Catalin Dima (UPEC)

CTL, the branching-time temporal logic

Catalin Dima

Université Paris-Est Créteil

I
Temporal properties

@ Safety, termination, mutual exclusion — LTL.
@ Liveness, reactiveness, responsiveness, infinitely repeated behaviors — LTL.
@ Available choices, strategies, adversial situations?

CNIL J

Tout utilisateur peut demander le retrait de ses données...

@ How do we interpret peut?

» p = demander le retrait...
» Then formula = O p??
» NO!

Strategy to win a game

Black has a strategy to put the game in a situation from which White king will never get
close to Black pawn.

@ Not specifiable in LTL either!

Catalin Dima (UPEC) CTL 2/29

I
Computational Tree Logic (CTL)

Syntax:
Pi=p|PAD |- |VOP | VOP |V(PUP) | IOP | IO | I(PUP)
@ Grammar for the logic: the set of formulas is the set of “words” obtained by this
(context-free!) grammar, with ¢ viewed as nonterminal.
@ Syntactic tree for each formula.
» V,3: path quantifier (will see why!).
> U, 0, ¢: temporal quantifiers.
» Alternative notations (for the temporal operators): 0 ¢ = G¢, O ¢ = F ¢,
O¢=Xg.
» Each path quantifier must be followed by a temporal quantifier in the
syntactic tree of each formula.
@ Sample formula: p A 30(=YOp V V(pU(—g A 3O q))).
» Draw its syntactic tree!
@ Strict alternation:

» Anon-CTL formulap A 30(=VOp V (pU(—ag A 3O q))).
> ... because the U is not preceded by a path quantifier.

Catilin Dima (UPEC) CTL 3/29

I
CTL presented

@ Intuitive meanings:
» V(O p:inany next state p holds.

Regardless of the actions of the “environment”, at the next clock tick p holds.

» YV Op: p will perpetually hold in any continuation from the current state.

Whatever the environment does, p will hold forever.

» VYpU q: in any continuation from the current state q eventually holds, and
until then p must hold.

Catalin Dima (UPEC) CTL 4729

.
CTL formulas

@ Derived operators:

IO ¢ =-VO9
VO ¢ = V(trueld ¢)
J0¢ =-V0—9¢
0o =-v0e

HoU) = V(=pU(~¢ A —p)) A=V

@ Some intuitive meanings:
» J(Op: there exists a next state in which p holds.

The environment could make it possible for p to hold at the next clock tick.

» J0Op: there exists a continuation on which p holds perpetually.
» VO p: in all continuations p eventually holds.

There is a guarantee that p must eventually hold, whatever the environment does.

Catilin Dima (UPEC) CTL 5/29

HEE———
Branching time
The root in the following tree satisfies V O p:

The root in the following tree satisfies 3O p:

Catalin Dima (UPEC)

Branching time, contd.

CERL= =» «=» =T 9HAC

Catalin Dima (UPEC)

I
Transition systems

T =(Q,N,é,m, qo) with
@ Q finite set of states.
@ [finite set of atomic propositions.
@ (o € Q initial state.
@ / C Q x Q transition relation.
@ 7:Q — 2" state labeling.
Example: the hunter/wolf/goat/cabbage puzzle.

@ Nondeterminism: given q € Q, there may exist several ry, 12, ... € Q with
(@,r) €4,(ar2) €6....

@ Who chooses wich successor in each state?

» CTL answer: the environment does!

Catilin Dima (UPEC) CTL 8/29

BN
CTL semantics in transition systems
Recursively interpret each CTL formula in each state of the system
Given 7 = (Q,N,é,m,qo) and q € Q:

® gEpifpen(q).
?q '=¢1/\¢2 if....
@ gk —pif...

Catalin Dima (UPEC)

CTL semantics in transition systems

Recursively interpret each CTL formula in each state of the system

Given 7 = (Q,N,é,m,qo) and q € Q:
® gEpifpen(q).
@ qFEp1NAgifi..
@ g —¢if..
@ qgEVOe¢ifforallr € Qwith (q,r) € 6, r = ¢. Example:

u]
o)
I
ul
it
N
»
?

Catalin Dima (UPEC) CTL

CTL semantics in transition systems (contd.)
Given 7 = (Q,N,é, 7, qo) and q € Q:

@ g = VOg if for each run pin T starting in g with
p=0Q=0go— 01— ... = qn — ... (infinite!) we have that g, = ¢ for all n.

» In other words, p = [1¢!

@ q = V(¢1ligy) if for each run p in T starting in g with
p=0=0do— 01— ...~ qn — ... there exists n > 0 with g = ¢, and for all
0<m<n,dmE ¢1.

» In other words, p = ¢1 U ¢!

Catilin Dima (UPEC) CTL 10/29

I
Property specification

Tout utilisateur peut demander le retrait de ses données...

CNIL J

@ How do we interpret peut?
» p = demander le retrait... : V(130 p.

Strategy to win a game

Black has a strategy to put the game in a situation from which White king will never get
close to Black pawn.

@ g = White king never gets close to Black pawn : 3¢ v q.

Other properties related with choices, like noninterference.

Catalin Dima (UPEC) cTL 11/29

I
CTL properties on transition systems

@ Hunter/wolf/goat/cabbage puzzle.

» Does the initial state satisfy VO(h=1Aw =1Ag=1Ac=1)?
» What is the right property that says that the puzzle has a solution?

Catalin Dima (UPEC) cTL 12/29

I
CTL properties on transition systems

@ Hunter/wolf/goat/cabbage puzzle.

» Does the initial state satisfy VO(h=1Aw =1Ag=1Ac=1)?
» What is the right property that says that the puzzle has a solution?
Ith=1Aw=1Ag=1Ac=1)

Catalin Dima (UPEC) cTL 12/29

I
CTL properties on transition systems

@ Hunter/wolf/goat/cabbage puzzle.

» Does the initial state satisfy VO(h=1Aw =1Ag=1Ac=1)?
» What is the right property that says that the puzzle has a solution?
Ith=1Aw=1Ag=1Ac=1)

@ Deadlock freedom:

> Suppose the states of each process are pi, pz2, ps, resp. di, dz, gs-
» Deadlock freedom, i.e. all computations may progress:

v \/ (PC1=piAJOPC1#p)V \/ (PC2=q AJOPC; #1)

1<i<3 1<i<3

Catalin Dima (UPEC) cTL 12/29

I
Sample tautologies

@ Tautology : formula that is true regardless of the truth values given to the atomic

propositions.
@ Examples:
VOp«<30-p
vOp—=VYop
3030p = 30p

vYOMPAQ) « VOpAVYOq
(F0p—300a) = 30(p —)

@ Formulas which are not tautologies:
VO(pVva) < VOopVvVoq

@ To prove they are not tautologies, give a counter-model!

Catilin Dima (UPEC) CTL 13/29

I
Minimal set of operators

All CTL formulas can be expressed using the following set of operators :
@ Boolean operators (further reducible, e.g., to A and —).
o Vv(.
@ VU.
@ vQO.
Examples — express the following:
@ J(pUaq).
@ J0p.
The dual set of path-temporal operators can also be used as minimal set of operators!

Catélin Dima (UPEC) CTL 14 /29

B @
Other (linear) temporal operators: weak until, release

@ Weak untilpWwaq: pwWaq=pldqAOp.

@ Release pRq: pRg = —(—pU—q).

@ Can be extended to CTL operators: YpWd, Ip R q, etc.

Catalin Dima (UPEC)

Fixpoints

@ Globally, forward, until, release can be defined “inductively”:

FOp=pVv30O30p

Yop=..?

J0p=..7

vOp=...7
IJpUq=qVv (pA3IOMEUQ))
vpUq=..7

IPRg=qgA(pvO3IPRA))

Catalin Dima (UPEC)

I
Remarks on LTL vs. CTL (to be continued!)

@ Both LTL and CTL formulas are interpreted over transition systems.
@ An LTL formula speaks about what happens on one run that starts in a state.
» Time passage is determined by some superior entity, choices do
not exist and no dilemma about possible continuations exists.
» A posteriori analysis of the behavior of a system (but behaviors may
be infinite!).
@ A CTL formula speaks about what could happen in various runs that starts in a
state.
» Time is nondeterministic and choices must be taken into account,

good/bad things may happen due to good/bad decisions and continuations
depend on them.

» A priori analysis of the possible evolution of a system.
@ Some LTL formulas (but not all') can be represented as CTL formulas:

» Checking Op holds at a state g in a transition system requires checking
that all runs starting in g satisfy O p.

» Hence, from this state-centered point of view, checking [l p amounts to
checking VO p.

» No longer holds for more complex formulas!

» Simply because V(O p AOq) is not a CTL formula!

Catalin Dima (UPEC) CTL 17/29

I
The model-checking problem

@ Given a CTL formula ¢ and a finitely presentable model M, does M = ¢ hold?

» Finitely presentable tree = transition system over AP.
» The tree = the unfolding of A.

@ Note the difference with LTL models :

» A transition system embodies an uncountable set of models for LTL !
» A transition system embodies a unique model for CTL !

Catilin Dima (UPEC) CTL 18/29

CTL model-checking instances

@ Which state satisfies 3¢ p?
» Search for a reachable state labeled with p.
@ Which state satisfies 30 p?

» Search for a reachable strongly connected set labeled with p.
» Only states in this SCC satisfy 3 p.

Catilin Dima (UPEC) CTL 19/29

I
CTL model-checking [Clarke & Emerson]

@ State labeling algorithm:

» Given formula ¢, split Q into Q4 and Q-

» Structural induction on the syntactic tree of ¢.

» Add a new propositional symbol py4 for each analyzed ¢.
> Label Q, with p, and do not label Q-4 with pg.

Catilin Dima (UPEC) CTL 20/29

B @
CTL model-checking (2)

@ For¢p=VYOp

Qvop={q€Q|Vq €d(a),pen(d)}
Q-vop={a€Q|3q €d(a)p¢&n(@)}
@ Example...

Catalin Dima (UPEC)

B @4
CTL model-checking (3)

@ ¢ =d0p.

» Qs50p contains state q iff g is labeled with p and belongs to a circuit
containing only p states.

> Q—EIEIp =Q\ QEIDp-
@ Example...

Catalin Dima (UPEC)

CTL model-checking (4)

@ ¢=3(p1UUp2)

*

@/

e/ X¢)
P1
@ Example...

> Qs up,) CONtains state q iff 39’ € Q s.t.:
> Q-a(prup)) = Q\ Qapruupy)-

Catalin Dima (UPEC)

CTL model-checking example

Catalin Dima (UPEC)

I
Properties of the (first variant of the) model-checking
algorithm

@ |t seems that the model-checking algorithm requires graph algorithms

» Successors for 30.
» Reachability analysis for 3.
» Circuits for 30.

@ But could we take advantage of the fixpoint expansions of the temporal
operators?

JO0p=pA3O3ILp
Ipug=qVv(pAIO(PUQ))

Catilin Dima (UPEC) CTL 25/29

I
Fixpoint variant of the model-checking algorithm

@ Given a formula ¢ and a transition system M = (Q, qo, 9),
@ ... denote Saty(¢) the set of states in Q which satisfy ¢.
@ ... and denote post(q) = {r € Q | (q,r) € 6}.

Theorem
@ Sat(I(¢U 1)) is the smallest subset T of Q such that:
© Sat(y) C T and
Q Ifq € Sat(¢) and post(q) N T # @ theng e T.
@ Sat(vOe) is the largest subset T of Q such that:

@ sat(y) DT and
© Ifq e T then post(q)NT # 0.

The last line can also be read as:
@ ForanyqeQ,ifpost(q)NT =0thenq gT.

Catilin Dima (UPEC) CTL 26/29

I
Fixpoint variant of the model-checking algorithm

How to compute Sat(3(¢U v)):
© Start with T = Sat(v).
@ Append qto T if q € Sat(¢) and post(q) N T # 0.
© ... until T no longer grows.
How to compute Sat(30 ¢):
© Start with T = Sat(¢).
@ Eliminate, inductively, from T all states for which post(q) N T = (.
© ... until T no longer diminishes.
Examples....

Catalin Dima (UPEC) cTL 27129

Fixpoint variant of the model-checking algorithm

3E0qUYODp)

@ Compute Sat(3(0q).

@ Compute Sat(v O p).

@ Instantiate T = Sat(V O p).

@ AppendsttoT if st € Sat(3(q) and post(st) € T.

Catilin Dima (UPEC) CTL

28/29

Fixpoint variant of the model-checking algorithm

3E0qUYODp)

¥E30pU30q)

Catalin Dima (UPEC)

ul
it
N
»
?

post and pre

How to compute Sat(Jp U v):
© start with T = Sat(¢).

© Append qto T if q € Sat(¢) and post(q) N T # 0.
© The same with T := pre(T) N Sat(¢).

@ Herepre(T)={q | 3Ir € Q,(q,r) € 6}.

= &
Catalin Dima (UPEC)

I
post and pre

How to compute Sat(3pU):
© Startwith T = Sat(v).
© Append qto T if q € Sat(¢) and post(q) N T # 0.
© The same with T := pre(T) N Sat(¢).
© Herepre(T)={q | 3r € Q,(q,r) € 6}.

How to compute Sat(30 ¢):
© start with T = Sat ().
@ Eliminate, inductively, from T all states for which post(q) N T = (.
© Thesamewith T :=pre(T)NT
© Here pre(T) = Q\ pre(Q\ T).
© In other words, pre(T) contains all the states whose successors all belong to T.

Catilin Dima (UPEC) CTL 29/29

