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Introduction

Alternating time temporal logi€ATL, (Alur et al., 1997; Alur et al., 2002)) was in-
troduced as a reasoning tool for the analysis of strategic abilities of coalitions in infinite
multiplayer games with temporal winning conditions. Several variant$’Bf have
been proposed in the literature. The main differences arise from various restrictions
on the considered games such as the players’ information on the game state, which
may be eithecompleteor incomplete(imperfec}, and their ability to keep complete
record of the past, which is known psrfect recall(Jamroga & van der Hoek, 2004;
Schobbens, 2004). A classification of the variants of epistemic linear- and branching-
time temporallogics (without the game-theoretic modalities) wiynchronytaken in
account too can be found in (van der Meyden & Ka-shu Wong, 2003; Halpern et al.,
2004). Some subtle issues related to the commitment to fixed strategies are reflected
in the semantics of the cooperation modalities of the systeshZdf from (Agotnes
et al., 2007). The awareness of coalitions of the existence of winning strategies is an-
other aspect ofl TL semantics which is specific to the case of incomplete information,
has become a source of ramification too, and is important to our study.

The completeness of a proof system and the decidability of validityl fBE with
complete information was demonstrated in (Goranko & van Drimmelen, 2006). As
known from a personal communication of Mihalis Yannakakis to the authors of (Alur
et al., 2002), model-checking is undecidable #iF'L with incomplete information
and perfect recall. (The case of complete information admits a polynomial time al-
gorithm, and a self-contained proof of the undecidability can be found in (Dima &
Tiplea, 2011)). This undecidability has stimulated the introduction of several systems
(Schobbens, 2004; van Otterloo & Jonker, 2005; Jamroga & van der Hoek, 2006)
with restrictions leading to more feasible model-checking. An extensive study of the
complexity of the model-checking problem for the variantsi@fL which arise from
allowing imperfect information and/or perfect recall was done in (Dix & Jamroga,
2008).

The formal analysis of multi-agent systems has justified combinifi, with
modal logics of knowledge (van der Hoek & Wooldridge, 2003; Jamroga & van der
Hoek, 2004). Such combinations can be viewed as extending temporal logics of
knowledge (cf. e.g (Halpern et al., 1995)) in the wa§'L extends computational
tree logicCTL. Epistemic goals require a semantics with partial informatioen(9
for agents to interpret. Variants of the cooperation modalities which correspond to dif-
ferent forms of coordination within coalitions were proposed in (Jamroga & van der
Hoek, 2004). The recent work (Jamroga & Agotnes, 2007) proposes a combination of
ATL with the epistemic modalities for collective knowledge. In that system formulas
are interpreted atetsof states and the existence of strategies which are winning for
all the epistemically indiscernible states can be expressed by combining epistemic and
cooperation modalities. Such strategies are caltld@fbrm with respect to the corre-
sponding form of collective knowledge.
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Along with the alternating transition systems proposed in (Alur et al., 2002],
has been given semantics onterpreted systemsvhich are known from the study
of knowledge-based programs (Halpern et al., 1995), and other structures, some of
which have been shown to be equivalent (Goranko & Jamroga, 2004). Most of the
proposed extensions of T'L and other temporal logics by epistemic modalities in-
clude only the future temporal operators and the indiscernibility relations which are
needed for the semantics of t88 epistemic modalities are either defined as the equal-
ity of current local states of the corresponding agents or assumed to be given explicitly
in the respective structures and required to respect equality of local state (Lomuscio
& Raimondi, 2006a; Lomuscio & Raimondi, 2006b). The axiomatisation of knowl-
edge in the presence of past temporal operators has been studied in (French et al.,
2005), where indiscernibility is defined as equality of local state agdifil with
epistemic modalities extends epistendid’L. Model-checking an extension &fI'L
by epistemic modalities, including common knowledge, with perfect recall semantics,
but no past temporal operators in the language, has been studied in (van der Meyden
& Shilov, 1999). Model-checking algorithms for a variant 6f'L with knowledge
(but no collective forms of knowledge) have been proposed in (Dima, 2008; Shilov
& Garanina, 2002). Extensions 6fT'L by modalities to reason about indiscernibil-
ity with respect to path observations in the past have been proposed in (Alur et al.,
2007). The model-checking problem for a corresponding more expressive system of
p-calculus has been found to be undecidable.

In this paper we continue the study of a variantASfL with epistemic modalities
proposed in our previous work (Guelev & Dima, 2008; Dima et al., 2010). In our sys-
tem of ATL, along with the future temporal connectives, which are allowed to appear
in combination with the cooperation modality, we allow the unrestricted use of the past
connectives. This greatly facilitates the formulation of epistemic goals. We demon-
strate the use of the past connectives on the example of exprédsipgbjectives in
a subset of the language wifhas the only iterative future temporal operator. We show
that, in models with finitely many successors to every state, goals of the({ddm)
are equivalent to goals which amount to the coalition eventually learning that the ref-
erence run went through a sequence of states satisfying the considénefbrmula.

This form of epistemic goal can be written using jdstthe epistemic operator and
past temporal connectives. We assume incomplete information and perfect recall and
a semantics for the cooperation modalitiesAdf L which renders the model-checking
problem decidable. According to our semantics, strategies are supposed to be uniform
with respect to the distributed knowledge of the coalition. Furthermore strategies are
functions on the combined local history of all the members of the coalition. This
corresponds to the unrestricted sharing of information within the coalition in order to
follow the strategy in a coordinated way. With strategies that are uniform with respect
to distributed knowledge and allow the agents to act using their combined knowledge
a coalition can be viewed as a single player whose abilities and information are the
sum of those of all the members.
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We propose a Hilbert-style proof system for our logic and demonstrate its com-
pleteness on the subset in which the cooperation modalities can be used only in formu-
las of the formg(T")) o ¢, (T')0¢ and{(T')ODrp, whereyp is unrestricted. Our com-
pleteness proof yields the finite model property of the considered subset and builds on
techniques from temporal logic (cf. e.g. (Lichtenstein & Pnueli, 2000)) and Goranko
and Drimmelen’s work (Goranko & van Drimmelen, 2006) 4L with complete in-
formation. As mentioned above, goals of the fofi) (¢xUv), which are left outside
the scope of the subset, can be expressed in it on the class of models with finitely many
successors to every state. Unfortunately we do not know whether the expressing ax-
iom schemata have sufficient deductive power to provide completeness for the whole
logic when added to the proof system that we show complete for the subset.

We also give a model-checking algorithm for our variantddfL. A rather ad-hoc
model-checking algorithm was already given in (Guelev & Dima, 2008), where the
past temporal connectives were allowed only in the scope of the epistemic modality.
The algorithm in this paper is an extension of that from (Dima et al., 2010), where the
past connectives were excluded and the logic was defing@duoe arenaslt is based
on transition system manipulation techniques known from the theory of games with
partial information (Chatterjee et al., 2006) and involves automata on infinite trees.
As mentioned above, the assumption that coalition strategies are coordinated is cru-
cial for achieving decidable model-checking. According to a private communication
of Yannakakis to the authors of (Alur et al., 1997), model-checking is undecidable
in the case of uncoordinated strategies. A self-contained proof of this result was ob-
tained in (Dima & Tiplea, 2011), where it was shown that two-player coalitions are
sufficient for the undecidability. It is not difficult to see that this result corresponds to
the undecidability of solving two-player games with both players having partial ob-
servations and a non-observable winning condition. Some results that are relevant to
model-checkingd TL* can be found in (Pnueli & Rosner, 1990) too.

Structure of the paper After brief preliminaries onATL and its semantics on in-
terpreted systems we introduce our extensiond6f, by a modality for distributed
knowledge and our form of the semantics of the cooperation modalities. In the sub-
sequent sections we present our axiomatisation of the logic and our model-checking
algorithm. We conclude by discussing some open problems for future work.

1. ATL with incomplete information, perfect recall, communicating coalitions
and past (ATLLY

Here follows a BNF for the class of 7L}, formulas, and some informal reading
for each of the main connectives:

o, = L | logical falsehood;
D | atomic propositiorp holds fiow);
(p=) | if p, theny;
|

© held one step ago;
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(pSv) | eithery holds now, or) held sometime before,
andy has been true ever singeheld last;

Dry | T know ¢ (from their combined knowledge);

{(T) o | T can enforcep in one step;

{(TH(eUy) | T can enforce reaching a state satisfyifg
with ¢ being true all the way to that state;

[T](pU) I" cannot prevent reaching a state satisfying
with ¢ being true all the way to that state.

Herel ranges over finite sets of agents, an@dnges over propositional variables. We
write Var(y) for the set of the propositional variables which occugpin

In this paper we defindTL%P oninterpreted systemsAn interpreted systers
defined with respect to some given finite &&t= {1,..., N} of agents and a set
of propositional variablegatomic propositions AP. There is also anvironment
e ¢ ¥; in the sequel we writ&, for X U {e}.

DEFINITION 1 (INTERPRETED SYSTEM$. — Aninterpreted systerfor > and AP
is atuple of the form{(L; : i € £.), I, (Act; : i € ¥.),t, V) where:

L;,i € ., are nonempty sets tfcal states Lr stands for[[ L;, I' C X;
el

elements oLy, are calledglobal states

I C Ly, is a nonempty set afitial global states

Act;, i € ., are nonempty sets attions Actr stands for[[ Act;;
el

t: Ly, x Acty,, — Ly, is atransitionfunction;

V C Ly, x AP is avaluation of the atomic propositions.

For everyi € ¥, andl’,l” € Ly,_ such that; = [/ andl, = [/ the functior¢ satisfies
(t(l';a))i = (1", a))s-

In the literature an interpreted system also includpstocol P; : L; — P(Act;)
for everyi € .. P;(1) is the set of actions which are available when its local state
is [. Protocols are not essential to our study here. Setting the effect of all the currently
prohibited actions to that of some fixed permitted action (which is always supposed
to exist) allows a system with arbitrary protocols to be transformed into an equivalent
one in which all actions are always permitted. Our variant of interpreted systems also
has a technically convenient feature which we borrowed from (Lomuscio & Raimondi,
2006a), where a system dfT'L withoutthe epistemic operators was intoduced, and
is not present in (Halpern et al., 1995), nor in the model-checker MCMAS (Lomuscio
etal., ): every agent’s next local state can be directlty affected by the local state of the
environment through the transition function. The logic admits equivalent semantics
on other types of models of infinite games as well. See (Goranko & Jamroga, 2004)
for a comparative study for the variants of such structures for the case of complete
information. Our model-checking algorithm works for finite interpreted systems. We
also present some axioms which link the meaning.0f)-goals to that of a special
form of {-goals on the class of the interpreted systems with finite sets of actions and
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finite sets of initial states, which entails the countability of the respective generated
submodels.

DEFINITION 2 (GLOBAL RUNS). — Given ann < w, arun of lengthn is a sequence
r=1%"...a"""" € Ly, (Acts, Ly, )"
such thatl® € T and 7+ = t(1%,a7) for all j < n. We denote the set of all runs

of lengthn by R™(IS). We denoteJ R™(IS) by Rf"(1S). Aninfinite runis a
sequence e

r=1""...a" """ ... € (Lyg, Acts,)*

such that’ € I andli’™t = t(I7,a?) for all j < w. We denote the set of all infinite
runs byR“(1.S). We denote the length of rurby |r|. We pulr| = w forr € R¥(IS).
We writeR(1S) for Rf"(1S) U R*(IS).

Giveni,j < wandr = 1%"...a" 1" € R*(IS) such thati < j < n, we write
rli..j] for la® ... .a? =117,

DEFINITION 3 (LOCAL RUNS). — Givenr = °a°...a" 71" € Ly, (Acty, Ly, )"
andI" C ¥, we writerp for the correspondindpcal run

l?\a% . a?_llF S LF(ACtFLF)n

of T'inwhichll = (I : i e T) andal. = (a] :i € T).

K2

DEFINITION 4 (INDISCERNIBILITY). — Givenr/,r” € R(IS) andi < ||, |r"|,

we writer’ ~p; v if '[0..4]r = r”'[0..d]r. We writer’ ~r ¢ for the conjunction of

' e~op e 7 and || = [

Runs of lengthn < w are indeed sequences »f + 1 states and actions. The
definitions ofr[i..j] andrr for infinite r are similar. Sequences of the forpconsist
of ()s, and, consequentlly;]y is the class of all the runs of lengfh. Obviously~r ,,
and~r are equivalence relations di(1.5).

DEFINITION 5. —We denotgr’ € R(IS) : v’ ~p r} by [r]r.
Our semantics fod TL5! is based on a coordinated form of strategy.

DEFINITION 6 (COORDINATED STRATEGIES AND OUTCOMES INATLDY)., —
Given al’ C X, astrategy fol™ in 1.5 is a function of type

{rr:7 € R™M™(1S)} — Actr.

We writeS(I", 1.5) for the set of all the strategies fdt in the considered interpreted
systenV S. Givens € S(I', I5) andr € Rf"(1S), we writeout(r, s) for the set

{r'=1%"...a" " ... € R*(IS) : ¥'[0..|r]) = r,al = s(r[0..5]r) for all j > |r[}.
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of theoutcomesof » whenT sticks tos from time|r| on. Given anX C Rf"(I9),
out(X,s)is |J out(r,s).
reX
Strategies, as defined above, are determined by the local view of the considered
coalition and are thereforgniform

DEFINITION 7 (MODELLING RELATION OF ATL%P . — TherelationlS,r | ¢ s
defined forr € Rf"(15) and formulasy by the clauses:

IS,r [~ L1

18,1%°...a" " =p iff V(I p) for atomic propositiony;

ISSrEe=1v¢ iff eitherIS,r = porlIS,rE;

IS,r |=Dry iff IS,r' = forallr’ €[r|r;

IS;rE(T) oy iff there exists as € S(T", S) such that

IS, r'[0..|r| + 1] E ¢ forall v’ € out([r]r, s);
IS,r = (T)(pUy) iff there exists an € S(T', S) such that

for everyr’ € out([r]r, s) there exists & < w
such thatZ.S, r'[0..|r| + 4] = ¢ forall i < k and
IS,7'[0..|r] + k] = ;

IS,r = [I(eUy) iff foreverys € S(I', S) there exists
anr’ € out([r]r, s) and ak < w such that
I1S,7'[0..|r| +1i] E ¢ forall i < kand
IS,7'0.|r| + k] =1,

IS,r = op iff |r| >0andIS,r[0..|r| —1] = ¢;

I1S,r E (oSv) iff there exists & < |r| such that
I1S,r[0.n—i] Eeforalli <k
andIS,r[0..n — k] = 4.

Validity of formulas in entire interpreted systems and on the class of all interpreted
systems, that is, in the IogktTLﬁ%P, is defined as satisfaction at dltlength runs in

the considered interpreted system, and at all@dHength runs in all the systems in the
considered class, respectively.

As mentioned in the introduction, coordinated strategies rehd@prRp decid-
able for finite interpreted systems, as opposed to the weaker form of coalition strategy,
which is established in the literature.

DEFINITION 8 (UNCOORDINATED COALITION STRATEGIEY. — Anuncoordinated
strategyfor T" is a vectors = (s, : i € I') of functionss; of type{r; : r €
RM(18)} — Act,.

Obviously uncoordinated strategies can be viewed as a special case of coordinated
strategies. Interestingly, our completeness result for a subget. mP below applies
to the semantics based on uncoordinated strategies as well. Moreover, it applies even
in case we allow onlgonstantstrategies, that is, strategiesvhich satisfys(r) = a
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for some fixed (vector of) actionsand allr. All these classes of coalition strategies
produce the same set of valid formulas, that is, the same logic.

AbbreviationsT, —, V, A and< have their usual meanings. To keep the usé of
and) down, we assume that and the unary modalities, ..., including the derived
ones which we introduce below, bind the strongest, the binary moda(ifigs.U.)
and[I'](.U.), and the derived ones below, bind the weakest, and their parentheses
are never omitted, and the binary boolean connectives come in the middle, in de-
creasing order of their binding power as follows; Vv, = and <. In formulas,
coalitions can be enumerated without thend }. E.g., the shortest way to write

({1 (((p = @) AP1yr)UDa,51(r V q))) is (1) ((p = @) A P1rUD2 3(r V q)).
The temporal connectived andB and the temporal constahtwhich identifies
0-length runs, are defined by the clauses
S = (TSp), Bp = -6—pandl = -oT.

We abbreviates . .. © ¢ to ©" . We writeP for the dual ofD:
N——

n times
Pre = =Dr—p.

The rest of the combinations of the cooperation modality and future temporal connec-
tives are defined by the clauses

(T)0p = (TH(TUyp) [T]0¢ = [TT(TUp)
(I'HOp = =IO~ [T]0p = =(I') O~
(T)(eWep) = =[C](—pU= A=) [L](eWe) = ~(T) (~pU— A =)

In our model-checking algorithm, to facilitate the presentation, we a@BptoW1))
as basic instead ¢f’](¢U1), which can be defined as(I")) (—yyW-1) A —=p).

2. Finite branching, a reduction of (.U.)-goals to epistemic)-goals and the
subsetATLY,

Given a formul&, we writelevelr¢£ for the formula

Dr(§ A =69€) A (D) o (D)0

PROPOSITIONY. — Letr € Rfi"(1S) and letlS,r = levelré. Then, for allr’ €
R“(IS) such that’[0..|r|] ~r =, I.S,7'[0..k] = £ is equivalent td; = |r|.

Furthermorelevelr£ is equivalent tdrlevelré in ATLY . Givenanr € R*(1S)
such that/ S, r = levelrg, the knowledge ofevelré can be used by to realise that
the actual run is of the same lengthrasTo obtain/S,r |= levelrg, one can always
chooset to bes!"ll. Formulasy which change their truth value at most once along
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every run can sometimes be used to defigetlaat identifies the point of change by
puttingé = n A =Sn. Examples includ&p andD a4 (1 A p).

ProPOSITION10. — The formula

levelp§ = ((I') (#Uy) < (I)ODro (v A (45¢))) 1)

is valid on the class of interpreted systems with finitely many initial states and finitely
many successor states to every given state.

This formula states that F is capable of enforcingpUv), then it is also ca-
pable of enforcing a development which givésufficient evidence thatpUq)) was
realised.

PROOF — Let us abbreviate) A (©¢S¢) by ®. Assume that € Rf"(1S) and

IS,r = levelpg A ~(T')ODro®. Then for everys € S(I',IS) there exists an
' € out([r]r,s) such that for allk < w there exists an”’ ¢ RI"I**(IS) such

thatr” ~p |, " @ndIS,r" = =0®. Let (T, <) be the forest in which

T ={r'[0.|r] + k] : " € out([r]r, s), k < w}

andr’ < ¢ iff |#”| > 0 andr’ = ”[0..]r"| — 1]. Since Acty, is finite, (T, <)
is a finitely branching forest. SinckS has finitely many initial stategT", <) is the
union of finitely many trees. According to our assumptigf, <) contains chains
ro < ... < rg Of arbitrarily big lengths such thdtS, r™ = —~® foralln = |r|,..., k.
Then, by Konig's Lemma(T, <) has an infinite sequence of nodges< r < ...
such that’ S, r, = —~® for all £ < w. A direct check shows thatif € (Ly_Acts, )*
is determined by the conditions[0..k] = ri, k < w, thenr’ € out([r]r, s) and
I1S,7'[0..k] = @ forall k > |r|. Sincel S, r'[0..|r|] = levelrg, I.S,r'[0..k] |= & holds
for k = |r| and no othek, by Proposition 9. Now S, +'[0..k] = @ for all k& > |r|
implies that’ does not satisfy the objectieoUv)) from time || on. Since this holds
aboutanys € S(T', I.S), IS,r = (') (pU).

Now assume thats, r |= levelpEA () ODrO®. Then there exists ane S(T', 15)
such that for every’ € out([r]r, s) there exists & > |r| such thatl.S,r'[0..k] E ©.
The latter means thdtS, ' [0..k] |= ¢, there exists am < k suchthat' S, '[0..m] = &,
andIS,r'[0..n] = ¢ forallmn = m,...,k — 1. The only possible choice for is
m = |r|, by Proposition 9. Hence satisfies(¢U) from time |r| on, and therefore
the existence of amas above entailsS, r = (I')) (¢U). |

Similarly, in interpreted systems with finite degree of branching we have
levelp = ([I](¢Uy) & [CIOPro(¥ A (©958))). )

A counterexample for the case of infinite degree of branching can easily be obtained
for, e.9,[1](TUp), by bunching togethes many runs, with ruri reaching a-state at
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step: for the first time in a system in whichis undetectable to agent (Agent1 can
be prevented from detectinguy, e.g., choosing’s local state space to be a singleton.)

The formulas (1) and (2) show that goals of the fofg«y) can be reduced to
goals of the forms)Dr6 andIDr6 in such models, yet with the choice 6fin the
latter goal form depending on the particular finite run of the model, and not only on
the giveny and). In other words(.U.)-goals are locally expressible by epistemic
{¢-goals. The relevant epistem{egoals are about eventually learning that the orig-
inal (.U.)-goal has been achieved. Goals of the formpsand [y can be similarly
reformulated as epistemic goals because

Farepr (I) 0@ < (I) e Drp and =4 pppp (I)0e < (I)0ODre. (3)

In these latter cases no auxiliary formula is involved to make the corresponding epis-
temic goal depend on the reference finite run.

The formulas (1), (2) and (3) show thaf'L7¥ can be regarded as a theory in a
subset of its in which goals are restricted to have the farsd, (1D and ODr6.
We call this subseﬂTLfR to indicate that) (and its duald) are the only fixpoint
temporal operators allowed to combine with the cooperation modalities. The syntax
of ATLY, formulas can be defined by the BNF

pu=Llpl(e=9¢) o] (¥Se)|Dre | (T) op| (T)Te | (I)0Dre

and its semantics on interpreted systems is as thaﬂtﬁf}f. We keep the double
occurrence of” in formulas of the form(T")) ODr for the sake of compatibility with
the more general syntax of L5, .

In the sequel we present a complete axiomatisatioAﬁL?R with respect to the
class of its finite models. The axiomatisation is sound on the class of the interpreted
systems with finitely many initial states and finitely many successors to every state,
already considered in Section 2. The completeness entails that vaIidJM“be
formulas is decidable on this class of systems as a corollary to the (strong) finite model
property. Both the completeness and the decidability of validity apply to the case of
uncoordinated strategies as well.

3. A complete proof system forATL,

The system consists of the set of all propositional tautologies, théviotkis Po-
nens(M P) and the following axioms and rules:



An ATL with Knowledge, Perfect Recall and Past... 11

Axioms and rules about the epistemic operdor

(Kp)

Dr(¢ = ) = (Dr¢ = Drv¢)
Dry = 9

Dry = DrDrv

—Dry = Dp=Dry

Dl;pw = Druay

Dre
X = Pr(pA¢) VPA(—p A1)

X = Pruay

p & Var(¢) U Var(x)

Axioms and rules aboyt and (.S.)

(el)
(Ko
(FP(s.)

)

)
(Monog)
(Ne)

-0l
O(p =) & (op = oY)

(eSY) & YV (p A S(pSY))
=1

eséoé@w
B

GeneralATL axioms and rules

—(T) o L

(IhoT

(Ihown{(A\T) o = (L UA) o (pA)
=1

<<F22 op= () o

(e

Axioms about the interaction between the temporal, the cooperation and the
epistemic modalities

The condition of finite degree of branching from Section 2 is relevant to the sound-
ness ofLFP yp, which can be shown unsound on the class of all interpreted systems.

(I) op < Dr{T) op,
(I'HOp < D),
©Dry¢ = Droy

(I o (©p Atp) < Drop A () o9,
DrlV Dpr-l

(T)ODry < Dry v (T)) o (T)ODre
Pryp A (0)O(Pry = [T] o Prep) = [T]OPry
(IO < Dry A (L) o (T) Ty

() 0@ < () o Drep
()0 < (I)ODre

S(O) o v = (D) o o0

Establishing the soundnessid¥ " and L F'P ,p requires some non-trivial steps, which
we give in detail next.
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INT: This rule is easier to prove correct by first reformulating it in term® gfby
means of duality and some De Morgan transformations:

Dr(p = ¢) ADa(-p = v¥) = x

INT'
( ) Drua® = x

p & Var(¢), Var(x).

This formulation enables the informal readiifig. conditionp can be identified such
thatT" know+ in casep holds, andA know+ otherwise, thed” U A know un-
conditionally, and vice versa, and therefore the same logical consequentaas be
obtained from both premisedn a language with quantification over propositional
variables, which evaluate to sets of states, it would be possible to refi{acéy the
axiom

Ip(Dr(p = ) ADa(=p = 1)) < Druav.

In order to enable the construction of suitable valuationspfowhich we need for
establishing the soundness ¥ T', we use the fact that the satisfaction of formulas
at an arbitrary interpreted systehy is preserved under thenravellingof 7S into a
correspondindorest-likeinterpreted systemiS”, which is defined as follows:

DEFINITION 11. —Theunravelling of interpreted system
IS = ((Li :i € B), I, (Act; i € £.),t, V),
is the interpreted system
IST = ((L1,..., Ly, LT), I7 (Act; i € B.),t7, VT,
for the same vocabularg P and set of agents, where:

LT = Rin(1S);

IT = {<127 <lEvle>> : <lEvle> € I}v

tT'((Ig,7),a) = (I, ral’), wherel’ = t({Is,l.),a), in casel is the last state im;
VT ((Is,r),p) iff V(I,p) in casel is the last state im.

A direct check shows that all the reachable stateg9h have the form(ls, r)
wherely is the vector of the last local states of the agents. ifihis renders defining
VT andt” on states which do not have this form irrelevant. Furthermore, for all
n < w,r=10""t. . .a" 2" 1a" " € R*(IS) and formulasp, IS,r = ¢ is
equivalent tal ST, T |= o where

r = (12, 7[0..0)a’ (12, r[0..1])a* . . . a™ 2 (1%, 7[0.n — 1])a™ (IR, 7).

Hence,/ ST and S satisfy the same formulas. Furthermore, for every R (I5)
there exists a unique ruff’ € R (1ST) such that the last environment local state in
rTisr,i.e.tT defines dorest with one tree rooted at each initial state fréf This
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makes it possible to use the satisfaction of an auxiliary propositional vayiabld P
as the membership condition for an arbitrary sefiife runsin 757

Now let IS, r = Druav A —x for somer € Rf"(1S). Then the same formula is
satisfied at” in IS According to the side condition diVT”’, we can assume that
the variablep from the premiss of the rule is not iAP. Let ISZ be an interpreted
system exactly likd S”, except for having included in the domain of its valuation
relation, which we denote by”. LetV,” ((Iz,7’), p) be equivalentte’ € Rf"(15)\
[r]r. Then a direct check shows thet! , ” |= Dp(p = ¥) A Da(—p = ). Since
IS! is the same a&S” for formulas written inAP, IST, 7" |= —x. Hence we have
shown that, unless the conclusionI®fT” is valid, the premiss is not valid either.

INT is a special case of a rule which was proposed in (Balbiani & Vakarelov,
2001) as part of an axiomatisation of propositional dynamic logic witérsection
which is the operation needed to define the indistinguishability relations of distributed
knowledge:[r|r = () [r];- The unravelling step in our soundness argumenf{f&F

el
is needed in order %o handle our perfect recall semantics. An alternative approach to
the axiomatisation of distributed knowledge was taken in (van der Hoek & Meyer,
1996). That work suggests th&YT might be expendable, but we found the technique
of driving models to conform with the standard semanticDefby a sequence of
specialising tranformations from that work too heavy to adapt to our setting as it has
many other non-trivial features.

LFPyp: Lets € S(T, 1S) andr € Rf*(1S). Then
IS, r = (0)0(Pryy = [I o Pry)

means that for alt’ € R/ (1S) and allk > |r|, the existence of an’ € [r'[0..k]]r
such thatl.S, " = 1 implies the existence of arf” € out([+'[0..k]]r, s) such that
IS,7"[0..k + 1] = . Together withIS,r | Prv, this entails the existence of
an infinite sequence of finite rung, , 7| . ,.... such that-, < [r]r, and for every
k > |r| there exists am;,, € out([r;]r,s) such thatr;  , € [r/ ,[0..k + 1]]r,
andIS,r;, = ¢ forall k < w. Sincer,[0..n] € [r,]r foralln € {|r|,...,k},
IS,r.[0.n] = Pry forallk > |r| and alln € {|r|,..., k}. By Konig’s Lemma, this
entails the existence of an infinitg, € out([r]r, s) such thatlS, r,[0..k] = Pr¢
for all £ > |r|. Since no restriction was imposed on the choice &f S(T",I5), we
havelS,r = [I]OPry. The soundness of the rest of the axioms and rules can be
established by direct checks.

The soundness of the axiom&Pyp) and (LFPyp) shows that(T'))ODr(.) ad-
mits a fixpoint characterisation, which is crucial for the possibility to adapt standard
techniques for demonstrating the completeness of the system. No such characterisa-
tion can be achieved for genefall.)-goals, because of the validity of the equivalence
(T) (eUy) < Dr{I')(vU%) in which Dr, if considered separately, has a greatest
fixpoint characterisation, where&d).) is a least fixpoint. In practical terms the dif-
ficulty arises from the fact that achievirigU«) need not become known to the con-
sidered coalition immediately, that is, as soon as a state which satisfeseached
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for the first time, and, in the case of infinite sets of available actions, which we have
ruled out, may as well never become known, despite that the right strategy is being
followed.

4. Completeness of the proof system foATL?R

In this section we fix an arbitrary formulawhich is consistent in our proof system
and construct a finite interpreted system which satisfies it. By a standard argument this
entails the completeness of our proof system. For the sake of simplicity we assume
thaty is consistent with and construct adS which satisfiesy at an initial state({-
length run.) The satisfiability af at any finite run is equivalent to the satisfiability of
[0]O at a0-length one. The satisfying interpreted system is built for a fixed set of
agent = {1, ..., N}, which is assumed to include all the agents occurring, iand
possibly others. In complete informatieti'L, with no environment, satisfiability may
depend on whether all the membersXobccur in the considered formula (Goranko
& Shkatov, 2009). In our setting, there is no such difference because the environment
can simulate any number of agents and yet cannot be described as being part of any
coalition in the logic.

4.1. Auxiliary propositional variables

The vocabularyA P for the interpreted system to be constructe¥as(yp). The
construction involves derivability from formulas with occurrences of some fresh aux-
iliary variables, which we introduce next. Givére ¥ andI’ C X, we writeI'<? for
'n{1,...,i— 1}, for the sake of brevity. The auxiliary variables that we are about
to use are

gy ,i,r for all formulasy written in AP, I" C ¥ andi € p<maxl’

We use these variables to construct the formulas

_ . r .
Poir = dpirh N\ —apgr, i € T andpymacr e =\ i

jer<i jEr<maxD
Obviously these formulas satislf—y_\/ Pyi,0 andE —(py i A py s r) fori # j. We
PUtPy maxr,r = T incasel’| = 1.16\/F\/e usep,; ;,r to construct the formulas
DiryY = Di(py,ir = ¢), i € T

Informally, p,, ; - can be regarded as a condition which, together wtbther knowl-
edge, is sufficient fof to infer .

Given a set of formulas written in AP, we writez for the set

2 U{D; v : Var(y) C AP+ [\ 2z = Dr¢p,i € I,T C £}
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LEMMA 12. — Letz be a consistent set of formulas writtendd. Thenz is con-
sistent too.

PROOF — Lety andl’ C X be such thabriy € x. Assume that is an inconsistent
finite subset oft for the sake of contradiction. Thely U {D;(py jr = ¢) : j € I'}

is still a subset of;, and obviously inconsistent too. The only formulas in the latter set
which have occurrences of the propositional variallgsr, j € I'<™#*!" are those
explicitly listed above.

Given an arbitrary set of formulaswith no occurrences afy ;r, i € I' \ minT,
let

yi =y U{D;(pyjor = ¢) : 5 € T} U{Dragi,. maxr)( /\ “qy,jr = V)}
Jer<s
foralli € I'. Then, ifi > min T, the inconsistency af; implies the inconsistency of
y wherei’ = max I'<?, by a single application of the ruleVT to

Pi(qpro A N —aqyjr A=Y)V

/\ Yir = jere’ )

Pragi,... maxr} (C@wo0 A N\ —qy 0 A1)

jer<v

which is a presumedly valid formula expressing the inconsistengy.ofHence the
inconsistency of/maxr entails the inconsistency gf., r which isy U {Drv}. Now
choosingy to bez, \ {D;(py ;r = ¥) : j € I'} entails that the inconsistency o
can be reduced to the inconsistency of another finite subggtwith no occurrences
of the variablesyy, ; r, j € I<™#I' nor of any other variables outsideP which do
not occur inZ,y. By repeating this reasoning we can eliminate all the formulas with
auxiliary variables in them fror¥, within finitely many steps, because of the finite-
ness ofz, at the cost of adding formulas of the fordy«, which, by the definition
of z, satisfyDry € x. The resulting inconsistent set is a subset:pfvhich is a
contradiction. |

The use of the formulaB, iy and the sets of the forra becomes clear further
below.

4.2. An I S-like structure with non-distributed global states

Now we are ready to construct an interpreted system which satisfies the given
consistent formula. We start by defining a structure which differs from an interpreted
system only in the form of its global states, which are not tuples of local states.

In the sequel we denote the set

{¥,~ : ¥ € Subf(p) U ] Subf(D;l) U Subf({(i) o T)}

el
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of the subformulas op and the above special purpose formulas, and their negations,
by C for the sake of brevity. According trATL?R syntax, the well-formedness of
(T')ODry follows from that of immediately. Despite that, in the definition 6f
abovgpand elsewhere we assume ap is a subformula of(T")) ODry too, like in
ATLHY.

Below we use the maximal consistent subset€’ afs the principal building block
of global states, thus assigning € the part commonly played by an appropriate
form of Fisher-Ladner closurewhich typically includes some more formulas that are
related to the target one Whenever some formulais not necessarily id’, we write
F Az = v, and, sometimes; U {«} is consistenfor appropriater C C, instead of
¥ € x for the corresponding subsetf a closure.

Let W be the set of all the maximal consistent subsets.0f1 is a subset oP(C)

and is therefore finite. Given a subs€tof W, we denote the formula\/ A w by
weX

X. For every formula of the fori{T"))ODr¢) € C we define the sequencBg!-¥ and

WL:¥ of subsets ofV/, n < w, by the clauses

W, ={weW:+ Aw= Dry};
Waih = {we W\ WL (I)0Dry € w andw is consistent with(T')) o WL:¥};

WhY = U Wh foralln < w.

m<n

The sets¥,% (WL:¥) consist of those maximal consistent subseté'ofhich state
thatT" can achieve the godIDr+ in (at most)n steps. SincéV is finite, there exists
anng < |W|—1suchthatVl,” = WL foralln > ng:

LEMMA 13. — U WIv = | WLV
n<w n<|W|-1

We write W¥ for |J WI¥ andW ¥ for W \ W%, respectively. The fol-

n<w
lowing lemma shows that states € W'*%, which, as explained above, rule dit
achieving®Dr in within |1 | — 1 steps, are not consistent wigi)) ODr ).

LEMMA 14. — Let (I')ODpe € C andw € W™¥. Then((I')) 0D is not consis-
tent withw.

PrROOF — If w € W'Y, then, by the definition of’***, the duality betweef(I"))o
andDr, and[I'Jo and Pr, respectively, and the fact that eithBgy € w, or (an
equivalent offPr—1) € w because the former is a subformula(@f)ODrv, we have

- /\w = Pr—p and /\w = [I]o PFﬂW;Z’ forallm < w,
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whence
FWhY = Pr—pand F WY =[] o Priwh?,

respectively. By applying an extfa- to each side ot in the above formulas, as
possible due td&p and Np, and then using the equivalences

[[]oPrW ¥ < PRI o PrW! andPrPr[I]oPrW ¥ < Pr[I]oPrwt,

which can be derived from the axiorBs, 45 andTp, and, similarly, the equivalence
PrPr— < Pr—), we obtain

FPrW Y = Pr—pand F P = [I] o PrWw Y.
By the ruleN gy, we have- (oyoPrw? = ] o PpW™?). Since
PrWw ¥ A (0)O(PrWEY = [T] o PrWEY) = [D]OPr WY

—

is an instance of axiom FPop, we infer PrW'"¥ = [IJOPr—. Together with
FwEY = Pl this entails the lemma. ]

In the rest of the completeness proof we take account of the fact that the possibility
of achieving any single goal of the forjiDr« within || steps is based on the
consistency ofws from W with steps whichmake progressn the goal in question,
i.e., change a state iW’2;" | to one inW.;¥ for somez < |W| — 1, and does
not imply that progress can be made on two or moEy--goals in parallel. Next
we define the states of thi&s-like structure which we are constructing to include a
w € W, and two numberg < |C||W|ands € {0,1}. The purpose ok ands is
to identify a{QDr-goal fromC, which, if achievable according te, is allowed the
exclusive opportunity to make progress from the considered state. All the(iher
goals which are achievable tgueserve their prospectsithout necessarily making
progress, i.e., the corresponding formuwd3)ODrx € w recur in successor states,
until a state with the appropriate value/ofs reached.

DEFINITION 15. —Let (I';))ODr,%q, ¢ = 0,...,M — 1, be all the formulas of
the form (I")ODrvy in C. The set of the global states of odif-like structure is
S=Wx{0,...,M|W|—-1} x {0,1}.

As it becomes clear from the definition of the transition relation below, behaviours
always start at statéw, k, s) with £ = 0. Transitions increasemoduloM |W|. This
way k partitions every run into intervals of lengif|1W|, each consisting af/ subin-
tervals of length 17|, the gth subinterval being a&indow of opportunityfor making
progress on(I';))ODr,¢q, ¢ = 0,..., M — 1. The value ofs indicates whether',
has been pursuingDr, v, continuously from the beginning of the window of oppor-
tunity, that is, whether it is early enough for the goal to be reached within the window
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of opportunity, as it may take up tdV| steps, which is the full length of the window,
for the goal to be achieved. Transition to a state with 1 is possible in the begin-
ning of the window of opportunity fof)Dr_1,, and within it, only in case the latest
action ofl', is aimed at)Dr ,. Throughout the window fo¢Dr 1, action tuples
in which the members df,, are not unanimous aboQDr v, lead to successor states
with s = 0, in which$Dr, 1, may as well be abandoned.

DEFINITION 16. —Anaction for agent € ¥ is a formula of the forn{IT")) o v such
thati € T'and~y € C.

Intuitively, action{(T")) o v is the part of agentin I''s effort to achieve the goal.
Agenti can perform{(T")) o ~, regardless of whether the rest of the members afe
also doingy, and regardless of whethErcan achievey in the reference state at all.
However, unless these two conditions are met, this is not guaranteed teybring

DEFINITION 17. —Leta = ({(T'1)) ov1,..., {T'n)) oyn) be a vector of actions, one
for every agent fronk;, and letl" C X. T" is said to beunanimousn « if T'; = T" and
v; is the same formula for all € T'.

Unlike agents’ actions, environment’s actions are aimless; they just ensure that
whatever agents do not prevent can actually happen. The description of a successor
state always includes the goals achieved by agent actions and some formulas about the
past. We assume that the environment works to complete this description by trying to
include into it each of the remaining formulas frathin some order of its choosing.

Only the formulas which do not destroy consistency become added. The result is a
description of the new state as a maximal consistent subggtaofd depends on the
chosen ordering of’.

DEFINITION 18. —Anenvironment actiofis a linear ordering of the formulas from
C.

Let Act; be the set of the actions for agent € X, and Act. be the set of the
environment actions. We defing: S x Acts, — S as follows:

Let (w,k,s) € S,a = ({(A1)) 001,..., {(AN) 0N, ae) € Acts,,
ac =0y < ... <0c|—1. Letthe formulai({(A;))od;, k, s) be defined foi = 1,..., N,
ke {0,...,M|W|— 1} as follows:

Dr, WSV, i (A 0 61 is (Ty) o (T,)0Dr, 4,
d(<<Az>>05Mkvs) = - ands = 1;

Da,d; otherwise

i
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whereq = k div [W|, r = k mod |W]|, andWil“V’;flq_r_2 is defined with respect to
the givenw. Then we put

tO (’LU, ka S, (1) = <wenvironment U (wpast U wactions) N Ca (k + 1) IIlOd M‘W|a S/>

where the sets of formulas,,s;: andw,.tions are meant to encode the properties of
to(w, k, s, a) which follow from its being a successor of, and the outcome of the
action tuplea, respectively, and the set.,,yironment 1S Meant to add whatever other
properties from those expressed by formulas fri@nean be consistently attriibuted

to to(w, k, s,a), as a result of the environment action. The three sets of formulas are
defined as follows:

Wpast = {@w = /\w = '(/J}a
Wactions = {A({A:)) 0 d;, k, ) - Aw = {(A;)) o d; andA; is unanimous im, i € X},

Wenvironment 1S determined by the condition
em S W environment |ﬂ: wpastUwactionsU(wenvironmentm{e()a ceey em}) iS ConSiStent

form = 0,...,|C| — 1. This condition can be also spelled out as includingin
Wenvironment at stepm iff 6, is consistent withvpqs: U wections together with those
of O, ...,0,,_1 which have been added t0.,,,ironment at previous steps. To define
s, let¢ = (k+1)div |W|,» = (k+1) mod |W]|; thens’ = 1iff eitherr’ =0
and

F /\(wenvironmant U (wpast U wactions) N C) = <<Fq/ >><>qu,1/1q/7

orr' #0,s=1,F Aw = (I'y)) o (g )ODr,,¢g and('y/)) o (I'¢))ODr,, ¥g is
(A;) o d; foralli e T'y.
We need to prove that.,yironment U (Wpast U Wactions) N C € W.

LEMMA 19. —The unionwepyironment U (Wpast U Wactions) N C' IS @ maximal con-
sistent subset af'.

PROOFE — Sincea, is an ordering of all the formulas frodl, the defining condition
for Wenvironment €Ntals the maximality, provided that,,s; U wactions iS CONsistent.
Next we prove the consistency afy.s U Wactions. Without loss of generality we

can assume that ,.i;ons CONSIiSts 0D, d;, ¢ = 1,...,m, for somem < N, pos-
sibly T, and pOSSib|quW£T‘;//}|q7T72, whereq = k div |W| andr = k mod ||

like previously, in case’, is unanimous ina, (T,)) o (T',))ODr, v, occurs ina,
F Aw = (Tg) o (I'y)ODr,v, ands = 1. We assume that the latter condi-

. T ... .
tions are met and therefonbquS‘“V’ffI{PQ € Weactions. These conditions entail

1. Here and in the sequel we writg(w, k, s, .. .), f (¢, k, s), etc., instead ofy((w, k, s), .. .),
f({t, k, s)), etc., for better readability.
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—
Ty, Tyrihe . o
thatw € W§|W\—r—1- The case of n(quI/Vglw‘_T_2 iN Wactions 1S Simpler and

we skip it. We also ignore the possible presenceroin wq.tons as it does not

affect the consistency. The conditian € ngégjffrq entails thatw is consis-

tent with (T'y)) o Wifv"‘fl‘ird. The unanimity of the coalitiona, ..., A,,,I'g, in

ay,...,ay entails that these coalitions are disjoint. Hehcé\ w = (A1) 0 6; A

.. A {(Ap) o 8, and the consistency af with (T',)) o W;"‘;ﬁ’ltrﬁ imply thatw

is consistent with{(X)) o (Da,61 A ... A Da,,0m A quWET‘;;"l"_T_Q), by axioms

S andD,. Assume thaDa,d1, ..., Da,,dm, Dr, WLl _,} U wyeq is incon-

sistent for the sake of contradiction. Then there exists a fmil;gt C Wpast SUCH

thatk Da, 01 A ... ADa, 0m A quWEfoff_r_Q = ﬁ/\wgast. Then, by the rule

Mono y. and the axiomg(.)) o © andTp, and the definition ofv,,s;, this entails

F{Z)o(Da, 01 A...ADa,, dm A DFQWETY;IT[Z*T*2) = - /A w, which is a contradic-

tion. |

m

m

Importantly, despite that many formulas fram,,.; andwctions Mmay be left out
of to(w, k, s, a) because of not being i@, all of the logical consequences of these
formulas whichare in C are bound to be included ity(w, k, s,a) as members of

W environment -

We define the remaining componerfs C S x AP andl, C S of our I.5-like
structure by the clauses

Vo(w, k,s,p) < pewandly = {{w,0,s) € S: 1 €w,s=1iff (T'x)ODr, 1o € w}.

4.3. An interpreted system satisfying the given consistent formyla

The structurel Sy = (S, Iy, (Act; : 1 € 3.),to, Vo) differs from an interpreted
system by the form of the state spatevhich consists of "simple" global states rather
than tuples of local states. Consequently the properties of transition functions in inter-
preted systems which are related to that form cannot be formulated straightforwardly
for to. Next we build an interpreted system

IS={((L;:i€X.), I, {Act; i€ %.),t, V)
which corresponds t8S,. We defineL. asW x {0,..., M|W| -1} x {0,1}, i.e.,
L. is the state spacg of 1.5y. L; is the set of the (not necessarily maximal) consistent

subsets o for all i € X. (Recall the definition of for sets of formulas: from
Section 4.1.) We define the mappilfig S — Ly, by the clauses

(f(w,k,s)); ={v: Dy € w}fori € ¥ and(f(w,k,s))e = (w, k, s).
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The consistency of the sefg(w, k, s)); follows from the consistency of the corre-
spondingw by Tp; the latter follows from the consistency of the respective W, by
Lemma 12. Sinc¢f(w, k, s)). = (w, k, s), f isinjective. Note thatf(w, k, s)); con-
tains the formula®; vy from Section 4.1 for formulaBr such that- A w = Dr),
as they have the form; y.

We definel C Ly, asf(Iy) andV by the equivalenc® (I, p) < Vo (le,p).
We definet : Ly, x Acts, — Ly, for arbitrarya € Acty, andl € f(S) by the
equality
t(f(w,k,s),a) = f(to(w, k, s, a)).

This definition entails thaf(S) is closed undet. Sincel C f(S), the states in
Ly, \ f(S) are unreachable. This renders definitiort oh Ly,_ \ f(.5) irrelevant.

LEMMA 20. —If ¢ € X, I',1" € f(5), I, = U andl, = 1/, then(¢t(!',a)); =
(1", a));.

PrRoOOFR — The equalityl, = [ alone entailsthdt =" = f(w, k, s) for (w, k, s) =
In=1. [ ]

Below we prove thatf' S,! = ¢ for all [ € I as a corollary to a standatdith
lemma which, in our setting, is the statement that

IS, f(w® kY, s%)a’ . ..a™ 7t fw™, k™, s™) [ 4 iff p € w™
forall ¢ € C and all f(w®, k°,s%)a® ... a1 f(w™, k™, s™) € Rf"(IS). We prove
this statement by induction on the construction of formula3he proof is partitioned

into lemmata, two for each of the possible main connectves((I"))o and (")) ODr
in ¢b. The proofs of the lemmata below can be found in Appendix A.

LEMMA 21. — Letn < w, ' C X, Var(¢p) € AP and- A w™ = Dr«. Thent
Av"™ = Dry and- A o™ = o forall f(v9 k0, ¢0)60 ... on=L f (o™, k", ") € [r]r.

DEFINITION 22. —Givenw € W, we write Dr(w) for the set of formulas

{¢:+ /\ w = 1 and is of one of the formBrx and—Drx}.

Lemma 21 entails that if
F@OEO AN b (0™ B ) ~p f(w R0 80)at e f(w™ BT ™),
thenDp(v") = Dp(w").

2. Here and below the symbols in the superscript position in expressions su¢haamsl s™
denote that these expressions are different names for numbers and not exponentiation.
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LEMMA 23. — Letn < w, r € R*(IS), I’ C . Letk Av™ = ¢ for all
FO KO 00 b f (o™ k™, ) € [r]p. Let f(w™, k™, s™) be the last state of
r. Then A w™ = Dr1.

LEMMA 24. — Letn < w,r € R*(IS5),
r= f(wo, k°, so)ao e a"flf(w", k™, s™),

I' € ¥ and {(I')) o¢p € w". Then there exists & € Actr such that,
if f(00 K0, t0)80 .. bn T f (v k™) € [r]p, B € Acts,, (B")r = g and
to(v™, k", 7, ") = (T En T gt theny € o™

LEMMA 25. — Given n, r and I as in Lemma 24,9» € C and g €
Actp, if to(v™ k™ 17, 0%) = (vt kEntlntl) entails v € o™t for all
FO, K910 b f (o™, k™, t) € [r]r and allb™ € Acts,, such that(b™)r = g,
thenw™ is consistent witf(T")) o .

LEMMA 26. — Letn < w, r € R*(IS), I' C ¥ and let (I")ODry appear
in the last state ofr. Then there exists a strategyfor I such that for every
Fw® k% s%)a’ .. .am= f(w™, k™, s™). .. € out([r]r, s) there exists & < w such
thatDry € wtr.

LEMMA 27. — Letn < w,r € R™(IS),T C ¥ and (I'))ODry € C. Let there
exist a strategy for I' such that for every

= f(w® k% sa’ .. a™ T f(w™, k™, s™) ... € out([r]r, s)

there exists & < w such thatDpi € w™**. Then{(T)ODr1p € w".

Now we are ready to formulate and prove the truth lemma itself. This essentially
concludes the completeness proof ML?R because the equivalence betweer
wp and IS, wy = ¢, which the truth lemma entails, shows that the given consistent
formulay is also satisfiable.

LEMMA 28 (TRUTH LEMMA). — Lety € C m < w andr =

fw® k9, s%)a®...a™~ 1 f(w™, k™, s™) € R™(IS). ThenIS,r | ¢ is equivalent
toy € w™.

PROOF — Induction on the construction af. We skip the trivial cases af being
L, a propositional variable, or of the forgn = x2.

Lety beoy. In casem = 0, we havel € w™, whence by the validity of) = T
and the ruleMonog and axioms L we obtaincy ¢ w™, which concurs with the fact
that1S,r (= &y forr € RY(IS).

Letm > 0. ThenIS,r | &1 is equivalent to

157 f(wO, k_O, SO)CLO o a/m,—lf(,wm—l7 km—l’ Sm_l) ': ’(/J
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By the inductive hypothesis this is equivalenttos w™ !, whencesy € wg;;tl as
defined with respect to™ . Now the definition of implies thatsy € w™.

Lety be(x1Sxz)- ThenIS,r = ¢ is equivalent to the existence of as m such
that

18, f(w® k%, s%)a’ ... a™  f(w' k', ) | xe

and

IS, f(w® k% s%)a® .. .a™  f(wd K, s7) = xiforj =i+ 1,...,m.
By the induction hypothesis this is equivalentyte € w* andy; € w't!, ... w™.
By a repeated use of the axioRP s the latter implies) € wi, ..., w™. It remains

to be shown that) € w™ implies the existence of an< m such thaty, € w* and
x1 € witt ... w™. We do this by induction om. If m = 0, then A\ w™ = -
and thereforex, € w™ by axiom FP(s). Hence we can put = m = 0. Let
m > 0. Then, ifys € w™, i can be chosen to be again. Ify, ¢ w™, then axiom
FP s, entails that- Aw™ = ©3 A x1, whenceyx; € w™ andy € w™! can
be established by reasoning as in the case abdding as-formula. Now, by our
induction hypothesis form — 1, there exists an < m — 1 such thaty, € w’ and
x1 € witl, ..., w™ L. Together withy, € w™, which we have established already,
this completes the proof that arsatisfyingy. € w’ andy; € w'*!,... w™ exists.

Let ¢ be Dry wherel' C . Now IS, r |= 1 is equivalent tal S, ' |=  for all
r’ € [r]p. By the induction hypothesis this is equivalentytos v™ for all v™ such
that there is an’ € [r]r of the form f(v°, k0, ¢9)a® . ..a™~ 1 f(v™ k™, t™). Now,
by Lemmata 21 and 23, the latter is equivalentite v™ for all suchv™, including
P € wm.

The cases of) being of one of the formgT")) o x and (I'))ODrx are handled
similarly by means of Lemmata 24 and 25, and Lemmata 26 and 27, respectively. The
case ofy) being of the form({(T")) 0 is handled by repeated use of Lemmata 24 and 25
in combination with the corresponding instance of axibifi. |

5. Completeness of flad TL5

Despite that we do not know whether adding (1) and (2) to our systemm?R
is sufficient for the complete axiomatisation4f'L” on the class of interpreted sys-
tems with finite branching, completeness and finite model property can be established
for a subset of the logic which is substantially greater th&?L?R using a validity pre-
serving translation intol LY, based on (1) and (2). We call this subBat ATLS,”
because of the restriction df.))(.U.)- and[.](.U.)-subformulas not to occur in the
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scope of some of the temporal or cooperation modalities, natlyU.), [.J(.U.)

and (.S.). Ruling out the occurrences d¢f.))(.U.)- and[.](.U.)-subformulas in the
scope of(.))(.U.), [.]J(.U.) and(.S.) makes it straightforward to determine the lengths

of the runs at which, according to the definitiontef the satisfaction of these subfor-
mulas can affect the satisfaction of the given formula, provided that we are interested
in the satisfaction of the given formula at an initial state. The role of the parameter

in the translation of flat L5 into ATL,, below is to keep track of reference runs’
lengths.

To prove the following proposition, it is sufficient to notice that the satisfaction of
all the occurrences of.))(.U.), [.](.U.) which are substantially affected hy., d) is
relevant only at runs of lengt, which satisfylevelpS9I.

PROPOSITION29 (COMPLETENESS OF FLATATL%P . — Let p be a formula in
ATLHY in which no((.))(.U.)- or [.](.U.)-subformulas occur in the scope of the op-
erators (.)) (.U.), [.J(.U.) or (.S.), except if these subformulas abbreviate to one of
the forms({(T")) ODrv and [I'] 0. Lett(v, d), for formulasy and (possibly negative)
integersd, be defined by the clauses

t(L,d) = 1
t(p,d =
t(1 = 1, d) = t(¥1,d) = t(¢2,d);
t(D ) = Drt(l/%d);
t((T >> ,d) = () ot(¥,d+1);
() (11 Uthg) if () (11 Uep) is of

the form{(T') ODrx;
(THODro(wa A (E156M)), i () (11 Ut,) is not

of the above form

t((T) (Y1Ug),d) =

andd > 0;
1, otherwise;
[T (1 Ux2) if [T](¥1Uys)i is of
the form[I']Ox;

[CJOPro(v2 A (S¢1Se)), i [T](¥1Uy2) is not
of the above form
andd > 0;
1, otherwise;
t(ey,d) = ot,d-1);
t((¥1S¢2),d) = (15¢2).
Theng is valid at the runs of length of all 7.5 with finitely many initial states and

finitely many successors to every state|:'tfj‘TLg>R t(y,0) or, by our completeness
result,;-y 70 t(e, 0). ’

t([T)(1Usha),d) =
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6. Model-checkingATL:

Themodel-checking probleifor ATLﬁf is to decide whethefS = ¢ for a given
formula ¢ and interpreted systerhS. Our model-checking procedure ferTL
builds on model checking techniques f6fI'L with knowledge modalities and T'L
with complete information. It works by recursion on the construction of formulas.
Given a formulap with the main connective being eithgF)) or Dr, the procedure in-
volves refining the given interpreted systéfito an interpreted systeli?/fa*p in which
for every statd, either all the finite runs which end atsatisfy ¢, or all the finite
runs which end at satisfy—¢. This essentially means that in the refined interpreted
systems all the information about the satisfaction of formulas in which the main con-
nective is related to the distributed knowledge for coalifiboan be recovered from
the statesof the systeml/?p (instead of theuns of the original systeni S). To this
end the refinement step includes as a variant othiset constructioas known from
(Reif, 1984). The construction of refined state spaces is inspired by (Chatterjee et al.,
2006) where two-player games in which one of the players has incomplete information
are transformed into equivalent complete information games. Unlike that setting, we
handle objectives which may be unobservable to the respective coalitions. The main
differences in our technique arise from the need to handle goals of the({dum)
despite that the considered coalition is not in a position to detecsete when it
encounters one immediately.

Before going to the construction, we give some preliminaries on automata on infi-
nite trees which we use in some key steps in the construction of refined arenas. Given
asetA, aA-labeled treds a partial functior?” : N* — A such that the setipp(T') of
the treenodescontains: and is prefix-closed; trees are “full”, that isaif € supp(T),
thenzj € supp(T) for all j < i too, and all tree branches are infinite. Infinite
branches are also callpaths A path isinitialized if its first node iss. We denote the
set{T(zx) : k > 0} of the labels on path = zg ... 21 ... 2% ... by T(m).

Below we use tree automata of the fol@, X, 4, g0, F) with set ofstatesQ, al-
phabets, initial stategy C Q, transition relations C @ x X x (2@ \ () andacceptance
conditionF C 29,

A tree automaton accepf$ x Y-labelled trees. Given atrge: N* — Q x X, let
To(x) andTx(z) denoteg ando, respectively, forr € supp(7T') and{g,o) = T'(x).
ThenT is acceptedff:

Tq(€) = qo;

if 23,25 € supp(t) andTy(xi) = To(zj), theni = j;

(To(z), Ty (z), {To(zi) : xi € supp(t)}) € 6 for all z € supp(T);
{Ty(z) : x € 7w} € F for all initialized pathsr C supp(T).

The set of the trees accepted by automadas denoted byC(A).

The automata we consider have “occurrence” accepting conditions: an initialized
path is accepted if the set of stateurringin it is one of those i, even if some of
these states occur only finitely many times.
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THEOREM 30 (CF E.G. (THOMAS, 1997)). — Checking whethet(A) = ) for a
tree automatond with “occurrence” accepting condition is decidable.

6.1. The state-splitting construction

Let I.S be the interpreted systefiL; : i € 3.), I, (Act; : i € ¥,),t, V) for the
set of atomic propositiond P and the set of agen’s = {1,..., N}.

DEFINITION 31 (LABELLED OUTCOMES). — Given a coalitionl' C ¥, a set of
global statesM C L, a € Actr, andv € L, we denote the set

{t(m,b) :m € M,b € Acts,br = a, (t(m,b))r =v)}

by out(M, a, v).

The sebut(M, a, v) consists of the global states which can be reached from a state
from M by an action tuple in which the actions of the member§ afe as in:, and
havev as their local states for the memberdof

Given a coalitionl’, we construct a new interpreted systé/&p = <<fi NS
Se), I, (Act; i € B,),1,V) as follows:

i=Liforiey, L.={{,M):MCL,1lecM,Iir=mpforalme M}
{<lg,<l {mGI mr=lr}>>:l€[}

(Iz, (I, M)),a) = {(t(l,a))s, (t(, a),out(M, ar, (I, a)r)))

((Is, (I, M), p) iff V(I,p)

&~

<>;t> ~>

_fgp is arefinement of S, as its states are obtained by state-splitting of the states of
IS. The construction of S is remniscent of the subset construction: the last compo-
nent of each state ihSr corresponds to theet of states which coalitionl” considers
that the system can be after a certain sequence of observations. Hehse, avery
global state of S is augmented with a set of global states which are indistinguishable
from it to the considered coalitioR, at the end of some finite run. For initial states,
the augmenting set consists af the indistinguishable initial S states. In order to
preserve the observational abilities of agents, the augmenting sets do not affect the
local states of agents. Instead they are made part of the local state of the environment.

Note that the definition of above applies only t(ﬁp global states of the form
(Is, (I, M)) wherel is an arbitrary global state inS. Since all the states ihhave this
form, and the values df have this form too, no other states can appeaTrSﬁ runs.
That is why the definition of on other states is irrelevant. The same holds about

Note also that every run = [°a'l'a? ... in IS corresponds to a unique rén=
(19, (19, MOY)a (1%, (I*, M1))a? . .. in ISt because the sé/® is determined by?®,
andM ! is determined by, M anda’ for everyi < w. The converse holds too: for
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everyr’ € R“’(I/E‘p) there exists a uniquec R¥(IS) such that’ = r. Furthemore,
since local runs if S and/ St have the same form, strategies fbmn 1.5 are strategies
for Ain ISt too.

PROPOSITION32. — LetT',A C %, r,v/ € R(IS) and let7 and+’ denote their
corresponding runs id St.

(i) » ~a ' is equivalent ta” ~a 7.

(i) If s € S(A,1S), andr is finite, then’ € out(r,s) in 1.5 iff 7/ € out(7, s) in
ISr.

(iii) If p € AP, ris finite and(lx, (I, M)) is the last state of, thenIS,r = Drp
andISr,7 = Drp are both equivalent t& (m, p) for all m € M.

(iv) If pisan arbitrary ATLLY formula andr is finite, thenl S, = ¢ is equiva-
lenttoISr,7 | .

ProOF — Items (i)-(iii) follow directly from definition; (iv) is proved by induction
on the construction ap. The cases given in detail below are representative:

p is Dty for someA C X f:S‘F,?): Dav iff f:S‘p,F’ = ¢ for all rc [F]a. The
latter is equivalent td S, ' |= « for all #" € [r]a by the induction hypothesis. This is
equivalenttal S, r = Dat.

©is ((A)) (11 Urhg) for someA C 3 IS, 7 E piffthere existsan € S(A, fS*p)
such that for every’ € out([7]a, s) there exists & < w such thath’p,F’[O..m +
k] = 2 andf:?pf’[o..|r| +i Eypfori =0,...,k — 1. It follows from (i) and
(ii) that € out([F]a, s) in ISy is equivalent to € out([r]a,s) in IS. Now the
induction hypothesis entails that satisfaction condition,cfmtfb\“p, 7'is equivalent to
the satisfaction condition fap at 7.5, r. |

Proposition 32, (iii) explains the purpose of the construction $f. Given a
p € AP, andr € Rf"(19), if (g, (I, M)) is the last state of, thenISr,7 E Drp
iff V(m,p) forallm € M. Hence, inZ S the information about the satisfaction of a
formula of the formDrp is hardcoded in the last state of the reference run.

6.2. The state labeling constructions

In this section, given an interpreted systé = ((L; : i € X.), I, (Act; : i €
X.),t, V) and aformulap, we show how to construct an interpreted sysfefhwhose
runs are equivalent to those b$ and which has the property that for every subformula
¥ of ¢ and any finite run- in IS the condition/.S’, r = v is determined by the last
state ofr. This means that we can define the sets

[“]rsr ={l:1S5,r = forsomer € R(IS’) which ends at}
={l:15,r =y forallr € R(IS") which end at}



28 Journal of Applied Non-Classical Logics. Volume V — No. I/Y

for the subformulag of . In other words, every state 65’ can be labelled with the
subformulas ofp which hold at the finite runs that end at this state.

We obtain S’ by a sequence of refinements of the given interpreted sybfertt
[+]1s can be defined for a formuld, then the vocabulary ofS can be extended by
an atomic propositiop,, so thatV (, py) iff | € []rs. Then substituting,, for ¢
in ATL P formulas preserves their meaninglif. Thereforel S’ can obtained by a
sequence of refinements each of which enables the definitipf wf be extended to
some formulay built using just oned L5 connective and propositional variables.
No transformations on the givehS are needed in order to define the]rs, [p]rs
forp € AP, and[p = ¢];s, which is equal tdg];s U L \ [p]rs. Here follow the
constructions for the other possible formsyjof

op: We constructl S = ((L; : i € £.), 1, (Act; : i € X.),%, V) where

L;forie X

=L, x{0,1}

{<l2, (l.,0): 1 eI}

t((ls, (I, 2)),a) = ((t(l,a))s, (¢, a), V(I,p)))
V((Is, (le;x)),p) iff V(I,p)

Again, states which do not have the fofig, (l., z)) for somel € L are not reachable
and therefore the definitionon such states is irrelevant.

'\'\ iy
|

A direct check shows that every run= %'l ... € (IS) corresponds to a

unique runr = (13,, (12, 2°))a' (I3, (I}, 1)) ... € R(IS). Moreover, if7 is finite,
thenIS,7 = opiff 2" = 1. Hence

[eplis = {{ls, (le, 1)) : L € L}.

(pSq): We constructlS = ((L; : i € .),1,{Act; : i € 3.),1,V) whereL;,
i € ¥., andV are as in the case afp, and

T={{ls.(l..V(l.g)) : L € I}

t(<l2v <lv $>> ) = <( (lv CL))E, <t(l7 a)€> maX{V(t(l’ a)? q))7 min{V(t(l7 a),p), x}}»
Heremax{V (¢t(l,a),q)), min{V (¢(l,a),p),x}} is an expression for the fixpoint ex-
pansiorng V (p A&(pSq)) of (pSq) in which z stands for the truth value ¢pSq) at the
predecessor statéy, (., z)). Again, states which do not have the fofig, (I, z))
for somel € L can be ignored.

An induction onn shows that = (I,, (12, 2%))a' ... a™ (1%, (I, 2")) € R"(IS)

impliesIS,7 |= (pSgq) iff 2™ = 1. Hence

[(pSa)l7s = {(Is, {le, 1)) : L € L}

Drp: For this case we use the interpreted sys@‘ﬂ constructed in Section 6.1.
Proposition 32, (iii) entails that

[Drpl s, = {{Is, (1. M)) € L : V(m,p) forallm € M}.
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{(THop: We usel Sy from Section 6.1 again. A direct check shows that

[4T) 0 pl 7, = {(l2, (1, M)) € L (3a € Actr)(b € Actge)(bp —a

— (Ym € M)V (t((ms, <m,M>>,b)7p))}-

() (pUq): Letp be (I")(pUq). We use the interpreted systelr/ﬁp from Section
6.1. For every statéls, (I, M)) € L we build a tree automatod = Afli"?l M)

such thatC(A) # 0 iff ISp,7 = (T)(pUq) for some and, equivalently, afl €
Rfn(ISr) which have(ls, (I, M)) as their last state. The states4fepresent classes
of T'-indistinguishable runs that end in a given statel §f extended with a special
mechanism is needed for checking whether the obje¢tiMe) is satisfied on all paths
of an accepted tree. This mechanism is explained in the following.

Clearly, there are runs along which the coalitibomay be unable to determine the
truth values ofpUq) at some steps. That is, it is possible to havé € R"(I.5) such
thatr ~r 7/ andr[0..n] satisfiegpUq) whereas”[0..n] does not. On the other hand,
if T has the objective to enford@Uq), any winning strategy for I has the property
that in the tred” representing the runs which are the outcome, dfiere exists a level
x such that on all the runs ifi, the objective(pUq) has been reachedabr beforez,
and, for some runs which end on a leyek z, the objectivg(pUq) has not yet been
accomplished. For this reason, for checking thdtas a winning strategy in some
state, for each finite run starting in that state we need to record the Bgbf states
which represent endpoints of runs that &réndistinguishable fronr, and, together
with this, the subset of statdg; C R which are endpoints of such runs on which
the objective(pUq) has not been accomplished before their endpoint. Moreover, in
our search of winning strategies, we will only be interested in the finite runs whose
associated seR, contains either endpoints of runs that have accomplished, in their
past, the objective dipUq), or endpoints of runs along whighhas always been true.

Formally, given(ls, (I, M)) € L, consider the tree automatof,. .y, =
<Q7 A0t27 67 {q0}7 .7:> where

Q={L}U{(R1,R2): RiICR;CL,R C H_P]]IS\[[QHIS,CGVd((Rz)F) =1}
o = { (M\ [g]rs, M) if M C [plrs U lq]rs;
0 1 otherwise.

d(L,a)={L}foralla € Actr
5(<R1’R2>’a) = .
{1} ifthere exist € Ry, (l5, (I, M')) € L andb € Acty,_ such that
bF:av?«lzv <la R2>>7 b):<llEﬂ <l/7 M/>> and/’ ¢ Hp]]IS U [[CI]]IS;

{{out(Ry,a,m) \ [g]1s,0ut(Ra,a,m)) : m € Lr,out(Rz,a,m) # 0}
otherwise
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F={RCQ: () R) e RforsomeR C L}

As explained above, the first componétit of a pair(R;, R2) € @ consists of those
states inR, which correspond to runs where the satisfactiorjydfq) has not been
accomplished yet. Hence tree node labels of the f@in#) indicate that the satis-
faction of (pUq) is accomplished along all runs which end at a state fi@mFur-
thermore, whenever ansuccessor of Ry, R,) does not contain a state labelled with
1,1 € [pl1s U [q]1s holds for alll € out(Rs,a,m), m € Lr. Next we prove that
[(I') (pUq)] 75, can be defined as

{{s, (1, M)) € L+ L(Aqy, qamy) # 0}

PROPOSITION33. — Let(ly, (I, M)) € L be the last state of Rﬁ”(I/Sp). Then

ISr, 7 = (D) (pUq) iff L(Aqy,1.a0y) # 0.

PROOF — (—) Let ISy, 7 E () (pUq). Then there exists ane S(F,fb\“p) such
that for everyr’ € out([7]r, s) there exists & < w such that/ St, r/[0..|r| + k] = ¢
andISrt,r'[0..]r| +4] Ep,i=0,...,k—1.

We construct the tre€ : N* — @Q x Actr. For the root ofl" we put
T(e) = (M \ [ql1s, M, s(7r))-

Given a finite patte = z¢9 < ... < z; of T, assume thal'(z;) = (X}, X%),a?),
i=1,...,7, and lets((X?, X4),a;) = {(R}, RY), ..., (RF, RE)}. According to the
definition of the set of states od, for every noder,, (1 < i < j) the projection
(X5 consists of a singleton set, denotélit }. The same holds for each of the sets
RY,1 < p < k, hence denotéR%)r asly.. We set the degree of branching of nade

to k£ and put

t(x;p) = ((RY, RY), s(Ika'T .. . 1allR)), p=1,..., k.
A lengthy but otherwise trivial direct check shows thas £(A ., o a)))

(<) Assume thatl’ € L( Ay, q ). We construct an € S(F,fgp) which
is a witness forl Sy, 7 = (A)(pUgq). We only need to define on finite I'-local
runs which are extensions #. Letrpr = o%!...p"0" € Zp(ActpEp)”. Let
x € supp(T) andzg = € < x1 < ... < x; = z be all the nodes leading toin T.
Lett(z;) = (R}, Ry),b™ ), andv™t = v(RY), i = 1,...,k. Then we put

s(Obt .. promyn gt | pntholyndholy — gtk

The values ot for other sequences from EF(Acthp)* are irrelevant because, as it
becomes clear below,enabled" to avoid the corresponding runs.
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A direct check using the fact that every patlfirtontains a node such thatl’(z)
has the form((0, R), b) shows that if

(19, (1% MOVyat .. a™ (1%, (1™, M™))a™ AT (T M) L€ out([Fr, s)

then there exists & < w such thatV(m,p) forallm € M™ U ... U M"TF-1
andV (m, q) for all m € M™**. This follows from the fact that every pathin T
contains a node such that’(z) has the form{(, R), ), and all the nodes along
which precede: have the form((R;, R2), b) with R, consisting of states: such that
V(m,p). |

(') (pWq): Just like in the case dfT")) (pUq), for every(ls, (I, M)) € L we build
an automatond ;. ,aryy such thatC( Ay o,ay)) # 0 is equivalent tol S, 7 =
(T") (pWq) for finite runs7 having (Is, (I, M)) as the last state. The definition of
Aqus,a,my) 1S the same as in the case((df)) (pUq) except for the acceptance condition,
which is changed to take account of the possibility to satigf/q) at infinite runs
consistsing only op-states. The acceptance condition in this case is

F={RCQ:(0,R)ecRforsomeRC L}U{RCQ: Ll &R},

that is, only paths which refut@Wgq) within finitely many steps are rejected.

6.3. The model-checking algorithm

As explained in the beginning of this section, given thaf. . . ¢, is an enumer-
ation of the subformulas op such thaty; € Subf(¢y;) entailsi < j, our model-
checking algorithm works by constructing a sequence of interpreted sygtgms
IS,1S4,...,15, = 15 such that[y;];s, is defined forj,k = 1,...,n,j < k.
The construction of S, from I.S; is according to the main connective®f;, as
described above. Finally, is satisfiable af S iff [¢];s: contains at least one initial
state ofl.S".

Complexity The state-splitting construction in our algorithm involves a procedure
that produces an exponential blowup of the state-space of the model. Since this pro-
cedure is applied for every subformula involving an epistemic or a coalition operator,
the state-space constructed at the end of the algorithm is proportional to a tower of
exponentials whose height equals #péstemic deptbf the given formula, that is, the
maximal number of nested epistemic or coalition operators. Hence, the complexity of
our algorithm is nonelementary in the size of the given formula.

Concluding remarks

Interestinglyconstanstrategies turn sufficient for the satisfaction of the target for-
mula in the model involved in our completeness argumentfdi.’,. This implies
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that giving up the restriction on strategies to be coordinated, which is essential for
our model-checking algorithm, does not affect kbgic ATL§> , i. e., the set of valid
formulas. This is a consequence of the design of interpreted systems, in which tran-
sitions are defined through a transition function, whereas agents are required to just
namethe actions they choose. The presence of an environment with its local state di-
rectly influencing the successor local states of every agent makes it possible to supply
the transition function with informative state properties without having to make these
properties known to any of the proper agents.

The axioms (1) and (2) extend our complete proof systemﬁltBLfR to a system
for ATLDY, and represent the "unfinished" part of our work. We do not know whether
their deductive power is sufficient for the completeness of the extended system. It can
be shown how, by adding some appropriateules, one can use these axioms in order
to obtain a system that is-complete forATL%P , or equivalently, these axioms can
be claimed to be complete fot TLD! relative to ATLY,. This is so because (1)
and (2) actually defingT"))(©U1) in terms ofATL?R. The totality of this definition
follows from the fact that the set of the formulas= {-S*1 : k < w} is unsatisfiable.
The shortcoming of this definition is that the definiAg“L?R formula depends on the
(length of) the reference finite run: by considering formulas of the fofihas¢ in (1),
we obtain equivalents of the for")) ODr< (1 A (©¢S€)) to (I')(¢Uv) at runs of
lengthk. Unfortunately, the unsatisfiability & takes anv-rule to encode in a proof
system. Another infinitary rule is needed to exclude infinite degrees of branching,
which would render (1) and (2) unsound. It is an open question whet Z-RP
admits a finitary axiomatisation, and whether validity in it is recursively enumerable
at all.

Another direction of future research is to embark on the study of a fully-fledged
ATL%P*. Developing a model-checking algorithm of the same general form for arbi-
trary LTL path objectives appears to be technically challenging because of subtleties
which arise in connection with the construction that leads from system states to coali-
tion mental states, which were given in Section 6.1 for the casgTtf.; .
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A. Proofs of lemmata from Section 4.3

PROOF (OF LEMMA 21). — Letr € R*(1S),r = f(w®, k%, s%)al ...a" f(w™, k", s™)
and f(v°, k0, t9)0 .. onTL f (o™, k™ ") € [r]r. This implies that

(f", B 7)) = {x : Dix € v} = (f(w", k", s"))i

for all ¢ € T". Next we use this in order to prove that A w™ = Dr« implies
F Av™ = Dr%. There is nothing to prove fdr = () and singletorT's. Let|T'| > 2
and- A w™ = Dr. Then, by the definition o™, D;(py ;1 = ¢) € w™ forall i €
I. Now (f(v™, k™, t"); = (f(w™, k™, s™)); implies thatD;(py,;r = ¥) € v"™. By
the construction o™, this entails- A v™ = D, which implies that- A v™ = ¢
as well, by axioniI'p. [ |

PROOF (OF LEMMA 23). — Induction onn. Letn = 0 andr = f(w°, k%, s°). As-
sume that-Dr) € Dr(w°) for the sake of contradiction. Thenr(w?) is consistent
with —¢) as well. If not, then- A Df(w®) = 1+ holds for some finiteDj(w°) C
Dr(uw"), whence- A Dj(w®) = Dr¢ by the ruleNp and the axiom¥p, 4p and
5p, and this contradicts the consistency-af with Dr(w"). Hence there existsi& €
W such thatDr (w®) C Dr(w’) and— is consistent witho'. Sincef(w?, k%, s%) €
RY(IS), which is equivalent tof (w°, k°,s°) € I, we haveDrl € Dr(u'). By
axioms Tp and D, this impliesDrl € w’, whencef(w’,k°,s°) € R°(IS) too.
Dr(w®) € Dr(w') entailsD;(w®) C D;(w'), by 4p, 5p and Monop, andD;(w®) N
C = D;(w’") N C, by the maximality ofC', whence we concludéf (w’, k%, s%)); =
(f(w°, k0, s°));, for alli € T'. Hencef (w’, k°,s°) € [f(w?, k°, s°)]r, by the defini-
tion of w0, w’. This contradicts the assumption thaf\ v’ = 1 for all w’ such that
fw' k0, s9) € [f(w?, k2, sO)]r.
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Next we prove that the lemma holds for any
r=fw’ k% s%)a’. . a" 7 f(w", k", ™)™ f(w T R sn ) € RMYL(TS),

provided that it holds for all runs of length Assume that:Dr+) € Dr(w™*1) for the
sake of contradictionDr(w"*") is consistent withw?!, ., n = {Ox : x € Dr(w")}
because, by the definition off (w™, k™, s), a™), the uniomwy, , Uwy i 0ns YWE vironment
is consistent (the latter three sets being defined with respe€)tdr (w™ 1) consists

of formulas which are derivable from that union By P, andwy, ., n C wy,. As-
sume that, ., , U Dr(w" ') is not consistent with) for the sake of contradiction.
Then there exist finite subsets),, n C w7, n andDg.(w™ ') C Dr(w™*!) such
thatt A\ (w'},s.0UDE(w™ ) = 4. Then, byPR, 4p, 5p and Monog, Which pro-
vide that- ©Dry < Dgyx and- &Dry & oy forox € w’;fast, as these formulas
have the forms>Drn ando—Dr1, this entails- A (w'},.; p U Dp(w™ 1)) = Dri,

which contradicts-Dr+) € Dr(w™*1).

Letdbe A\{x € C : Dr(w™"), ~ Farp ©x}, Where-,, p indicates derivability
from the indicated premises amiTL?R theorems withM P as the only proof rule.
Then the consistency aé.,., , U Dr(w"™') U {—¢} entails that{#} U Dr(w") is
consistent and thereforelfr—6 ¢ Dr(w™). By the inductive hypothesis there exists
an f(v9, k0,000 . onT L f(om k) € [f (w0, kY, 80)al e f (wn kT 8™
such thaw™ U {6} is consistent.

We need to define & € Acty, such that} = af and thev" ! determined
by f(vntL kL ant )y = t(f(o™, k™, t7), b") satisfiesDr (v ) = Drp(w™t!)
and is consistent withp. We putb? = ((i)) o T forall i € ¥\ T'. We put
bl =& < ... <& where{¢,...,§;} is a maximal consistent subset@fwhich
is consistent withDr (w"*1) U {-+} for some appropriatg¢ € {1,...,|C|}. For
i € I' we putd? = a? in fulfilment of the requirement} = a}}. We conclude
the proof by showing that the correspondirig™! has the desired properties, that is,
Dr(w"*t) C v"*! and— is consistent withy" 1,

Without loss of generality we assume that the actions ffofn: ¢ € I'} for which
A; is unanimous irb™ are (A;)) o 6;, i = 1,...,m. By the definition ofb} for
i € ¥\ T, the only coalitionsA ¢ I" which are unanimous ihhave({(A)) o T as their
actions. Sincé- (A)) o T regardless of\, we ignore such coalitions in the sequel.
The definition oft(f(v™, k™, ¢™),b™) entails that”,,, ... consists of possiblDA T
for someA, which we ignore, and/({(A;)) o d;, k™, t") for thosei € {1,...,m}
for which ((A;) o §; € v™. The latter entail®r (A;)) o ; € v™ by axiomsD, and
Monop, because); C I'. Therefore, sincér(v"™) = Dr(w™), we conclude that
d((Ai)00;, k™, ™) € Ul tions IMPlies(A;)) 0d; € w™. Sinceblt = alt, Ay, ..., Ay,

are unanimous in" too. Hence, by the definition of

t(f(wn’ kn’ Sn)v an>, d( <<A1>> o 6i’ kn’ tn) € Ugctionsv
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implies Da,d({A;)) o §;, k™, s™) € Whiionss ¢ = 1,..., k. Consequently, due
to A; C T again, Dr(w™) Fuyp Da,d((A;) o &, k™, s™) for all d({A;)) o
8 k" t") € v, . We proveDr(w"™ ) Fayp Da,d({A;) o 6;, k™, t") by es-

tablishingd(A,, 0;, k™, t") = d(A;, 0;, k™, s™). To conclude that, note that = "
for ((A;)) o d; of the form (I, )) o (I'y))Or, ¥4 andn in intervals of the form

{(zM +)|W|,...,(zM +q+1)|W| -1} (4)
because
f(UOa koa tU)bO e b’ﬂ*lf(vn, knatn) ~T f(w07 kov So)ao e a’ﬂ*lf(wn7 kn7 Sn)a

andd({(A;) 0 6;, k™, t™) = d({A;)) 0 §;, k™, s™) regardless of the values gf and¢™
for n outside such intervals.

We chose the members of a maximal consistent subsét wfhich is consistent
with Dr(w™ 1) U {4} to come first in the ordering® of C. Therefore proving that
the consistency of™*! with =) and Dr(w"™!) = Dr(v™*1), which would entail
thatop ! = wit*!, amounts to proving that?,;,,,, U vi,. U Dr(w™ ™) U {-¢} is
consistent. Above we proved that the formulas frdjp, ., can be derived from those
from Dp(w"*!). Hence we need to prove the consistency ofjist, U D (w" ') U
{—¢}. Assume the contrary for the sake of contradiction. Then, sificeis logically
equivalent to{ox : x € v"}, vy, U {S0} is inconsistent too, wherea$ U {6} is

consistent, which is a contradiction, by the definitiorf@ndvy,,, . |

PROOF (OF LEMMA 24). — An immediate check shows that puttipg= (T")) o ¢
for all 5 € T brings the required properties. In cdses the empty coalitiony) € v™*!

follows from+ € vy, by the second axion{.)) o ©. |

PROOF (OF LEMMA 25). — Let f(v", k0, ¢80 ... on=Lf(v™ k™ ") € [r]p. Let
b = gandb} = (7)) o T for all i € £\ I'. Thenvy,,,,.. consists of the formulas
d({(A) o &;, k™, t"™) which correspond to the actiof&\;)) o §; from g such that
A; C T'is unanimous i™ and((A;)) o é; € v", and possibly some formulas of the
form D; T, which we ignore. Note that, sinak; C T, (A;)) o §; € v™ for the same

i € I'for all thev™ € W which appear in the last states of runs frpfia. Furthermore,
d({(A;)) o 6;, k™, t™) does not depend off for k™ outside intervals of the form (4)
where({(A;)) o d; is (T'y)) o (I'y))ODr, ¥, andt™ = s™ for k™ inside intervals of this
form. Hencev?,,..... does not depend on the choicewdfas long a$™ is as chosen

above. Obviously- ©(/A\v") = « is equivalent tavy, ., =arp o for any formulac.

As the environment actiob]’ ranges over all the orderings 6f, v, ;.onmen: FANGES
over all the completions of” U {e Av"} to a maximal consistent subset of

actions
C. The premiss) € v"*! for v" ! such that(v™ ™1, ...) = to(v™, k", ", b") of the
lemma entail$- A v710ns A S(AVY) A AVE = 1. Since the conjunction

environment
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on the left of=- in this formula is consistent, choosing an environment adtjowith
—) as the least element shows thaf\ v%.,,,.. A S(Av™) = 1. Now let

0, = \/ /\v".

F(vO,k0 t0)pO. . bn—1 f(v™ k™ t™)E[r]r

Then= A 074500 NS0, = 1 again. Hence (I)o(A 07 tions NO0n) = (I'))ot) by
Mono y.. Since- A\ v"™ = 0, for every possible™, we have- \ w™ = Dr6, by
Lemma 23. The fact that the unanimafiss are disjoint sub-coalitions af implies
that (I") o A v7..;0ns IS CONsistent with every possiblé', includingw™ itself. By
() o &, this entails tha{(I")) o (A v2..,ons N ©6r) IS consistent withw™ too. As
shown above, this entaild")) o v is consistent withv™. |

PROOF (OF LEMMA 26). — We are going to prove that anwith the required prop-
erty can be defined by putting(rf.)); = (I')) o (I')ODr% for all i € T andr}. such
that

Il €{n,....,n+ (M +1)|W|—1}. (5)

The value ofs for runs of other lengths is irrelevant.

Let (T'))ODr¢ be (I'y))ODr, v, for someg € {0,..., M — 1}. Let
Fw® k%, s9a® .. a™ f(w™, k™, s™) ... € out([r]r, s).

Then the interval from (5) has a subinterval of the form (4). {et. ..,z + |W|—1}

be the leftmost such subinterval. (There may be at most two.) Then either there exists
ayo € {n,...,z} such thaDry € w¥, or {T)ODrv € w¥ forally € {n,...,z}.

In both cases this is established by inductionyarsing the axion¥ P,p and the fact
thatd((T)) o (I'))ODre, kY, s¥) = Dp(T)ODryp € w? ;... for all the relevanys.

In the first case thé which appears in the lemma can be chosen tggdn the
second caséI')ODry € w”. Then aninductionop € {0, ..., |W|—2} shows that

sy = 1, Wgrv’;ff_y_l is consistent withv*+ and
x x Fﬂw\ Tl
() o (T)ODre, K™+, ") = DeW_iiin € weld, ..

This entails thatv**vo ¢ WOF‘“% for somey, < |W|. Thenk from the lemma can
be chosen to be + y, wherey, is the least one with the above property. |

PROOF(OF LEMMA 27). — Given anr’ as above, there exists a ledsk w such
thatty) € w™**, which we denote by:(r'). Consider the sell,. of the runsr’[0..m)]
wherer’ € out([r]r, s) andn < m < n+k(r'). Leth’ < B if k' = h”[0..|h"]| —1].
(H,, <) is the union of finitely many trees, each with its roofith-. SinceS is finite,
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these trees have finite degree of branching. Therefore, by Kénig's Lefimafinite.
Let k** = max{|h| — n : h € H,}. Note that the conditions of the lemma hold for
everyh € H,, thatis, ifh € H,., then for every

F® k0 s%a’ . a™ T fw™ k™, ™) ... € out([h]r, s)

there exists & < w such thaDry € w"I**, FurthermoreH;, C H, andk®* <
Jmax oy |,

We shall prove the lemma fdr € H, by induction onk;***. Let k;'** = 0 and
f(w™, k™, s™) be the last state df. ThenDry € w™, whence(T'))ODry € w™ by
axiom FPyp. For the induction step, assume th§t*> > 0. If Dry € w™, then we
reason like in the base case. If not, then fohabf the formha™ f (w™+1, km+1 sm+1)
such that = s(hr) we havek];* < k**. By the induction hypothesis this entails
(T)ODry € w™tt, whence, by Lemma 2%T") o (I'))ODre € w™, and therefore,
by axiom FP¢p again, we concludéT’)) ODry € w™. |



