if its boundary admits a factorization of the form \(u \overline{v} w u \overline{v} w \overline{\cdot} \overline{w} \) for some words \(u, v, w \).

Example

The boundary admits the factorization

\[
ab\overline{b} \cdot \overline{a}ba \cdot bab \cdot b\overline{a}a \cdot \overline{a}ba \cdot b\overline{b}
\]
Searching for aBN-factorization

A naive algorithm

Given a word w of length n, do for each of the n conjugates of w
- consider all n^2 factorizations $xyzstu$ with $|x| = |s|$, $|y| = |t|$, $|z| = |u|$.
- check whether $x = \bar{s}$, $y = \bar{t}$, $z = \bar{u}$.

Each positive answer gives a BN-factorization. The complexity is $O(n^4)$.

An algorithm in $O(n^2)$ has been given by Gambini and Vuillon An algorithm for deciding if a polyomino tiles the plane by translation2007.
Pseudo-square

Definition

A **pseudo-square** is a boundary that has a factorization of the form $xy\bar{x}\bar{y}$ for nonempty words x, y.

Note

A **pseudo-polygon** is a boundary with a factorization $xyz\bar{x}\bar{y}\bar{z}$ for nonempty words x, y, z.

Example (Pseudo-square and pseudo-polygon)

The first is a pseudo-square, and the second is a pseudo-polygon. BN-factorizations are

\[a\bar{b}a a \cdot b a b \cdot \bar{a}a\bar{b} \cdot \bar{b}a \bar{b} \quad \text{and} \quad a\bar{a} b \cdot a \bar{b} a \cdot b a b \cdot \bar{b}a a \cdot \bar{a}b a \cdot \bar{b}a \bar{b} \]
An algorithm for pseudo-square detection

A linear algorithm

An algorithm for pseudo-square detection that is linear in the length of the boundary has been given by Brlek, Provençal and Fédou. It uses in a clever way a preprocessing phase that allows to compute in constant time the longest common extension of two words.

Notation

$\rho^i(x)$ is the conjugate of x starting at position i ($\rho^0(x) = x$).

Example

For $x = aabbbbaab$, one has $\rho^4(x) = baabaabb$.
Definition (Longest common right and left extension)

The longest common right (left) extension of \(x \) at position \(i \) and \(y \) at position \(j \) is the word \(\text{lcre}(x, i, y, j) = \rho^i(x) \land \rho^j(y) \) (resp. \(\text{lcle}(x, i, y, j) = \rho^i(x) \lor \rho^j(y) \)). Here \(u \land v \) (resp. \(u \lor v \)) is the longest common prefix (suffix) of \(u \) and \(v \).

Example

For \(x = aabb \cdot baab \) and \(y = babaabb \cdot baabb \), one has

\[
\text{lcre}(x, 4, y, 7) = baabaabb \land baabbbabaabb = baab
\]

and

\[
\text{lcle}(x, 4, y, 7) = baabaabb \lor baabbbabaabb = abaaaabb
\]

Definition (Longest common extension)

The longest common extension of \(x \) at position \(i \) and \(y \) at position \(j \) is the word \(\text{lcle}(x, i, y, j) \text{lcre}(x, i, y, j) \).

Example

For \(x = aabb \cdot baab \) and \(y = babaabb \cdot baabb \), one has

\[
\text{lce}(x, 4, y, 7) = abaaaabbaaab
\]
BN-factorization

Algorithm

Let \(w \) be a boundary of length \(n \). For each \(j = 0, \ldots, n - 1 \)

- Compute \(x = lce(w, 0, \bar{w}, j) \).
- Locate \(\bar{x} \) in \(w \) and, if \(x \) and \(\bar{x} \) do not overlap, factorize \(w \) into \(w = xy\bar{x}z \).
- check whether \(y = \bar{z} \) by checking whether \(lcre(w, k, \bar{w}, 0) = y \), with \(k = |x| \).

If the answer is positive, a pseudo-square factorization has been found.

Example

\[
\begin{align*}
w &= \text{aa}\bar{b}aabaab\bar{a}b\bar{a}\bar{b}a\bar{b} = \text{aa}\bar{b}aabaab\bar{a}b\bar{a}\bar{b}a\bar{b} = \text{aa}\bar{b}aabaab\bar{a}b\bar{a}\bar{b}a\bar{b} \\
\bar{w} &= \text{baabaa}\bar{b}a\bar{a}\bar{b}a\bar{b}a = \text{baabaa}\bar{b}a\bar{a}\bar{b}a\bar{b}a = \text{baabaa}\bar{b}a\bar{a}\bar{b}a\bar{b}a
\end{align*}
\]

\[
\begin{align*}
lce(w, 0, \bar{w}, 1) &= \text{aa} \quad \text{and} \quad w = \text{aa}\bar{b}aabaab\bar{a}b\bar{a}\bar{b}a\bar{b}a\bar{b}a\bar{b} \quad \text{bad.} \\
lce(w, 0, \bar{w}, 4) &= \text{aa}\bar{b}aa \quad \text{and} \quad w = \text{aa}\bar{b}aabaab\bar{a}b\bar{a}\bar{b}a\bar{b}a \quad \text{good!}. \\
lce(w, 0, \bar{w}, 7) &= \text{baab} \quad \text{and} \quad w = \text{aa}\bar{b}aabaab\bar{a}b\bar{a}\bar{b}a\bar{b}a \quad \text{good!}.
\end{align*}
\]

Remark

Since the computation of the \(lce \) is in constant time, the algorithm is linear.