Linear modeling & verification

Catalin Dima

LACL, Université Paris 12

Catalin Dima LTL

Foreword

@ The Model-Checking Problem : given a (model of a)
program/module/system M and a property P, check whether M
satisfies/implements/behaves as required by the property P.

@ Ideally, would help a client being convinced that a software provider has
produced a solution solving the client’s problem.

Model-checking (and in general verification) is about checking/verifying
systems for trivial properties.

@ That s, properties that can be easily intuited to be true...

@ ... but whose verification is tedious, error prone, and event very time
consuming on big systems !

Finite-state models and properties
Beyond safety and termination properties
Biichi automata

Finite-state automata

Reminder from language theory

@ Finite automaton = labeled graph.
@ Accepted language = path labels.

@ Starting in initial states, ending in final states.
@ Some simple algorithms:

@ Does the automaton accept a given word? (or sequence of labels).
@ Does the automaton have an empty language?

@ Some simple constructions:

@ Intersection, complementation, all regexp operations, shuffle.

Finite-state models and properties
Beyond safety and termination properties
Buichi automata

Finite-state automata

Modeling systems with automata

@ Can be used for modeling any computer system

@ Any realistic system (finite states...).
@ Is rather used for abstracting realistic systems.

@ Modeling paradigm : system state = automaton state.
@ System step-by-step evolution = transitions.

@ Requires one to identify what is essential in a system state to be
modeled.

@ A shift from transition-labeled to state-labeled automata.

Catalin Dima

Finite-state models and properties
Beyond safety and termination properties
Buichi automata

Finite-state automata

Specifying properties with automata

@ Properties too can be “specified” with automata!
@ An automaton may represent an intentional aspect

@ A safety intention: the system should always keep the value of a
variable within some range.

@ A termination intention: the program should not run forever, it
should reach its final location.

@ Properties should utilize system characteristics (variables).

@ In general much simpler than the system model.

Finite-state models and properties
Beyond safety and termination properties
Buichi automata

Finite-state automata

@ Run = a sequence of system states.

@ What runs accept/generate = sequences of assignments of variables to
truth values.

@ The truth value for each variable at time point 0,
@ The truth value for each variable at time point 1,
@ The truth value for each variable at time point 2,
o ...

@ In general, this is a word over the set of atomic propositions AP.
® p:N— 277,

@ If we want to move to a larger set of atomic propositions, then the states
in the automaton need to be expanded.

@ Example...

Catalin Dima

Finite-state models and properties
Beyc y and termination properties
Buichi automata

Finite-state automata

Model-checking

@ So then we have M the system model,
@ ... and P the automaton for the property.
@ What does it mean for M to satisfy P?
@ All behaviors in M need to satisfy the property P

All words in the language of M need to be also accepted by the automaton P.

@ Inclusion between two languages.

@ How do we check that, using automata constructions?...

Catalin Dima

Finite-state models and properties
Beyond safety and termination properties
Buichi automata

Finite-state automata

Access control systems

@ Subjects, objects, set of rights.

@ The matrix of access rights = system state.

@ Transitions = commands that change system state.
@ Example...

@ Runs, accepted words...

Catalin Dima

Finite-state models and properties
Beyond safety and termination properties
Buichi automata

Finite-state automata

Analyzing access control systems

@ Safety:
@ Does subject x gain right r onto objecty?
@ More complicated properties:

@ If awrites to f, then b should never be able to read f.
@ If areads from f’, then a shouldn’t be allowed to write to f’ after
that.

@ Trivial to check on a given small-size system, but what if the system is
big?

@ SELinux: 50.000 lines of code specifying access rights and
transitions...

@ Verify it against such a property!

@ Model-checking (and in general verification) is about
checking/verifying systems for trivial properties.

Finite-state models and properties
Beyond safety and termination properties
Buichi automata

Finite-state automata

Specifying access control systems

Catalin Dima

An example of an access control system...

A safety property...

An integrity property...

A termination property...

A property relative to the confinement of the information flow...

And the result of checking whether property holds within the system...

Finite-state models and properties
Beyond safety and termination properties
Biichi automata

Finite-state automata

Scheduling problems

@ Suppose we try to implement the mutual exclusion problem with the
strict alternation protocol:
@ Strict alternation — sharing one variable which shows who's turn is.

while(true) {
while turn # i do no-op ;
section critique
turn:=1—1i;

}

@ We recall that this is incorrect:
@ What if task 2 loops forever or terminates?

Catalin Dima

Finite-state models and properties
Beyond safety and termination properties
Biichi automata

Finite-state automata

Responsiveness properties

@ Once atask is enabled, it should eventually be served.

@ Note also that once task 1 is enabled, it remains enabled until it enters
in its critical section.

@ And that there’s nothing said about when the task should stop!

@ How do we model that with finite-state automata?...

tate models and properties
ty and termination properties
Biichi automata

Finite-state automata

Infinite words and repeating states

@ A Biichi automaton is a finite-state automaton,

@ ... but it works on never-ending sequences of labels.

@ There is no “final” state, as an infinite word does not have an end!
@ There are repeated states F:

To accept an infinite word, a run must pass infinitely often through F

@ This is equivalent with requiring that the run must pass infintely often
through a state from F! (ain’t it?)

Finite-state models and properties
Beyond safety and termination properties
Biichi automata

Finite-state automata

Algorithms

@ Emptiness?

@ Check whether some repeated state is reachable,
@ ... and reaches itself again!
@ Strongly connected component!

@ Intersection?

@ Try to adapt the intersection algorithm from automata over finite
words.

@ ... oops! it doesn’t work!

@ Can we correct that?

Catalin Dima

Finite-state models and properties
ety and termination properties
Biichi automata

Finite-state automata

Complementation

@ Recall that for complementing, we need deterministic automata.
@ Are Biichi automata determinizable?

Deterministic Blichi automata are less expressive than nondeterministic
ones!

@ Try to build a deterministic Biichi automaton for (a + b)*b“.
@ Note that a*b“ is accepted by a deterministic Blichi automaton!

Catalin Dima

Finite-state models and properties
Beyond safety and termination properties
Biichi automata

Finite-state automata

Other automata on infinite words

@ Need a better notion of determinism.
@ Muller automata:

@ A set of sets of repeated states, F.
@ Arun is accepting if the set of states states occurring infinitely
often is a member of F.

@ Draw a (deterministic) Muller automaton for

Q (@h)”.
Q (a+b)b~.

@ Do we have (a + b)* = (a*b)“?

Catalin Dima

Finite-state models and properties
Beyc ety and termination properties
Biichi automata

Finite-state automata

Complementation

@ Biichi automata can be “transformed” into Muller automata.

@ Nondeterministic Muller automata can be “transformed” into Blichi
automata.

@ Subset construction is not working for Muller automata either.
@ Example

@ ... but a modified version (Safra construction) works!
@ Example continued.

Biichi The class of languages accepted by Biichi automata is closed under
complementation.

@ Exercise: Rework the intersection construction for Muller automata.

Catalin Dima

Finite-state models and properties
Beyond safety and termination properties
Biichi automata

Finite-state automata

Back to our properties

Bichi/Muller automata for:

A safety property and its negation.
An integrity property and its negation.
A termination property and its negation.

A property relative to the confinement of the information flow and its
negation.

A responsiveness property and its negation.

Syntax and semantics of LTL
LTL, Biichi aut. & Model Checking

Temporal logic LTL and Biichi automata

Specifying temporal properties

@ Biichi automata are nice, graphical representations of properties.
@ Algorithmics for them turn into graph algorithmics.

@ Essentially reachability and search for strongly connected
components.
@ And various constructions of new graphs from smaller ones.

@ It's visual, easy to implement, easy to read, but not very easy to write...

@ It's not easy to guess that an automaton represents a
responsiveness property.

Syntax and semantics of LTL
LTL, Biichi aut. & Model Checking

Temporal logic LTL and Biichi automata

Regular expressions

Equivalent with finite-state automata.

w-regular expressions equivalent with Blichi automata.
Clearly more compact than automata specifications.

But do we really understand what regular expression mean?
Write an w-regular expression for

@ A property of the type p holds forever on.
@ A property of the type p holds until g holds.
@ A property of the type there exists a point where p holds.

@ Wouldn'tit be possible to have some primitives that correspond to
these?

Catalin Dima

Syntax and semantics of LTL
LTL, Biichi aut. & Model Checking

Temporal logic L
P 9 LTL and Biichi automata

Linear Temporal Logic defined

@ Extension of propositional logic.
@ Hence all propositional connectives are present.
@ Temporal primitives:

@ Next: Op.
@ Until: pUUq.
@ Globally: Gp or o p.
@ Forward: Fp or ¢ p.

@ Combinations of all these.

Syntax and semantics of LTL
LTL, Biichi aut. & Model Checking

Temporal logic LTL and Biichi automata

Semantics

@ Each formula is interpreted over a run
@ Or an infinite word, p : N — 2P,

@ Each formula can be interpreted at a time point along the run:

(i) Ep ifp € p(i)

(p,1) = ¢1 A @2 if (1) = ¢1and (p, i) = 62

(p,1) E ¢ it (p,1) = &

(pI)EO? if(p,i+1) ¢

(p, 1) E 1 U &2 if there exists j > i with (p,]) E ¢2

andforalli <k <j,(p,k) E é1

Catalin Dima

Syntax and semantics of LTL
LTL, Biichi aut. & Model Checking

Temporal logic LTL and Biichi automata

Semantics (2)

@ Semantics, continued:

(p,i) E © ¢ if there exists j € N with (p,j) E ¢
(p,i) EO¢ifforanyj €N, (p.j) = ¢

@ But the first modalities are sufficient:

O ¢ =trueld ¢
O¢p=-<C-¢

Catalin Dima

Syntax and semantics of LTL
LTL, Biichi aut. & Model Checking

Temporal logic LTL and Biichi automata

Semantics (3)

@ Other operators: new formulas read as follows:

@ 1 W ¢2: ¢1 holds weakly until ¢, holds.
@ ¢1 R P2 ¢ releases ¢;.

@ Semantics:

P Waoo =1l 2V OP1
1R P2 = (1 U =d2) = p2 W(¢1 A $2)

Catalin Dima

Syntax and semantics of LTL
LTL, Buichi aut. & Model Checking

Temporal logic LTL and Biichi automata

LTL to Blchi automata

For each formula ¢, we may build a Biichi automaton A.
Construction for O p.

Construction for = O p.

Construction for pi/ q and ~(p q).

@ Better if we work with sets of repeated states.

@ Not exactly like for Muller automata!

@ Each set of repeated states needs to be visited infinitely often.
@ Reducible to Buchi automata (you know how to do it, yes?).

How to do it in general?

Catalin Dima

Syntax and semantics of LTL
LTL, Buichi aut. & Model Checking

Temporal logic LTL and Biichi automata

Model-checking algorithm

@ Construct the automaton A for —¢.

@ Spares a complementation step!
@ Intersect A with the automaton for the system.
@ Check for emptiness.

Catalin Dima

Syntax and semantics of LTL
LTL, Biichi aut. & Model Checking

Temporal logic LTL and Biichi automata

Relationship with Biichi automata

@ But are LTL and Bichi automata equivalent?

@ Buchi automaton for: “p holds at even time points”.
@ Caution! p may or may not hold at odd points!

@ Can we write an LTL formula for that?...

@ We only can for “p holds at even points and does not hold at odd
points”!

@ Actually LTL is equivalent with Blichi automata which cannot count!

@ The Buchi automaton for “p holds at even time points” counts
modulo 2!

Catalin Dima

Syntax and semantics of LTL
LTL, Biichi aut. & Model Checking

Temporal logic LTL and Biichi automata

Fixpoints

@ Unitil, weak until, release and the others can be defined “inductively”:

op=.."7

ap=..7
puUgq=qVv (pAO(PUQ))

-(pUUq)=..7

@ May define least fixpoints and greatest fixpoints
@ The “equation”forpi/qis X =qV (p A OX).

@ Constructing the solution works by replacing X with false and
iterating.

@ The “equation” for -(pWq)is X = -p A (-q V OX).

@ Constructing the solution works by replacing X with true and
iterating.

Syntax and semantics of LTL
LTL, Biichi aut. & Model Checking

Temporal logic LTL and Biichi automata

Fixpoint LTL

@ Utilize only O and boolean connectives!
@ And two fixpoint operators:

@ uX, least fixpoint, computed starting with X := false.
@ vX, greatest fixpoint, computed starting with X := true.

@ What does this mean:

o uXvY (pAO(X VAAY)) 2.
@ Not easy to read...
@ But equivalent with Blichi automata!

Catalin Dima

Syntax and semantics of LTL
LTL, Biichi aut. & Model Checking

Temporal logic LTL and Biichi automata

Past time

@ Operators refering to the past:

@ Previous: @p.

@ Since: pSq.

@ Always before: B p.
@ Sometimes: ¢ p.

@ Write down their semantics on a run!
@ Write down their fixpoint equations!

Catalin Dima

Syntax and semantics of LTL
LTL, Buichi aut. & Model Checking

Temporal logic LTL and Biichi automata

Past normal form

Any LTL formula is equivalent with a formula in the following normal form:
oo ANOOY

where ¢ and ¢ are past formulas.

@ Safety properties: O ¢.
@ Termination properties: < ¢.

@ Responsiveness properties: 0 < ¢.

@ Persistence properties: < 0 ¢.

Syntax and semantics of LTL
LTL, Biichi aut. & Model Checking

Temporal logic LTL and Biichi automata

First-order logic

@ Semantics is defined with first-order quantifiers.

(p,1) = o1Ud 62 if there exists | > i with (p,]) = ¢2
andforalli <k <j,(p,k) E¢1

@ Could we drop temporal operators and use only first-order logic?

@ Logic over integers = positions along a run.
@ Atomic proposition I, = sets of positions along a run where p
holds.

@ Operators: €, <, =.

Syntax
LTL, Biichi au

Temporal logic LTL and Biichi automata

First-order logic

@ Op=diien
@ Op=Vviiel,
@ pUqg=..?
@ pSqg=..7

First-order logic of linear time and LTL are expressively equivalent.

Catalin Dima

Syntax and semantics of LTL
LTL, Biichi aut. & Model Checking

Temporal logic LTL and Biichi automata

Exercise

@ Draw an automaton for an easy security protocol.
@ Draw an automaton for a confidentiality property for that protocol.
@ Verify it!

@ The problem needs to be brought to a finite-state situation.
@ And even then, you further need to simplify it so as to have only
very few items (principals, keys, nonces...)!

@ Model-checking (and in general verification) is about checking/verifying
systems for trivial properties.

	Finite-state automata
	Finite-state models and properties
	Beyond safety and termination properties
	Büchi automata

	Temporal logic
	Syntax and semantics of LTL
	Relationship with Büchi automata and model-checking
	LTL and Büchi automata

