
Finite-state automata
Temporal logic

Linear modeling & verification

Cătălin Dima

LACL, Université Paris 12

Cătălin Dima LTL

Finite-state automata
Temporal logic

Foreword

The Model-Checking Problem : given a (model of a)
program/module/system M and a property P, check whether M
satisfies/implements/behaves as required by the property P.

Ideally, would help a client being convinced that a software provider has
produced a solution solving the client’s problem.

The model-checking meta-theorem

Model-checking (and in general verification) is about checking/verifying
systems for trivial properties.

That is, properties that can be easily intuited to be true...

... but whose verification is tedious, error prone, and event very time
consuming on big systems !

Cătălin Dima LTL

Finite-state automata
Temporal logic

Finite-state models and properties
Beyond safety and termination properties
Büchi automata

Reminder from language theory

Finite automaton = labeled graph.

Accepted language = path labels.

Starting in initial states, ending in final states.

Some simple algorithms:

Does the automaton accept a given word? (or sequence of labels).
Does the automaton have an empty language?

Some simple constructions:

Intersection, complementation, all regexp operations, shuffle.

Cătălin Dima LTL

Finite-state automata
Temporal logic

Finite-state models and properties
Beyond safety and termination properties
Büchi automata

Modeling systems with automata

Can be used for modeling any computer system

Any realistic system (finite states...).
Is rather used for abstracting realistic systems.

Modeling paradigm : system state = automaton state.

System step-by-step evolution = transitions.

Requires one to identify what is essential in a system state to be
modeled.

A shift from transition-labeled to state-labeled automata.

Cătălin Dima LTL

Finite-state automata
Temporal logic

Finite-state models and properties
Beyond safety and termination properties
Büchi automata

Specifying properties with automata

Properties too can be “specified” with automata!

An automaton may represent an intentional aspect

A safety intention: the system should always keep the value of a
variable within some range.
A termination intention: the program should not run forever, it
should reach its final location.

Properties should utilize system characteristics (variables).

In general much simpler than the system model.

Cătălin Dima LTL

Finite-state automata
Temporal logic

Finite-state models and properties
Beyond safety and termination properties
Büchi automata

Runs

Run = a sequence of system states.

What runs accept/generate = sequences of assignments of variables to
truth values.

The truth value for each variable at time point 0,
The truth value for each variable at time point 1,
The truth value for each variable at time point 2,
....

In general, this is a word over the set of atomic propositions AP.

ρ : N → 2AP .

If we want to move to a larger set of atomic propositions, then the states
in the automaton need to be expanded.

Example...

Cătălin Dima LTL

Finite-state automata
Temporal logic

Finite-state models and properties
Beyond safety and termination properties
Büchi automata

Model-checking

So then we have M the system model,

... and P the automaton for the property.

What does it mean for M to satisfy P?

All behaviors in M need to satisfy the property P

Model-checking using automata

All words in the language of M need to be also accepted by the automaton P.

Inclusion between two languages.

How do we check that, using automata constructions?...

Cătălin Dima LTL

Finite-state automata
Temporal logic

Finite-state models and properties
Beyond safety and termination properties
Büchi automata

Access control systems

Subjects, objects, set of rights.

The matrix of access rights = system state.

Transitions = commands that change system state.

Example...

Runs, accepted words...

Cătălin Dima LTL

Finite-state automata
Temporal logic

Finite-state models and properties
Beyond safety and termination properties
Büchi automata

Analyzing access control systems

Safety:

Does subject x gain right r onto object y?

More complicated properties:

If a writes to f , then b should never be able to read f .
If a reads from f ′, then a shouldn’t be allowed to write to f ′ after
that.

Trivial to check on a given small-size system, but what if the system is
big?

SELinux: 50.000 lines of code specifying access rights and
transitions...
Verify it against such a property!
Model-checking (and in general verification) is about
checking/verifying systems for trivial properties.

Cătălin Dima LTL

Finite-state automata
Temporal logic

Finite-state models and properties
Beyond safety and termination properties
Büchi automata

Specifying access control systems

An example of an access control system...

A safety property...

An integrity property...

A termination property...

A property relative to the confinement of the information flow...

And the result of checking whether property holds within the system...

Cătălin Dima LTL

Finite-state automata
Temporal logic

Finite-state models and properties
Beyond safety and termination properties
Büchi automata

Scheduling problems

Suppose we try to implement the mutual exclusion problem with the
strict alternation protocol:

Strict alternation – sharing one variable which shows who’s turn is.

while(true) {
while turn 6= i do no-op ;

section critique
turn := 1 − i ;

}

We recall that this is incorrect:

What if task 2 loops forever or terminates?

Cătălin Dima LTL

Finite-state automata
Temporal logic

Finite-state models and properties
Beyond safety and termination properties
Büchi automata

Responsiveness properties

Once a task is enabled, it should eventually be served.

Note also that once task 1 is enabled, it remains enabled until it enters
in its critical section.

And that there’s nothing said about when the task should stop!

How do we model that with finite-state automata?...

Cătălin Dima LTL

Finite-state automata
Temporal logic

Finite-state models and properties
Beyond safety and termination properties
Büchi automata

Infinite words and repeating states

A Büchi automaton is a finite-state automaton,

... but it works on never-ending sequences of labels.

There is no “final” state, as an infinite word does not have an end!

There are repeated states F :

Acceptance condition

To accept an infinite word, a run must pass infinitely often through F

This is equivalent with requiring that the run must pass infintely often
through a state from F ! (ain’t it?)

Cătălin Dima LTL

Finite-state automata
Temporal logic

Finite-state models and properties
Beyond safety and termination properties
Büchi automata

Algorithms

Emptiness?

Check whether some repeated state is reachable,
... and reaches itself again!
Strongly connected component!

Intersection?

Try to adapt the intersection algorithm from automata over finite
words.
... oops! it doesn’t work!
Can we correct that?

Cătălin Dima LTL

Finite-state automata
Temporal logic

Finite-state models and properties
Beyond safety and termination properties
Büchi automata

Complementation

Recall that for complementing, we need deterministic automata.

Are Büchi automata determinizable?

Proposition

Deterministic Büchi automata are less expressive than nondeterministic
ones!

Try to build a deterministic Büchi automaton for (a + b)∗bω.

Note that a∗bω is accepted by a deterministic Büchi automaton!

Cătălin Dima LTL

Finite-state automata
Temporal logic

Finite-state models and properties
Beyond safety and termination properties
Büchi automata

Other automata on infinite words

Need a better notion of determinism.

Muller automata:

A set of sets of repeated states, F .
A run is accepting if the set of states states occurring infinitely
often is a member of F .

Draw a (deterministic) Muller automaton for

1 (a∗b)ω.
2 (a + b)∗bω.

Do we have (a + b)ω = (a∗b)ω?

Cătălin Dima LTL

Finite-state automata
Temporal logic

Finite-state models and properties
Beyond safety and termination properties
Büchi automata

Complementation

Büchi automata can be “transformed” into Muller automata.

Nondeterministic Muller automata can be “transformed” into Büchi
automata.

Subset construction is not working for Muller automata either.

Example

... but a modified version (Safra construction) works!

Example continued.

Theorem

Büchi The class of languages accepted by Büchi automata is closed under
complementation.

Exercise: Rework the intersection construction for Muller automata.

Cătălin Dima LTL

Finite-state automata
Temporal logic

Finite-state models and properties
Beyond safety and termination properties
Büchi automata

Back to our properties

Büchi/Muller automata for:

A safety property and its negation.

An integrity property and its negation.

A termination property and its negation.

A property relative to the confinement of the information flow and its
negation.

A responsiveness property and its negation.

Cătălin Dima LTL

Finite-state automata
Temporal logic

Syntax and semantics of LTL
LTL, Büchi aut. & Model Checking
LTL and Büchi automata

Specifying temporal properties

Büchi automata are nice, graphical representations of properties.

Algorithmics for them turn into graph algorithmics.

Essentially reachability and search for strongly connected
components.
And various constructions of new graphs from smaller ones.

It’s visual, easy to implement, easy to read, but not very easy to write...

It’s not easy to guess that an automaton represents a
responsiveness property.

Cătălin Dima LTL

Finite-state automata
Temporal logic

Syntax and semantics of LTL
LTL, Büchi aut. & Model Checking
LTL and Büchi automata

Regular expressions

Equivalent with finite-state automata.

ω-regular expressions equivalent with Büchi automata.

Clearly more compact than automata specifications.

But do we really understand what regular expression mean?

Write an ω-regular expression for

A property of the type p holds forever on.
A property of the type p holds until q holds.
A property of the type there exists a point where p holds.

Wouldn’t it be possible to have some primitives that correspond to
these?

Cătălin Dima LTL

Finite-state automata
Temporal logic

Syntax and semantics of LTL
LTL, Büchi aut. & Model Checking
LTL and Büchi automata

Linear Temporal Logic defined

Extension of propositional logic.

Hence all propositional connectives are present.

Temporal primitives:

Next: ©p.
Until: p U q.
Globally: Gp or 2 p.
Forward: Fp or 3 p.

Combinations of all these.

Cătălin Dima LTL

Finite-state automata
Temporal logic

Syntax and semantics of LTL
LTL, Büchi aut. & Model Checking
LTL and Büchi automata

Semantics

Each formula is interpreted over a run

Or an infinite word, ρ : N → 2AP .

Each formula can be interpreted at a time point along the run:

(ρ, i) |= p if p ∈ ρ(i)

(ρ, i) |= φ1 ∧ φ2 if (ρ, i) |= φ1 and (ρ, i) |= φ2

(ρ, i) |= ¬φ if (ρ, i) 6|= φ

(ρ, i) |= ©φ if (ρ, i + 1) |= φ

(ρ, i) |= φ1 U φ2 if there exists j ≥ i with (ρ, j) |= φ2

and for all i ≤ k < j , (ρ, k) |= φ1

Cătălin Dima LTL

Finite-state automata
Temporal logic

Syntax and semantics of LTL
LTL, Büchi aut. & Model Checking
LTL and Büchi automata

Semantics (2)

Semantics, continued:

(ρ, i) |= 3φ if there exists j ∈ N with (ρ, j) |= φ

(ρ, i) |= 2φ if for any j ∈ N, (ρ, j) |= φ

But the first modalities are sufficient:

3φ = trueU φ

2φ = ¬3¬φ

Cătălin Dima LTL

Finite-state automata
Temporal logic

Syntax and semantics of LTL
LTL, Büchi aut. & Model Checking
LTL and Büchi automata

Semantics (3)

Other operators: new formulas read as follows:

φ1 W φ2: φ1 holds weakly until φ2 holds.
φ1 Rφ2: φ2 releases φ1.

Semantics:

φ1 W φ2 = φ1 U φ2 ∨ 2φ1

φ1 Rφ2 = ¬(¬φ1 U ¬φ2) = φ2 W(φ1 ∧ φ2)

Cătălin Dima LTL

Finite-state automata
Temporal logic

Syntax and semantics of LTL
LTL, Büchi aut. & Model Checking
LTL and Büchi automata

From LTL to Büchi automata

For each formula φ, we may build a Büchi automaton A.

Construction for © p.

Construction for ¬© p.

Construction for p U q and ¬(p U q).

Better if we work with sets of repeated states.
Not exactly like for Muller automata!
Each set of repeated states needs to be visited infinitely often.
Reducible to Büchi automata (you know how to do it, yes?).

How to do it in general?

Cătălin Dima LTL

Finite-state automata
Temporal logic

Syntax and semantics of LTL
LTL, Büchi aut. & Model Checking
LTL and Büchi automata

Model-checking algorithm

Construct the automaton A for ¬φ.

Spares a complementation step!

Intersect A with the automaton for the system.

Check for emptiness.

Cătălin Dima LTL

Finite-state automata
Temporal logic

Syntax and semantics of LTL
LTL, Büchi aut. & Model Checking
LTL and Büchi automata

Relationship with Büchi automata

But are LTL and Büchi automata equivalent?

Büchi automaton for: “p holds at even time points”.

Caution! p may or may not hold at odd points!

Can we write an LTL formula for that?...

We only can for “p holds at even points and does not hold at odd
points”!

Actually LTL is equivalent with Büchi automata which cannot count!

The Büchi automaton for “p holds at even time points” counts
modulo 2!

Cătălin Dima LTL

Finite-state automata
Temporal logic

Syntax and semantics of LTL
LTL, Büchi aut. & Model Checking
LTL and Büchi automata

Fixpoints

Until, weak until, release and the others can be defined “inductively”:

3 p ≡ ...?

2 p ≡ ...?

p U q ≡ q ∨
(

p ∧©(p U q)
)

¬(p U q) ≡ ...?

May define least fixpoints and greatest fixpoints

The “equation” for p U q is X = q ∨ (p ∧©X).

Constructing the solution works by replacing X with false and
iterating.

The “equation” for ¬(p W q) is X = ¬p ∧ (¬q ∨©X).

Constructing the solution works by replacing X with true and
iterating.

Cătălin Dima LTL

Finite-state automata
Temporal logic

Syntax and semantics of LTL
LTL, Büchi aut. & Model Checking
LTL and Büchi automata

Fixpoint LTL

Utilize only © and boolean connectives!

And two fixpoint operators:

µX , least fixpoint, computed starting with X := false.
νX , greatest fixpoint, computed starting with X := true.

What does this mean:

µXνY
(

p ∧©(X ∨ q ∧ Y)
)

?...

Not easy to read...

But equivalent with Büchi automata!

Cătălin Dima LTL

Finite-state automata
Temporal logic

Syntax and semantics of LTL
LTL, Büchi aut. & Model Checking
LTL and Büchi automata

Past time

Operators refering to the past:

Previous: p.
Since: p S q.
Always before: � p.
Sometimes: � p.

Write down their semantics on a run!

Write down their fixpoint equations!

Cătălin Dima LTL

Finite-state automata
Temporal logic

Syntax and semantics of LTL
LTL, Büchi aut. & Model Checking
LTL and Büchi automata

Past normal form

Theorem

Any LTL formula is equivalent with a formula in the following normal form:

23φ ∧32ψ

where φ and ψ are past formulas.

Safety properties: 2φ.

Termination properties: 3φ.

Responsiveness properties: 23φ.

Persistence properties: 32φ.

Cătălin Dima LTL

Finite-state automata
Temporal logic

Syntax and semantics of LTL
LTL, Büchi aut. & Model Checking
LTL and Büchi automata

First-order logic

Semantics is defined with first-order quantifiers.

(ρ, i) |= φ1 U φ2 if there exists j ≥ i with (ρ, j) |= φ2

and for all i ≤ k < j , (ρ, k) |= φ1

Could we drop temporal operators and use only first-order logic?

Logic over integers = positions along a run.
Atomic proposition Πp = sets of positions along a run where p
holds.
Operators: ∈ , ≤ , = .

Cătălin Dima LTL

Finite-state automata
Temporal logic

Syntax and semantics of LTL
LTL, Büchi aut. & Model Checking
LTL and Büchi automata

First-order logic

3 p ≡ ∃i .i ∈ Πp

2 p ≡ ∀i .i ∈ Πp

p U q ≡ ...?

p S q ≡ ...?

Theorem (Kamp)

First-order logic of linear time and LTL are expressively equivalent.

Cătălin Dima LTL

Finite-state automata
Temporal logic

Syntax and semantics of LTL
LTL, Büchi aut. & Model Checking
LTL and Büchi automata

Exercise

Draw an automaton for an easy security protocol.

Draw an automaton for a confidentiality property for that protocol.

Verify it!

The problem needs to be brought to a finite-state situation.
And even then, you further need to simplify it so as to have only
very few items (principals, keys, nonces...)!

Model-checking (and in general verification) is about checking/verifying
systems for trivial properties.

Cătălin Dima LTL

	Finite-state automata
	Finite-state models and properties
	Beyond safety and termination properties
	Büchi automata

	Temporal logic
	Syntax and semantics of LTL
	Relationship with Büchi automata and model-checking
	LTL and Büchi automata

