A study on shuffle, stopwatches and
independently evolving clocks

Catalin Dima and Ruggero Lanotte

1 LACL, Université Paris 12, 61 av. du Général de Gaull&Q@Créteil Cedex, France
2 Universita dell'Insubria, Via Carloni 78, 22100, Comalit

Abstract. We show that stopwatch automata are equivalent with timedflehexpressions, an extension of
timed regular expressions with the shuffle operation. Siheeemptiness problem is undecidable for stopwatch
automata, and hence also for timed shuffle expressions,treelirce a decidable subclass of stopwatch automata
called partitioned stopwatch automata. We give for thisslan equivalent subclass of timed shuffle expres-
sions and investigate closure properties by showing théitipaed stopwatch automata are closed under union,
concatenation, star, shuffle and renaming, but not undersettion. We also show that partitioned stopwatch
automata are equivalent with distributed time-asynchusrautomata, which are asynchronous compositions of
timed automata in which time may evolve independently.

1 Introduction

Timed automata [AD94] and their stopwatch extensions [HR8Nare a widely accepted and
powerful model of real time systems. They are designed toeithe interaction between con-
tinuous processes and discrete logic by means of contintimesvariables called clocks or

stopwatches. They were designed with the aim to translatieetoeal-time setting as much as
possible from the classical automata/logic duality, whsobne of the central pillars in the model-
checking approach to formal verification [CGP99,BK08]. Erample, logical characterizations
of timed languages are studied in [HRS98,Wil94], regularegsions in [ACM02,BP99] and

monoidal characterizations in [BPTO3].

Timed automata models are applied in schedulability amafsM01,FMPY06,AAMO06],
providing some interesting new results which improve ¢t@davorst-case analysis techniques.
It has first been observed in [AM02] that modeling preempsigeeduling may require the use
of stopwatches, and thus the algorithmic analysis of prémpcheduling policies is somewhat
related with the construction of decidable subclasseopigitch automata. Preemptive schedul-
ing can also be expressed with regular expressions endoitked ghuffle operator, as suggested
in our previous paper [Dim05]. A third possibility consistsnetworks of “time-asynchronous”
timed automata with independent time passage, first suggyes{Kri99]. Finally, a fourth ap-
proach is explored in [FKPYOQ7], where the authors use timadraata with subtraction.

Our present study explores the connections between theHnest above possibilities for
modeling preemption and/or time independence. We focuhi@momparison between the ex-
pressive power of stopwatches, shuffle and independertlyiag clocks. We also study closure
properties of the classes of languages constructed userdjfterent formalisms.

We first show that timed regular expressions endowed witfflsthave the same expressive
power as stopwatch automata. The result presented hexersfgr automata working over timed
words. (The construction for automata over signals canmedan [Dim05].) We then restrict our

® Preliminary results were presented in [Dim05,DL07].

attention to a subclass of stopwatch automata, the paitistopwatch automata, in which there
exist a partition of the set of stopwatches and in each looadf the automaton, the set of active
stopwatches is an element of this partition. This subclakih can also be seen as a subclass of
thecontrolled timed automataf [DZ98], has a decidable emptiness problem and is stnmtye
expressive than timed automata. We show that this subcfagemwvatch automata is language
equivalent with a subclass of timed shuffle expressionseddlerefair shuffle expressionsn
which intersection can only be applied if one operand is dmmed regular expression — that is,
not containing the time binding operator. We also show tlaatifponed stopwatch automata are
not closed under intersection.

We then briefly investigate the power of diagonal constsaimtpartitioned stopwatch auto-
mata. Such constraints add no power when they are allowesktonly stopwatches belonging to
the same class. On the contrary, without this restrictiantigoned stopwatch automata become
equivalent with general stopwatch automata. We prove ésislt when both classes may contain
constraints with rational (not integer) constants. We gimeexample of a partitioned stopwatch
automaton with diagonal constraints using only integestamts for which we conjecture that its
language is not accepted by any general stopwatch autowaioh uses only integer constants.

We then introducalistributed time-asynchronous automatehich are tuples of timed au-
tomata synchronized on input symbols and in which time gpssalocal to each automaton,
hence clocks in different components may be incrementduddiffierent values. Each automaton
owns a set of clocks which only the owner can reset, but everynay check the value of ev-
eryone’s clocks. Discrete transitions serve for syncltraton, and synchronizations take place
by jointly accepting an input symbol while testing globabak constraints A component of
a distributed time-asynchronous automaton may also eséctgrnale-transitions without syn-
chronization with transitions executed in other composenhe distributed time-asynchronous
automata are inspired from [Kri99], being an intermediagpsbetween the distributed timed
automata and the interleaved timed automata of the santepaiger [Kri99]. The class of dis-
tributed time-asynchronous automata presented herediftam the one in [DLO7], in the sense
that we consider only clock resets to zero.

We then show that partitioned stopwatch automata are dguivaith distributed time-asyn-
chronous automata. The proof is done by distributing thérabred control of a partitioned stop-
watch automaton in the components of a distributed time@spnous automaton combined
with a communication mechanism between the componentstisatres that each component
knows exactly what transition is currently simulated andohcomponent simulates it. The
proof of this equivalence is more involved than in [DLO7] wheesetting a clock tda could
be used for communication between components. The prosépted here requires a special
normal form for partitioned stopwatch automata (callecelséate-region determinisynin which
special restrictions apply totransitions and to the relationship between the congdteaid the
reset of a transition and the set of stopwatches owned bgltss and target states.

The paper is divided as follows: in the second section welrdeanotion of stopwatch au-
tomata and we introduce our class of partitioned stopwattbnaata for which the reachability
problem is decidable. (This result is a corollary of resoltsthe decidability of the emptiness

! Note that we do not consider here distributed alphabetfeisénse of [Zie87].

2

problem for Controlled Timed Automata showed in [DZ98]; welude this subsection for self-
containedness concerns.) We also show that diagonal eortstadded to partitioned stopwatch
automata make them equivalent with general stopwatch aitorwe end this section by intro-
ducing the notion of state-region deterministic partidgdrstopwatch automata and prove that
each partitioned stopwatch automaton can be brought tontrimal form. In the third section
we recall the timed shuffle expressions and prove their etprice with stopwatch automata for
timed words semantics. We then introduce the class of faifflshexpressions and show their
equivalence with partitioned stopwatch automata. Thetlfosection serves us for the presen-
tation of the class of distributed time-asynchronous aatenand for proving the equivalence
between distributed time-asynchronous automata andipagd stopwatch automata. We also
show in this section the non closure under intersection stfiduted time-asynchronous auto-
mata, which requires the introduction of the class of distied time-asynchronous automata
with private clocksets, in which each component may onlg ressown clocks, and not the clocks
of the other components. In the fifth section we give an exarmpmodeling, with distributed
time-asynchronous automata and fair regular expressabiund-Robin scheduling situations
and of timed processes sharing critical sections. We erndawsection with conclusions.

Related Work.Timed regular expressions were first proposed in [ACM97}égular languages
of signals, and the first Kleene theorem for timed automatapaved there (see also [ACMO02)).
Also [BP99] and [BP01] proposed decomposition theoremdifoed automata, and [Dim99]
proposed regular expressions equivalent with event-clngkbmata. Regular expressions for
stopwatch automata working on signals were first proposédimO05].

Parallel compositions of timed automata were consideredasaly as [AD94]. The paral-
lel composition assumes a common single time frame, andehemicesponds to intersection.
[Kri99] is the first to study an interleaved composition agder on timed automata.

Decidable classes of hybrid automata have been invedtigafglKPV98,DZ98], where it
has been observed that a clear partition between continaiables having different dynamics
is needed in order to have a decidable emptiness problemcl@ss of partitioned stopwatch
automaton can be seen as a subclass of the Controlled TimiesnAta of [DZ98]. However
our main concern here is not on decidability, but rather anekpressive power of this class.
Some newer developments are reported in [BHO9], where tehability and model-checking
problems are studied for a subclass of Controlled Timed #ata, which, when restricted to
automata utilizing only diagonal constraints, is a sulxtafsour partitioned stopwatch automa-
ta. We also mention [ABG08], which investigates our class of distributed time-a$yonous
automaton for expressiveness over untimed languages.

2 Stopwatch automata and partitioned stopwatch automata

A timed word also calledtimed event sequencis a finite sequence of nonnegative numbers
and/or symbols front'. For example, the sequent@ a 1.3 0.4 b denotes a behavior in which an
actiona occursl.2 time units after the beginning of the observation, and aftertherl.3 + 0.4
time units actiorb occurs. The lengtli(w) of a timed wordw is the sum of its subsequence of

3

reals, e.g/(1.2a1.30.4b) = 1.2+ 1.3 + 0.4 = 2.9. Timed (event) languagese then sets of
timed words.

Several operations on timed words will be used in this papex first is concatenation, which
extends the classic concatenation of untimed words by defitiie concatenation of two reals
as their sum. For example,1.3 - 1.7b¢0.4 = a(1.3 + 1.7)bc0.4 = a3 bc0.4. Note that both
e, the empty timed word, and the sequence consisting of thé) negresent théentity of this
concatenation.

The second operation on timed wordsstauffle which is formally defined as follows: for
each two timed words),, ws, wi Wwy = {ulvl C UV | W = Uy Uy, W = 0y .vn}. Both
concatenation and shuffle can be straightforwardly exténoéanguages, so, givel, L, two
timed languages: we denatg - Ly = {w; - wy | wy € Ly, ws € Ly} andLiwLy = {w | w €
wy Wwsg, wy € Ly, wy € LQ}

A third useful operation on timed languagesémaming it is the operation induced by a
function f : ¥ — X U {e} which syntactically replaces symbols in a timed word withest
symbols, while leaving unchanged the reals composing thediword. The renaming af € X
with b € X' is denoteda/b]. We also useleletion which removes a symbol from a timed word,
and consider it as a special case of renaming. The deletiarspibole € X' is denoteda/<].
Hence,a/c,b/c](1.3a1.2b0.1a) = 1.3¢c1.3c.

The above presentation of timed words is very convenientdostructing semantics to au-
tomata or regular expressions. However, for proofs of €xpjessiveness, thiened stamypre-
sentation is more convenient: given atimed woré- t,a; .. . t,a,t, 1, itstimed stamp sequence
is the sequence of real numbers:

T(w) = (01(w),. .., 0041 (w)) whereo;(w) = > ¢,

i=1

All our automata use nonnegative real-valued variablesatecalledclockswhen used in
timed automata, resgtopwatchesvhen used in stopwatch automata. The values of such vari-
ables may inhibit or allow taking some transitid@lock or stopwatch constraintare positive
boolean combinations of elementary constraints of the tygel, with = being a (clock, resp.
stopwatch) variable anél C R, an interval with bounds itN U {cc}. The set of constraints
with variables in a given set’ (of clocksor stopwatchesis denotedConstr(X).

Givenv : X — RspandC € Constr(X), we denote as usual = C if C' holds when all
occurrences of eache€ X are replaced with(z). We also denote + ¢ (for ¢ > 0) the valuation
(v+1t) : X = Ry(defined by(v + t)(z) = v(x) + ¢ for all z € X'. Clock resp.stopwatch reset
is denoted as usual: given a valuation X — R, and a subset” C X, we denote/[Y" := 0]
the clock valuation defined by

0 whenz € Y
v(x) whenz €Y

Moreover, forY” C X, we denotev |, the valuatiorw|, : Y — R, defined byv|, (z) = v(x)
for all z € Y. Finally, we denote +y t the valuation which increments all variablesyinby ¢,

4

and leaves all other variables unchanged:

v(r)+t whenzx €Y
v(x) otherwise

(v +y t)(x) = {

The set of valuations of stopwatchesirwill be denoted in the sequét’ — R,]. Also the
identically zero clock valuation it — R is denoted) .

Definition 1. A stopwatch automatofHKPV98] is a tuple A = (Q, X, X', 1, §, Qo, Q) Where
Q is afinite set oflocations X’ is a finite set ofstopwatchesY is a finite set of(action) symbols
Qo, Qr C @ are sets ofinitial, resp.final locations,n : () — P(X’) gives for each state a set
of stopwatches which agectivein ¢, and? is a finite set of tuples (calleansition$, of the form

q GaX, ¢, whereq,q € Q, X C X,a € YU{e}andC is a stopwatch constraint iGonstr(X).
Atimed automatoris a stopwatch automatad = (Q, X', X', 1, 6, Qy, Qs) such that)(q) =
X, for anyq € Q.

In the case of timed automata, the elementg’olvill be referred to aslocksinstead of stop-
watches, and the componenwill be omitted in the tuple defining the automaton.

Informally, a stopwatch automaton can make time-passagesitions and discrete transi-
tions. In a time-passage transition with duratigrthe location remains unchanged while all
stopwatcheshat are active in that locatioadvance by, and all the other stopwatches are kept
unchanged. In a discrete transitions location changesr@&egstransitions are enabled when the

current stopwatch valuation satisfies the guard' of a certain transitiory ok, q € 6, and
when they are executed, the stopwatches in the reset comip®rae set to zero.

Formally, thesemanticof a stopwatch automatad is atimed transition systerfi (A) =
(9,0, Qp, Qr) WhereQ = @) x [X — R5| represents the set of system sta@s=)y x {Ox}
is the set of initial state); = Q¢ x [X¥ — R is the set of final states, and

0= {(g,v) > (¢,V) | ¢ € Qv = v+ t With ¢ € Rs} (1)
U{(g,v) = (¢,v) | 3¢ CaX, ¢ € 5 with v = Candv' =v[X = 0]} (2)

Type 1 transitions are calldg@ne-passage transitiong/hereas type 2 transitions are calldid-

crete transitionsWe also say that thg-transitiont4 = ¢ GaX, ¢ € 4 generategshe 7 (A)-
transitionrr4) = (¢,v) = (¢',v’) € 0 if the two transitions are related by the conditions on the
line 2 in the above definition df.

The label of a discrete transitiohg, v) = (¢/,v') isa (a € X U {}). Thelabel of a time-
passage transitiofy, v) LN (g,v")ist € Rxy.

A trajectory in 7(A) is a sequence = ((qi_l,vi_l) LN (i, vi)) of transitions from

1<i<2k
6, alternating between time passage and discrete, th@t.is,c R>, andéy; € X U {e}. A run
in A is a chain of transitiong’ = <Qi—1 RN qi> K The trajectoryp is associated with
1<:i<

the runy’ if the length ofp is double the length of’ and the2i-th discrete transitiorin p is
generated by théeth transition ofy'.

An accepting trajectory in 7 (.A) is a trajectory which starts i@,, ends inQ; anddoes
not end with a time-passage transitiorhis is needed for synchronization purposes as it makes
visible the end of an accepted timed word.

Remark 1.Note that any stopwatch automaton can be transformed satfotheach final state
q € Qs there exists no outgoing transition leavipgUnless stated differently, we will assume
this property for all stopwatch automata considered inphiser.

An accepting trajectoracceptsa timed wordw iff w is obtained by concatenating the la-
bels of the transitions in the trajectory. Tleguage accepted byA is then the set of timed
words which are accepted by some accepting trajectoff/(of). The language accepted by
is denoted.(.4). Two timed automata arequivalentiff they have the same language.

Definition 2. The class otimed shuffle languagess the class of timed languages which are
accepted by stopwatch automata.

The class ofimed regular languagess the class of timed languages which are accepted by
timed automata.

The Figure 1 gives an example of a stopwatch automaton whosg@age is
L(.A) = {tla,tgbtgc | tl + t3 = 1}

Note that, by definition of an accepting trajectory, the endton in Figure 1 cannot spend any
time in the last statg, when accepting a timed word.

true, a, 0 true, b, 0

Fig. 1. A stopwatch automaton.

Remark 2.Very frequently we will abuse notation and catjectoryalso sequences of the form

p = <(qi_1,vi_1) LN (qi,vi)) in which the alternation between time-passage transitions
1<i<2k

and discrete transitions is not satisfied. It is straightfod how to transform such a sequence
into a trajectory in the sense of the above definition, eithemerging two consecutive time-
passage transitions jn or by inserting zero time-passage transitions betweenctmsecutive
discrete transitions ip.

2.1 Partitioned stopwatch automata

The following subclass of stopwatch automata restrictaigage of stopwatches in a sense that
makes the language emptiness problem decidable. Namelgettof stopwatches is partitioned
into classes such that, for each statéhe set of stopwatches that are active is a class in this
partition.

Definition 3. A partitioned stopwatch automatois a stopwatch automaton in which

Va,q' € Q, n(q) #n(d') = nlg) Nnld) =0

An example of a stopwatch automaton is given in Figure 2, anexample of a partitioned
stopwatch automaton is given in Figure 3 below.

CC1€]071[$2€]01 ro=1Ax3=1

1 =1,a,0
“ L@ D50

Fig. 2. A stopwatch automaton acceptifig = {t1atzatsatsa | t1,t2,t3,t4 €]0,1[,t1 +t3 =to +ta =t1 + ta = 1}

z1 €]0,1] x2 €]0,1]

Fig. 3. A partitioned stopwatch automaton accepting= {t1atzatsataa | t1,ta2,ts,ta €10,1[1 +t3 =1 Ata +ts =1}

2.2 Decidability of the reachability problem for partition ed stopwatch automata

In this section we give the generalization of the region tmresion from [AD94] for partitioned
stopwatch automata.
We start by recalling the following result:

Theorem 1 ([HKPV98]). The emptiness problem for stopwatch automata is undea@dabl

Turning now to decidability, recall that zone(see [Yov98]) is a nonempty convex set of
points inRx," which characterized by a constraint of the fatha = A\, ;. xi—z; € I;;, where
xo = 0 andl;; are intervals with integer bounds. We say thatis theconstraint characterizing
the zoneZ. In the sequel, we consider only zones whose characterzingtraints use variables
from a set of stopwatches (or clock’)

An M-region[AD94], with M € N, is a zoneR for which there exists a subset of variables
Y C X such that some constraint characterizidgan be put in the following format:

Cr = /\mGY(x € L) A /\x’yeyw#y(x —Yye Iry) A /\meX\y (x €M, oo[)

with the following properties:

— For eachr € Y, either/,={a} withaeN, a <M, or I, =]a, a+1[with aeN, a <M —1,
— For eachr,y € Y with x # y, eitherl,, = {a} witha € Z, -M < o < M, 0or1,, =
Ja,a+1[witha € Z, —-M <a < M — 1,

We denotereg 4 (X') the set of)/-regions over the stopwatchesthfor the automatom, where
M is the greatest constant appearing in a constraiut.of

The following theorem adapts the well-known region cordtan of [AD94] for partitioned
stopwatch automata:

Theorem 2. The reachability problem for the class of partitioned stapetr automata is decid-
able.

Proof. Consider a partitioned stopwatch automatn= (Q, X, X', 7,6, Qo, Q), denoten =
card{n(q) | ¢ € Q} the number of partitions of the set of stopwatchésand denote these
partitions asty, ..., X,. Theregion automatororresponding witt is:

RA = (Q X RegA(Xl) X ... X RegA(Xn),éfR,Ro,Rf)

WherERo = {(QQ,OXU...,OXH) | qo € Qo}, Rf = {(Qf,Rl,...,Rn) | qr € Qf,RZ‘ €
Reg 4(X;)} and

or = {(¢, R, ..., Rn) = (¢, R}, ..., B | 3q,0) S (¢0') €6, 6 €R5 U X U {e}
such thatforalll <i <n, R;, R; € Reg,(&X;) andv|, € R;,v'|, € R}

Here,d is the transition relation of the timed transition syst@if4) associated withA.
It is easy to see that(.4) is not empty if and only ifR 4 has at least one reachable final
state. O

2.3 Diagonal constraints in partitioned stopwatch automaa

In this section we study the expressiveness power of didgonatraints in partitioned stopwatch
automata. Recall that diagonal constraints are elemeaotarstraints of the type — y € I, with
x andy being a (clock or stopwatch) variable ahd- R, an interval with integer bounds.

It is known that timed automata have the same expressiverpeitle or without diagonal
constraints [BDFP04]. More precisely, given a timed auttimavhose constraints utilize di-
agonal constraints, one may algorithmically constructreetl automaton (i.e. without diagonal
constraints) accepting the same language.

The same construction can be straightforwardly adapteditiitipned stopwatch automata
when diagonal constraints are allowed only between stapwatbelonging to the same parti-
tion. Formally, given a partitioX;)<;<,, of the set of stopwatche¥, a(&;),<;<,-compatible
diagonal constraints a constraint of the form — y € I for which there exists an indexwith
x,y € X,

Proposition 1. The class of timed languages accepted by partitioned stmpveautomata using
boolean combinations of simple constraints &), <;<,,-compatible diagonal constraints is
the same with the class of timed languages accepted byipagd stopwatch automata without
diagonal constraints.

The proof of this proposition is an easy adaptation of resuttm [BDFPO04].

The situation is completely different when diagonal caaistis are allowed to refer to stop-
watches in different components af. We prove here that the class of partitioned stopwatch
automata with diagonal constraints and the class of stapveattomata with diagonal constraints
have the same expressive powerational numbersre allowed to be used in the constraints. As

8

a consequence, the emptiness problem is undecidable fitiqreed stopwatch automata with
(unrestricted) diagonal constraints.

Formally, definegQ-shuffle languages to be the set of timed languages whicheawemantics
of a shuffle regular expression in which the time-bindingrapm is allowed to utilize intervals
with rational bounds also. We will show that arffj-shuffle language can be accepted by a parti-
tioned stopwatch automaton with diagonal constraintsrieat employ rational constants on its
transitions.

The proof idea is presented in Figures 4 and 5 below:

Cl,a1,X1 Cg,ag,Xz

Fig. 4. A state of a stopwatch automaton with diagonal constraints

Ch, a1, X1 U{T} .true,q{y}.f =7 ACs, a2, X2

Fig. 5. Splitting the state in two states, one which is-active and the othey-active.

The statey in Figure 4 is split, in Figure 5 in two stateg, andg,, with = being active only
in ¢, andy active only ing,. We append a new stopwatetto 7(¢,) and another ong to (g,),
storing the time elapsed i, resp.¢,. Then, when exiting,, it is sufficient to check that =y
to ensure that the same interval of time has elapsed in batésgt andg,, which would mean
that bothx andy have been incremented with the same amount of time. On tlee bénd, the
delay of staying iny, is meant to be the same as the delay of staying imhich means that the
cumulated delay which is required for going from the traositabeledC;, a;, X; to Cs, as, X5
in Figure 5 is thedoubleof the delay of staying i in Figure 4.

This replication technique can be generalized for statéls wmiore than two active stop-
watches, and, if we assume that each state has a fixed numifeactive stopwatches (this
is possible by adding dummy stopwatches), then each stateeinld automaton is split into
the same number of replicas in the new automaton. The aimdsristruct a new partitioned
stopwatch automaton satisfying the property that the otdraaton accepts a timed wortd if
and only if the new automaton accepts the timed woed w, where wherex is the “homotety”
applied tow by incrementing each time passage with a factor.dflore formally,

Forw =1t a;ty...1t,a, wedefinek ® w ask ® w = kty a; kty ... kt,, a,.

Therefore, to show the desired equivalence, it is suffidiertivide the constants appearing in
the constraints of the initial automaton byto get the same language.

Theorem 3. Partitioned stopwatch automata with diagonal constralrdse the same expressive
power as stopwatch automata with diagonal constraints tiverclass of)-shuffle languages.

9

Proof. Take a stopwatch automatoh= (@), X', 2. n, é, Qo, Q) with diagonal constraints. Sup-
pose, without loss of generality, that, for anyy’ € Q, card(n(q)) = card(n(q')). This request
can be satisfied by adding dummy stopwatches. Hencé, fixcard(n(q)), for anyq € Q. We
use the following notation)(q) = {{, ...z} }, foranyq € Q.

We construct a partitioned stopwatch automaton with diagoanstraints recognizing @
L(A). The partitioned stopwatch automaton with diagonal ceisis has, as its set of states,
pairs of the form(q,) wherel < i < k andgq is a state ofd. The set)(q) = {z7,...z}} is
distributed in the sequence of statesl), ..., (¢, k), by letting stopwatch:! be active only in
the state(q, 7). Furthermore, for each state, i) we add a new stopwatc#f for storing the time
elapsed ifq,). This will be used to check that, when exiting from the laatesty, k), the same
time was elapsed in each of the states) with 1 < ¢ < k. When exiting from the statéy, k)
we enter in statég’, 1) if there exists a transition fromto ¢’ in A.

Formally, we defined’ = (@', &', X, 7/, &', @5, Q';) as follows:

- Q' =Qx{l,....,k},Qy = Q4 x {1} andQ’; = Q' x {1}.
~ X' =XU{T |z e X}andy(q.i) = {«!.77};
— ¢’ is constructed as follows:

k
0'{(q.k) 5 (¢, 1) | 3 5 € Swith C = ¢ A N\ 2f = of andX = X' U {77 }}
=2
. true,s,{fg+l} . .
U {(q,1) (gi+1)]1<i<k-1}

It is not too difficult to see that for any timed word, w € L(A) ifand only if k @ w €

L(A). Hence, if we further construct the automatdfy, with L(A; ;) = % ® L(A"), then then
L(A}) = L(A). This concludes the proof of our theorem. 0

Hence we have the following corollary:

Corollary 1. Partitioned stopwatch automata with diagonal constraarsstrictly more expres-
sive than both partitioned stopwatch automata and fair 8aexpressions.

The reachability problem for partitioned stopwatch autaewith diagonal constraints is
undecidable.

As a consequence, we have the following chain of equalitiesiaclusions, where we de-
noteT A the class of (timed) languages accepted by timed automdtar@ional constraints),
PS A the class of languages accepted by partitioned stopwatomaton,P S AD the class of
languages accepted by partitioned stopwatch automatbrdveigonal constraint$ 1y the class
of languages accepted by stopwatch automata,samd> the class of languages accepted by
stopwatch automata with diagonal constraints:

Prop.9 Conjecture Th.3&Cor.1

Prop.3
TA C PSA C SW C SWD

=

PSAD

All these identities hold for automata with rational constts.

10

We conclude this section by giving an example of a stopwatthnaaton with diagonal con-
straints for which we conjecture that there exists no staplvautomaton without diagonal con-
straints which accepts the same language. The example iguneF6 and accepts the language
{tl CLtQ a ‘ tl = tQ}

Fig. 6. A stopwatch automaton with diagonal constraints recoggitie languagét, atsa | t1 = ta2}

2.4 Some useful normal forms for partitioned stopwatch autmata

Before ending this section we give a couple of normal formp#éotitioned stopwatch automata.
The first normal form states that each constraint and ea&t ogsa transition concerns only
stopwatches owned by the target state. The second nornmalifodefined by the following
properties:

— No e-transition can be preceded or succeded in zero time by endibcrete transition.

— All sequences of transitions with symbolsinthat are taken in zero time must be taken in
the same component, which is the component containing stestate in the sequence.

— Discrete transitions argeterministian the following sense: no two discrete transitions may
lead to two distinct states i (.A), both owning the same class of stopwatches and such that
the stopwatch values right after the transition lie in th@eaegions.

We also need the following notion: given a stopwatch automat and a stopwatch of A,
a locationg in A is calledz-activeif = € n(q); otherwise, we will say; is z-inactive A run
whose intermediate locations arénactive locations is called artinactive run

We begin with the statement and proof of the first normal form:

Lemma 1. Given a partitioned stopwatch automatBn= (@), X', X', 7, d, Qo, @ s) there exists a
partitioned stopwatch automatdsl = (Q', X', X, 7', d', Qg, Q') which has the same language
as B and has the following properties:

— For each transitiorny CoX e 8 with r ¢ Q', we have thatX' C »/(r) and C does not
constrain the clocks which are inactive §n- that is,C' A (z = «) is satisfiable for each
z & n'(q) anda € Rx.

— B’ satisfies the condition in Remark 1, i.e. no outgoing tramsg are leaving final states.

— 1/'(¢q) = 0 for eachq € Q.

Proof. The technique used to construct the automdibis to remove all the constraints of the

form (x € I) from the label of transitiong £2X, 1 for which z is inactive ing, and shift them

to the transitions that leave Since the value of does not change along arinactive run, the
conjunction of all the constraints analong such a run only needs to be checked at the end of
the run. Some particular care needs to be taken when the atdonrhas circuits in which is

11

inactive. But, fortunately, we only need to remember wheghein passes at least once through
a transition, further passages through the same transéioain irrelevant for the above idea of
x-constraint shifting.

Resets are also shifted similarly: each reset of a stopwasthhe beginning of a run which
passes through-inactive states can be shifted from the first transitionhi$ run to its last
transition.

Another special care has to be taken with final states: cinstrlabeling transitions whose
target states are final should not be removed. But, by asgpiinat all final states have no out-
going transitions, we may gather all these states in a sgayigoonent in which no stopwatch is
active, such that the first property be satisfied also forsitexms entering final states.

In the sequel we construct the automat®nwhich satisfies the required properties for a
single stopwatch:. The whole construction can be iterated for the rest of satpes. We use
the following notations:

1. We denotdj the set of intervals for which € I occur on some transition iA.
2. Given a constraint’ and a clockr, we denote” \ x the constraint which is obtained frof
by removing the atomic constraints referringito

Formally,B' = (Q" U Q;, X, X, 7/, ¢, Q, Q) with:

- Q =QxIzgx{0,1}andQ,isacopy ofQ;, Q; = {T | r € Qs}.
In a B'-state(q, 6, 1), the third component records the passage through a tamsésetting
x during thez-inactive run which ends i, that is,: = 1 if there exists such a resetting
transition and = 0 otherwise. When = 0, the second componeftrecords the intervals
which constrained the clock along thez-inactive run that ends in. For: = 1, the same
component records the intervals which constraineafore ther-reset. (The constraints that
occurafter anz-reset are not recorded, since the only relevant conswaintafter this reset
isz =0.)

= 1/(q,0,7) = n(q) for (¢,0,7) € Q" andy/(g) = P forg € Q;.

— Qb= Qo x {0} x {0}.

— The transition relation is composed of two types of transsi

e (q,01,11) GEX, (r,0s,19), if there existsy EX 1 e § such that

0 if ris z-active

15 =< 1 if risz-inactive andr € X’
11 otherwise
)"\ if ¢ is z-inactive
C" A Njep,(x € I) otherwise

0 if ¢ is z-active
? 0, U{x € I | zoccursinC’ andi; = 0} otherwise

e (q,0,1) GEX Ffor € (s and there exists = ¢ XL € § such thatC' =

C'"ANN\jgolr € I)andX = X'U {z} if i = 1, X = X' otherwise.

12

The correctness of the construction relies on the fact fleadtcurrence of the same transition
along anz-inactive path does not need to be memorized more than onea wdmputing the
second component of each stéied, i) € @'. O

The second normal form is formalized in the following defunit

Definition 4. A state-region deterministic partitioned stopwatch autotoa is a tuple A =
(Q, X, X, n,0,Q0 Qr), whose associated timed transition syste(ml) = (Q, 6, Q,, Q) satis-
fies the following properties:

1. Final states have no outgoing transitipins., A satisfies the property in Remark 1.

2. Two transitions starting from the same state and labeli#a tve same region constraint must
lead to states associated with distinct classes of stopgweate we call this propertipcation
determinism
More formally, for any state§y, v), (¢1,v'), (¢2,v") € Q and eachl € X U {¢}, if n(¢:) =
n(q2), (q,v) AN (q1,v") and(q, v) AN (g2, V") theng; = ¢o.

3. There exists a unique initial statg € (o such that (a) all timed words that begin with a
sequence of discrete transitions separated by intervdengith zero must be parsed starting
from ¢q, (b) all timed words that start with a non-zero time passagestive parsed starting
from initial states different frongy, and (c) for each class of stopwatchés there exists
at most one initial state which is labeled wigti. We call this propertyinitial trajectory
determinism
More formally :

(a) For each trajectory(go, 0x) N (q,0x)

(b) For each trajectory(q,0x) — (g,v)
q # Qo

(c) For each pair of trajectoriesq;, 0x) < (q1,v) < (¢,v') and (g2, 0x) < (g2,v)
(¢, v"), ifn(q1) = n(gz) andqy, g2 € Qo theng; = go.

4. Iftwo consecutive discrete transitions are taken in ziene, then none of them may be labeled
with ¢, that is, for each trajectory ifif (A), (q1, v1) N (q2,v2) LN (g3, v3) With &1, & & R,
we have that;, & € Y.

5. In any sequence of discrete transitions separated bytzam the source state of each tran-
sition owns the same set of stopwatches. Formally, for eapbctory in7 (A), (q1,v1) -
(g2, v2) <% (g3, v3) With ar, a; € X, we have that(q:) = 1(g).

(¢, 0x) with ¢y € Qo we must have = qp.

AN
1 (¢,v") witht > 0 andq € Q, we must have

The second normal form is ensured by the following:

Lemma 2. Given a partitioned stopwatch automatoh we can effectively compute a state-
region deterministic partitioned stopwatch automa®with L(.A) = L(B).

Proof. We will start with a partitioned stopwatch automaton and ifyoid in four stages, each
stage adding one extra property between the five above, Byrgteans of Lemma 1, we assume

that each transition X 1 has the property that and X refer only to the stopwatches that
are active inr.

13

Secondly, we assume that is in fact transformed using the region construction fottipar

tioned stopwatch automata. More formally, we assume tbatarfy transitiony X e
with n(r) = X, there exists a regioR; € Reg 4(X;) such that” is a defining constraint fok;,
and also each transition jA is reachablethat is, there exists an accepting run that contains that
transition and which is associated with at least one aaugptajectory.
Thirdly, we will assume that each componetjtcontains a distinguished stopwatchthat

is reset before entering each state ¢ owning X; (i.e.n(q) = A;). Hence, on each transition

q GEX e 4, the (region) constrain®' either impliesz) = 0 or is such that” A (2 = 0) is

unsatisfiable. For convenience, for any set of stopwatéhese denote”’ |, the subconstraint
of C involving only clocks inX; alsoC' C (xz € I) denotes situations in which the constraint
C A (z ¢ I) is unsatisfiable.

The fourth property in the definition of state-region detigism can be obtained as follows:

we remove all transitiong CE% o with Clo = (2 = 0) wheren(r) = &; (which are exactly
the e-transitions taken after a time lapse (ofn source state), by replacing them with other
constraints that simulate sequencesfansitions that are taken in zero time. Formally, the
construction is the following: denote first

5. = {q <=5 v | 3i such thaty(r) = X, andC|,, = (2 = 0)}

)

Then we replaceé with the set of transitions” defined as follows:

C,6,X . . C,6,X . Ci.&5,X,
- q CEX e it either ¢ GEX el \ 6. or there exists a rufy;_, M 4)1<j<m

in A with §;, € X for somej, < mand¢{; = cforall j # jo, & =€, = ¢, @ = 7,
C = A\i<;<, C; and if we denote; the index withn(q¢;) = A;; thenCy|, C (27, > 0) and

0
1
forall j > 2, C; |x?j = (g:?j =0).
Also we replace), with a new set of initial stateQ;, defined as follows:
/ : Cjo65: X5 , :
Q= {r € Q| there exists a rufig;_; ——— qj)1<j<m in Awith ¢y € Qo,qm =T,

andforallj,&; =¢,C; = Ox}

Note that the automaton obtained still satisfies the prgpef®emark 1.
The fifth property in Definition 4 is obtained by modifying ta@tomaton obtained above

along the following ideas: first, whenever a transitjpgﬂ r with some constraint) = 0 is
taken (which, by the above construction, means déhgt <), its target state will be redirected to
a copy ofr which will be associated with the same set of stopwatches Bwsorder to keep the
properties from Lemma 1 satisfied after this, we need to tealso in this state the constraifit
and the reset componeAiit, so as to postpone their satisfaction until the moment whesét of
stopwatcheg(r) will be encountered again, or until a final state is reached.

Formally, considering that we start with an automatdrsatisfying property 4 in Defini-
tion 4 and the properties in Lemma 1, we build the partitiosempwatch automatopl =

(Qv 27 Xv(;vf]) QO, Qf) with

14

1. Q = {(g,C, X,i) | ¢ € Q,C occurs on some transition 6fX C X,0 <i <n}.
States of the typ¢g, C, X, 0) aretransient (that is, control may stay only for O time units
in such states), and occur during sequences of transitaikestin zero time, starting from
component. States of the typéq, C, X,7) with 1 < i < n are persistentand have the
property that all transitions leaving such states mustrerthatz) > 0 wheren(q) = X;.

2. Qo= {(q,C’X@)EQ|qEQ0,O<z<n}
3. Qr={(¢,C, X,i) € Q| g€ Q,0<i<n},
4. n(q,C, X,i) = X; for1 <i <mn,andq(q,C, X,0) =n(q).
5. The transition relation is composed of tuples of the feilg types:
@) (¢,Cy, Xq,11) —= GeX, (7, CQ,XQ,ZQ) if 47 > 1 and there exists GaXy € 0 such that
c=c ., A(x) =0),Co=Cy A C’|X\Xi1,

fnlq) # X
random choice betweehandzl, otherwise

X =
X’ nn(r)) U {x?}, if i, = 0andn(r) = &
X2 = X1 (X\n()) otherwise
Ca,X

(b) (¢,C4, X1,0) — (r, CQ,XQ, i) if there eXIStSq e X ¢ § such that if we denote
J1, j2 the indices withy(¢) = &}, andn(r) = &), theni € {0, j1, j»} is an arbitrary value,
C=C"yNCily N >0),Co=C ANC

1 |X\XZ- |X\Xj1 ’

(XiuX'u{adh)na ifi £0
(X1 UX'U{af})nn(r) otherwise
(

x XiUX)\ & ifi#£0
2T (X, UX)\n(r) otherwise

Remark 3.Note that the above construction has the property that thef saitial states is parti-
tioned,Qy = QU QF with QN Qf = 0 and such that for eache Qo, if (¢,0x) > (q,v) AN
(¢,v'") is a trajectory irlT (A) with ¢ € Q, thent = 0 if and only if g € QO

Also, the property in Remark 1 is preserved by this constactvith the extra property that
there exists a unique stopwatch that is active only in the §itzdes.

Finally, the properties 2 and 3 in Definition 4 can be obtaibgda subset construction:
startlng with the automatonl already satisfying properties 4 and 5, we build the automato

(Q Y. X, 5 7, QO,Qf) with

1. Q = {S C Q| there exists with)(¢) = X; forallg € SYU{S | S C Q}.
The last type of macro-states is used at the beginning adi@jies which start with a se-
guence of discrete transitions taken in zero time, hencedhef stopwatches which is asso-
ciated with these macro-states is not essential.

15

N

. Qo ={QFU{S C Q}|Jiwithn(q) = X; forallq € S}.

.Qf:{SeQ\SﬂQf;é(Z)}.

4. X = X U {7}, whereT is an extra stopwatch used only in the macro-states at thariag
of trajectories which start with a sequence of discretesiteoms taken in zero time.
We also partitiont asX = |J,.,.,,., & With &; = &; fori < n andX,,, = {7}.

5. For eachS € Q, 1(S) = n(q) for someq € S, and for eacts € Q, 1(S) = X1 = {7}
(note the comment on the first item above).

6. The transition relation is:

w

§={9 L% R|3i,1<i<nstR={reQ|n(r)=X,3qeSwithg =25 ,}}
U{?MR\R:{TECN there existg € S with ¢ <= ¢
andC' A (z = 0) is satisfiable for each € X'} }

Note again that the resulting automaton satisfies the dondit Remark 1, since, due to Remark
3 above, final states can only be grouped with other final staté). This ends the proof of
Lemma 2. ad

3 Regular expressions for stopwatches

In this section we present the class of timed shuffle exprassaind their equivalence with stop-
watch automata. We also give a class of timed shuffle exnressihich are equivalent with
partitioned stopwatch automata.

Definition 5. The class ofimed shuffle expressionis the following:
E:=a|t|E+FE|E-E|ENE|E"|(E);| EWE | |a/bE

where ,a € X, b € Y U {e} and [is an interval with a nonnegative integer bound and a
nonnegative integer or infinite upper bound.

A timed regular expressiorns a timed shuffle expression constructed without the operat
w. Anunconstrained expressiors a timed shuffle expression constructed without the operat

-

The(_); operator reads as thiene binding operatar
Thesemantic®f a timed shuffle expression is given by the following rules:

lall = {a} el = {t |t € R}
1By + Bl = (| 1]l U [} Eall IE= = 1E]"
By A Bl = LBy 0 [Bl KB = {w e IE] | t(w) € T}
1y - Bl = [[Ev]] - [£ [EvwE, || = [|Ey[[w][£

lla/BIE] = {[a/b](w) | w e | E|}

wherea € X andb € X' U {e}.

16

Example 1.The expressioly; = [z1/¢][z2/¢] (((zlgazlgc)l W zotb) A zlgazﬁbzlgc) represents
the language of the automatghfrom Figure 1.

Note, in this example, the need to “duplicate” each symbolve did not use the additional
symbolsz; andz,, we would not be able to correctly “insert” the first subexgsion of the shuffle
“within” the second, i.e., the shuffle expressibn = ((tatc); W tb) A tatbtc, is not equivalent
with the automaton in Figure 1. To see this, note that theflehexpressiort, is equivalent with
the timed regular expressid, = (tatb(t)o1j¢)[.0o[, Which is obviously not equivalent with
the stopwatch automaton in Figure 1. The problem lies in &éloe that the duration beforein
the shuffled subexpressioh must not “mix” with the other durations. The use of the aduatial
symbolsz; andz, in Example 1 is essential in forbidding this mixing.

Remark 4.Note that an unconstrained expression still has some timflegmation, because it
may contain two adjacent symbols fram which would mean that the two symbols have to be
separated by a zero time delay. For example, all the timedsvibrat are in the semantics of the
expressiortabtc have the property thatandb occur “at the same time”, with preceding, in

the sense ofveakly monotonic timef [PH98].

We recall first the following theorem from [ACMO02]:
Theorem 4. Timed regular expressions have the same expressive povietesautomata.

We will use also the following result which relates uncoasted expressions with a spe-
cial type of timed automata, called hezero-constrained timed automata These are timed
automata containing a single clock which is reset on evenysition and whose constraints are
only true or x = 0.

Proposition 2 (Kleene theorem for zero-constrained timed atomata). The class of uncon-
strained expressions is equivalent with the class of zerstrained timed automata.

Proof. Let us first observe that zero-constrained timed automata atrict subclass of the real-
time automata from [DimO01], which are timed automata withrayle clock which is reset on
each transition. This means that one may actually consdrueal-time regular expression in the
sense of [Dim01], which will only contain time binding op&es of the typg-)o o (-)[0,00[-

The last type of time binding operators can be removed frarettpressions. On the other
hand, note that, for any timed regular expresdignf we denoteu(E) the expression resulting
by removing allt atoms fromFE, then:

[{E)oll = [[u(E)]

This means that the operatdrs, are also expressible without time binding operators, fdgtiv
ends the proof of the inverse inclusion.

For the direct inclusion, it’s not hard to see then that fahe@med regular expression not in-
volving the time-passage symhiglwe can construct a zero-constrained timed automaton which
tests, at each transition, that the clock is zero, and ré@gaetmediately.

17

On the other hand, for the expressibthe construction of an equivalent timed automaton
actually builds a zero-constrained timed automaton whasharue constraint when entering its
final states.

Then, the constructions for union, concatenation and staefal-time automata in [Dim01]
also apply for zero-constrained timed automata, and thdtseare still zero-constrained timed
automata. The construction for intersection is also easdgptable from the case of classical
finite automata, and still yields zero-constrained timetanata. It only remains to give a con-
struction proving that shuffle of zero-constrained timetbmata yields zero-constrained timed
automata too.

To this end, consider two zero-constrained timed automdata (Q1, X, {21}, 61, Qj, Q})
and Ay = (Q2, 2, {z2}, 02, QF, QF). By state-splitting, we may ensure that each siate @,
is either transient, hence all its outgoing transitionsaeled with(z; = 0), or all its outgoing
transitions are labeled withiue. The same can be ensured fby.

The automaton recognizing(A;)wL(Az) is A = (Q1 x Qa, X, {z},, Qo, Qy) where:

~ Qo= Q) x QyandQy = Q} x Q7. |
— The transition relation is composed of the following tuples
* (q1,%) M (a1, q2) if 1 nelatnd q; € 61 andg, is persistent.
* (q1,%) zeledal, (q1,45) if go recladn) 5 € 02 andq, is persistent.
o (q1,q0) T2 (41 gt if both ¢ andgs are transient.
Note that a tupléq; , ¢2) formed of a transient state j; and a persistent state. iy, becomes
a persistent state iA.

This ends the proof of this proposition. ad

The following theorem gives the generalization of Asarias@ & Maler’s result [ACMO02]
for the class of timed shuffle languages.

Theorem 5. Timed shuffle expressions have the same expressive powepasih automata.

Proof. For the direct inclusion, the union, intersection, concat®n, star, time binding and
renaming constructions from [ACM97,ACM02] can be easilyeexied to stopwatch automata.
We will only give here the construction for the shuffle of twlomwvatch automata, which is a
straightforward generalization of the construction atehd of Proposition 2.

So take two automatal; = (Q;, &, X, m;, 05, Qh, Q%) (1 = 1,2) with &y N &, =). The
automaton accepting(A;)wL(As) isthenA = (Q, X, X, n,d, Qo, Q) Where

- Q=01 X Qs x{l,2} andX = &} U X,.

— Qo= Q) x Qf x {1,2} andQ; = Q} x QF x {1,2}.
—n:Q — P(X U Xy) is defined byn(q1, g2, 7) = 1:(a:)-
— The transition relation is defined as follows:

CvavX Cﬂa,X
0 ={(q1.%,1) === (¢}, @2, 1) | s —= ¢} € 61,a € Y U{e}}
C,(l,X C,(l,X
U {(Q1>‘J2>2) — (q1,¢5,2) | gg === ¢ € d9,a € X U {5}}

true,e,0 true,e,d

U{(a1, 4, 1) —= (q1,42,2), (q1, 42, 2) — (q1,42,1) | @1 € Q1,42 € Qa}

18

The proof of the reverse inclusion is a two-step proof: th& Btep involves the decompo-
sition of each stopwatch automaton wittstopwatches into an intersection:obne-stopwatch
automata — similarly with the proof of the Kleene theoremtfored automata [ACMO02]. The
second step shows how to construct a timed shuffle expressjoiralent with an automaton
with one stopwatch.

The decomposition step requires a preliminary relabelfrigeotransitions of4 such that two
different transitions bear different labels. This relabglis done in the classical way [ACM97]:
we used as the new set of transition labels, hence obtaining thensttmyh automatond =

(Q,X,6,1,0,Qo, Q) in which

5=

C,a,X
{q Cq—rr, X - ‘ q C,a,X e 5} (3)

ThenL(A) = M\(L(A)) where) is the renaming defined by: § — Y U {e}, A(¢ GaX, r) = a.

We may then decomposéinto n automatad,; = (Q, {xi}, Q,ms, 05, Qo, Q) having a single
stopwatch, withn;(¢) = n(q) N {x;} andd; is a copy ofd in which the guard and the reset
component of each tuple is a projection{fon }. Hence

L(A) = ML(A)N...NL(A,))

The proof of this identity is similar to the case of timed antia [ACMO02].

For the second step, suppose tBat (Q, {z}, X, n, 0, Qo, Q) is an automaton with a single
stopwatch in which all transitions have distinct labels.

Let us note first the following corollary of Lemma 1:

Corollary 2. Given a one-stopwatch automatéh = (Q, {z}, X, n,d, Qo, Q) there exists a
one-stopwatch automatdsl = (¢, {z}, X, 7,9, @y, Q%) which has the same language &s
and in which for each pair of locationg,r € @’ with = being inactive in both; and r, if

g 2% 1 € 5 andr € Q; thenC = true and X = 0,

This result follows easily if we observe that a one-stopWwatatomaton is in fact a partitioned
stopwatch automaton. We will use this result in our proohef teverse inclusion as follows:
We wish to decomposB into three automata such that:

L(B) = (L(BI)LUL(B2)) N L(B3) (4)

In this decompositioni3; is an untimed automatoi§; is a zero-constrained timed automaton,
andf3; is a “one-and-a-half-clock” timed automaton, that is, agtthautomaton with two clocks
in which one of the clocks can only be compared with zero, anthis sense, serves only for
checking that some states are transiBntwill carry the duration constraints af (the stopwatch
of B), while B, will carry the sequential properties within the states inchilx: is inactive.

The task of3; is to correctly connect the sequences of states in whishactive with those
in which x is inactive.B; removes, similarly with Example 1, any shuffling of a rundpwith
a run in3, in which some time passage in a statdspimixes with some time passage in a state
of B,. To this end, we will first duplicate all transitions I#, such that each symbal € X' is

19

preceded by a duplicate symlain a copy ofX. This is done by introducing, for each transition,
a new state in which the control stays for 0 time units. Theafske new symbolg is the same
as the extra symbols, z, in Example 1. This process requires the introduction of a deek
y, which tests that eachis preceded in zero time by the corresponding

Formally, we replac with B = (Q U 6, {z,y}, ¥ U X,7,5, Qo, Q) where

— For eachy € Q, 7(q) = {y}, and for eacly CaX e, 7(q G, r) = n(q).
— The transition relation is

6= 7“|T:qc’a—’x>7“€5}

)

C,a,XU{y} (y=0),a,0
{q T, T

We straightforwardly have:

L(B) = {tlaldltgagag...tnandn | tiaitaas. .. t,a, € L(B)}

Note also that.(B) = N (L(B)) where)\' : ¥ U X — Y U {¢} is the renaming defined by
N(a) = a, N(a) = ¢ for all « € X. Therefore our goal changes to finding autonatal3, and
Bs such that.(B) = (L(B1)wL(B)) N L(Bs).

The first timed automaton 8, = (Q, ¥, {z, 2'}, 61, Qo, Qf) Whered, consists of the fol-
lowing tuples:

—-q GaX, r, if both ¢ andr arex-active or bothz-inactive andy Gax, e s,

C,a,XU{z’ . . . : ; i CaX
_ g S22 it 4 s z-active and- is z-inactive andy L> € d.

CA 0
—-q L r, If ¢ iIs z-inactive and- is z-active andy G, e s,

We may characterize the language®fas follows:L(15;) contains a timed word iff there

exists a trajectory i, 0 = ((g;_1,v;_1) o, (¢, vj))1<j<k and a decomposition ab asw =
¢¢h ... ¢, such that <j<

¢ = ¢ ifggeXor <§j € Randg;_; is x-active,)
0 otherwise

The second timed automatonfls = (6 U Qy, X, {y}, 02, Q%, Qy) whereQ? = {¢ —= Gox,

red|qe QO} and the transition relatio, is composed of the following tuples:

true,a,{y} C,a,X , C’a X' . . .
- 7 ———= 7' wherer = ¢ —— r, 7 =r ——— s andq is z-inactive.

(y:O)vavw / Cya/vX / Cl7 l7 ! 1 H
- 7 —>> 7 wherer = q —> r,7 =r —— s andq is z-active.

true,a,

— 71— rwherer =gq CoXe o with r € @y andgq is z-inactive.

a0
_ o W0 wherer — q GO, with r € @y andgq is z-active.

20

Similarly to the case oB;, we may characterize the language®fas follows:L(B,) con-

tains a timed wordo iff there exists a trajectory i3, § = ((g;—1,v;_1) 5, (¢, vj))1<j<k and a
decomposition of as = ([} . . . ¢}, such that o

¢ ¢ ifgeXor (Cj € Randg;_, is :c-inactive)
710 otherwise

The third automaton i8; = (Q U6, {y'}, ¥ U X, 03, Qo, Q) Where the transition relation is

! '=0 \s ! s&y
53:{q true,a,{y} 7_77_ (y)a{y} T‘T:qCCLX 7’-65}

The characterization of (B;) is the following: a wordw belongs toL(B;) iff there exists

in B a trajectoryd = ((gj_1,v;_1) %, (¢j,v5))
1 <1<k,

|<j<2k such thatw = (¢ . ..}, where for all

Cz/u—s < RZO Cz/u—z = (2
Cu—l =0 Q,u = (o
It is then easy to note that
L(B) = (L(B)wL(Bs)) N L(Bs)

The Kleene theorem for timed automata [ACM97] ensures thstence of timed regular
expressions equivalent with each of the three autonataf, and Bs), fact which ends our
proof. O

Since the equivalence between stopwatch automata and simfte expressions is effective,
we also get the following result:

Theorem 6. The problem of checking for emptiness the semantics of a giveed shuffle ex-
pression is undecidable.

The following result, which can be found in [Dim05], strehghs the undecidability theorem:

Theorem 7. The emptiness problem for timed shuffle expressions witeoatning is undecid-
able.

The proof of this theorem is based on the fact that, similastépwatch automata, timed
shuffle expressions without renaming may induce more getieear constraints than those
induced by timed regular expressions. As an example, centhé following expression

By = (ata btb) cté dtd eté A (ata(bth cté eté), wdtd) A
ata btb(cté dtd),eté A ata btb cté(dtd eté); (5)

21

Note that
|E1jol| = {atiabtabctscdtadetsé |t = 2tg, b1 + by = 1 =ty +ts,ts = 15}

As this example suggests, time shuffle expressions wittenaming are able to express divi-
sion by 2, fact which is instrumental in proving the undebitity of the emptiness problem for
stopwatch automata in [HKPV93].

We end this section with the following property:

Proposition 3. Timed shuffle expressions without renaming are more expesgn timed reg-
ular expressions.

Proof. We will prove that the semantics of the following expressoamnot be accepted by a
timed automaton: X X
Ey = (atabtb),cté A ((atacté), wbtd)

We rely on the following Proposition (that is proved e.g. ®//03,Dim03]) saying roughly
that timed words having the same untiming and which satlsfystame timing constraints can-
not be distinguished by timed automata. Here| denotes the integral part afichc(«v) is the
fractional part of the real number € R. Also, for a timed wordw = tqa, ... t,a,, we denote
w;; = t;a; . ..t;a;, and recall the notatiof(w) = >, . t.

Proposition 4. Considerw = tia; ...ap—1tpa, and w' = tha; ... an_1t,a,t, |, two timed
words. Suppose further that fordll< i < j < n,
[l(wy;) | = [0(w);)| and frac((w;;)) # 0 if and only if frac(¢(w];)) # 0 (6)
Then, for any timed automato#, w € L(A) if and only ifw’ € L(.A). Moreover, the two
timed words are accepted along the same ruslin

We may then apply this remark to the two timed wouds- a 0.5a50.5 bc0.5¢ € ||Eo|l and
w =a0.3ab0.7bc0.3¢ ¢ || Ey||. Clearly,w andw’ meet the condition (6). By contradiction,
this implies that no timed automaton (and hence no timedaeguxpression) can be equivalent
to Ey. (]

Along the lines of Proposition 3, we may also prove that theetd language in Figure 3 is not
timed regular: takev; = 0.5a0.5a0.5a0.5a¢ andw,; = 0.2a0.6a0.8a0.4a, and observe that they
both satisfy the conditions in Proposition 4, but € L(A;3) andw, ¢ L(A;3). Hence,L(As3) is
not timed regular.

As a corollary, partitioned stopwatch automata are syrictbre expressive than timed au-
tomata.

3.1 Fair shuffle expressions

Definition 6. The set ofair shuffle expressionss the subset of timed shuffle expressions defined
recursively as follows:

F:T|[a/b]F|F1+F2|F/\U|(F)*|F1|_L|F2

whereT is a timed regular expressiof, is an unconstrained expression ang X, b € Y U{e}.

22

The following expression is a fair shuffle expression whkquivalent with the partitioned
stopwatch automaton in Figure 3:

21/, 22/2] ((z1tazatazitazata) A ({21 (t)j0.1jaz18a)1) W ({22 (t)j01(22ta)1))

Theorem 8. Partitioned stopwatch automata are equivalent with faiuffle expressions, and
the equivalence is effective.

Proof. For the left-to-right inclusion, takel = (Q, X, X', n, J, Qo, Q)y) some partitioned stop-
watch automaton. We partition the set of stafemito subsetsS,, . . ., .S, such that)(¢) = n(q¢’)

iff ¢,q' € S;, for somei. We also putt; = n(.S;). By Lemma 1, we can assume that]n‘c—>
q € 6, thenY C n(¢) andC € Constr(n(q’)), and that the final states have no outgoing
transitions.

The idea is to construet timed automatad,, . . ., A, such that eachl; copies all the states
and performs all the actions of, but lets time pass only in states frosh and allows only zero
time passage in the other states. The languages of;allill be shuffled, and intersected with
the language of a zero-constrained timed automaton thia¢mglre proper interleaving. That is,
the connecting property between these automata is theviokip

L(A) = F((LA)W .. wL(A) N L(A))

Asinthe proof of Theorem 5, we will assume that all transisiin§ are labeled with distinct

/ ’

symbols, i.e., |fq—>rq AN e danda = d theng =¢,r =1,C =C" X = X'.
Each timed automaton will also reference a new cleckhich is needed for ensuring that time
passage i in each automatognl; while passing through a stagewith ¢ ¢ S;.

Since each action iV is to be executed in each automaton, the renarnfiilsgneant to delete
n — 1 copies of each action and keep only tixh. This can be done by modifying the set of
symbols utilized by eacH; to a distinct copyy; = X' x {i} of the intial set of symbols, and, for
eacha € X, putting f(a,1) = aandf(a,7) = ¢, for all 2 < i < n. The set of symbols used by
A’ will be the union of all these copies af.

Formally, A; = (Q, X, &;, 0;, Qo, Q) With

— &, =n(S;) U{z;}, wherex; ¢ X is a new distinct clock.
— ¢ is composed of the following tuples:

,a, XNAX;

o ¢ —— rforeachg 2% r € swith ¢ € S; andr ¢ Q.
Cl, A@i=0).0,(XNX;) Ui} Cax .

N — r for eachg —— r € 6 with ¢ & S; andr & Q.
C|Xi’a’® Ca,X .

e ¢ —— rforeachq —— r € d with ¢ € S; andr € Q;.
C| A(z;=0),a,0

o q—>rforeachq—>re<5W|thq§ZS andr € Q.

The intersection automaton is the followind® = (@', X', {2'}, §', @, @) in which

23

— Q= {(¢ “%% 1,0) | ¢ Z5% v € S withg € Qo).

_Ql :{q%—’x>r7{17---7n}‘qc’a—J()TE(S?Tle}'
— Y = U1§i<n 2.

— ¢’ is composed of the following transitions:

o = {(g 95, A) T (g S05 0 BY) [SN re b g A A = AU{i})

C,a,X true,a,{x’}\ (C’ b, X'

U {q —>,{1,...,n}) s (r C,a,X b, X!

s,0)) [4 r,r s€d}

As a consequence of Theorem 5, we can construct timed regppaessiond’, . .., T,, such
that||7;|| = L(A;) forall 1 <i < n. Furthermore, sincgl’ is a zero-constrained timed automa-
ton, we can construct an unconstrained expressjosuch that||7,|| = L(.A’). We then have
that

which ends the proof of the left-to-right inclusion.

For the right-to-left inclusion, we proceed by structuradluction on the given regular ex-
pressionl’. The case wheff’ is a timed regular expression is already covered by Theorem 5
while the cases of union, concatenation, star, shuffle amahnéng can be treated exactly as in
the proof of the Theorem 5, by observing that the resultingwatch automata are partitioned.

For the intersection case, suppdBe= T’ A U, with T" a fair shuffle expression and
an unconstrained expression. Then, by induction, thers &xi a partitioned stopwatch auto-
maton for whichL(A;) = |7”||. On the other hand, by Proposition 2, there exists a zero-
constrained timed automatody, such that and.(.4;) = ||U||. Denote both automata a%, =
(Q1, 2, X1, m1, 61, Qb, Q1) resp.Ay = (Qs, £, {x}, 65, Q2, Q).

The intersection construction betwedn and .4, will then work on pairs of states i, x
@2. The clockz of A, cannot be transformed into a stopwatch active in every ,ssatee in
the resulting stopwatch automaton would not be partitiofideerefore, for eacly € @, we
add a new stopwatch, (as a copy ofr) which will be reset when entering in any state in the
intersection automaton which is of the forim ¢’) for someq’ € @,. All these stopwatches will
then be grouped, according to the partition(pf inherited from.A;, into classes of states that
have the same set of active stopwatches.

Formally, we construct the automatgh= (Q; x Q2, ¥, X1 U X5,71,0,Q x QF, Q} x Q%)

inwhich X, = {z, | ¢ € Q1},n(q,¢') = m(q) Uiz, [n(g) =n(r)} and

CN\(zq, €1),0,XU{zq, } C,a,X €l,a,
6= {(ar.q2) " (g gh) [S0 € 61, qe T g € 6y)
Ce X} Cie, X
U {<QI>Q2) e (¢, %) | @ = q1 € 01,42 € Qz}

zqy €1,6,X

U{(q,) ——— (1. 6) | 1 € Q1, ¢

zele{z}

s € 52}

The last two types of transitions are needed sixteansitions can be executed in one of the
automata asynchronously frasvtransitions in the second automaton.

24

We may then prove thaé(qi_l,qg_l),vi_l) LN ((qi,qg),vi)) . is a trajectory ofA iff
1<i<

&i ; : o &i /)
i— i— ; i I tr tor n ; i— : Uj
(@1 (v) (e (],) is atralectory otdy and ((g)-y.ur) = (gf))

is a trajectory ofd,, whereu;(r) = v;(z,,). Obviously this implies that(A) = L(A;)NL(As).
This ends the proof of the reverse inclusion. ad

Corollary 3. The class of partitioned stopwatch automata is closed undem, renaming, shuf-
fle, Kleene star.

In the next section we will prove that partitioned stopwadtitomata are not closed under
intersection.

4 Distributed time-asynchronous automata

We present here the class of distributed time-asynchroaatmmnata, which are synchronous
compositions of timed automata in which local times may padspendently in different com-
ponents. The class presented here differs from the claBd] by the fact that the components
do not utilized generalized resets.

Definition 7. A distributed time-asynchronous automatas a tuple
A: (le"'7@71727‘)(17---7Xn7617"'76n7Qév'"7@87@}'7"'@?)

where

— Y is afinite set ofsymbols

- X,..., X, are n finite, pairwise-disjoint sets otlocks We denote in the sequdl =
Ui <i<n A and call &; the set of clockewned bycomponent.
- @4, ...,Q, aren finite sets oflocations ; is the set of locations of component

— @} C Q; is the set ofinitial locationsin component, andQ} C @, isits set offinal locations
(1 <i<n).

— Anddy, ..., 4, aretransition relationswith §; C {q GEX | ¢, € Q& € YU{e},C €
Constr(Ulgzgn XZ-),X - Xi}.

Note that a timed automaton is a distributed time-asynausrautomaton with only one com-
ponent.

Intuitively, a distributed time-asynchronous automatan make time-passage transitions in
which clocks in different components evolve independedibcrete transitions in which compo-
nents may synchronize, and internal, silent transitioeseted in one component independently
of the other components.

In discrete, synchronizing transitions, each componeatks$ the validity of a clock con-
straint (that may refer to any clocks i) and, upon validity, all agree on the same symbol
a € X and reset some clocks while changing location. Any compiomery reset only the clocks
that it owns, but any component may read clocks not owned by it

25

In silent transitions, a specified component checks for #tielity of a clock constraint, then
resets some clocks it owns and changes location “silentl.’on are-transition. Such a transi-
tion might be executed by a component without requiring amckronization with other com-
ponents; hence, only the control location of the componieatt €xecuted the silent transition
changes, the other components might keep their contralitocanchanged.

Formally, the semantics of a distributed time-asynchrereutomaton is &med transition
systen’ (A) = (9,0, Q,, Qs) where:

Q=0Q1 X ...x QX [X — R (7)
Qo =Qp x ... x Qp x {0x} (8)
Qr =Qf X ... x Q} x [X = Rx] 9)

0 ={(qr,--,qn,v) = (q1,- -, qn,0') | forall1 <i<n,q €Q,and
there existg; € R, with v/ ly, = V|, Htiandt =t + ... + tn} (10)

U{(q1, -+ qnsv) = (g1, ..., ¢, ") | @ € ¥ and for alli < n there exists’; € Constr(X)

andXi C X, with q; M q; c (Si,’U): Cz andv’ = ’U[Xl U...uX, = 0]}

(11)
U{(q1,- -y qnv) = (qi, ..., q,,v") | there existt <i < n,C; € Constr(X), andX; C X;
with v = Cy, qi <55 ¢/ € 6,0 = o[X, == 0] andg/, = g, for all j # i} (12)

A trajectoryin A is a sequence of transitions @ alternating between time-passage transi-
tions and discrete transitions:
tT] - ((Q{ 17 tet 7QZL lv'Uj—l) _]> (Q{v tet 7q2m Uj))1§j§2m
that starts in the initial states gf(A), with &;_; € R>p andéy; € YU {e}foralll < j < m.
The trajectorytr; is acceptingif it ends in Q; andends with a synchronization transitiaf

the type 11 above. Thiamed word accepted by-j is acc(trj) = & ... &, Thetimed language
accepted byd is L(A) = {acc(try) | trj is accepted byl}.

Remark 5.Note that we request that all components execute a syndatgon transition when
accepting a timed word, hence the final symbol in each acdepbed must be a symbol i

An example of a distributed time-asynchronous automat@ivisn in Figure 7 below. The
language accepted by this automaton is the same as the {pngueepted by the partitioned
stopwatch automaton in Figure 3.

Before going to the proof of the equivalence of distributetetasynchronous automata with
partitioned stopwatch automata, let us also adapt the matioun to the case of distributed

time-asynchronous automata. Firstyum in component of a distributed time-asynchronous
. S CLg XL . iy .
automatonA is a sequence; = (q;_, DA qj)1<j<m CONsisting of transitions in; or tuples

true,e,()

of the formg;,_; ——— ¢;, which we callidle transitions— their utility will be apparent in the

26

y1=0,a,0 y2 €10,1] 0,a,(

OO C——O—0

:EQ{G]0,:1([)}/_\ 21 =0, a7®/_\?2 :.iv (C)L} /_\:pl =0,a,0
-~ @, @) @), O

Fig. 7. The two components of a distributed time-asynchronousnaation recognizing the languadéi atzatsatsa |
t1,t2,t3,1a €]071[i +it3=1Ata+ts = 1}

sequel. Arun in the distributed time-asynchronous automaibiis then a tuple = (p;)1<i<n
. C}:,ﬁj,X}:
such thatp; = (¢;_;, —— ¢;)1<i<m, IS @ run in componentand the sequence of symbols

(&1,&a, ..., &n) Is the samein all runs.

Given aruninAd, p = (p;)1<i<n, With p; = (q;?_1 =% q;i)lgigm, and a trajectoryrj =

((qjl-_l, s Gy, Vi) 5—’> (qjl-, o ,qgl,vj))Kij, we say thatrj is associated witlp if the
following properties hold: o

1. Foreach < j <m,¢&,, € ¥ U{c}andsy,_; € Ry,
2. The sequence of actions is the same in botand ¢7j, that is, for alli, &6 ... & =

EQE4“‘§2m'
3. Foreach < j <mandl <i <n,vy_1 = C} andvy; = vy 1[Xj U...UX] :=0].

Related with the above definition, note that, for each j < m, 52]-_1 can be decomposed
asé,; | = ty;_4 +...+13,_, such that for alk, vy;_, e, = v2j-2[y, +15;_;. We then say that the

timed wordti £,¢5€, ... 1, &, is associated withp,.

Remark 6.Some comments are in order here on the definition of runs ipooents and their
association with trajectories in distributed time-asyocious automaton. The utilization of idle
transitions in the rung; is just a technical trick that allows a simpler definition afis in dis-
tributed time-asynchronous automaton and their assoniatith trajectories. The fact that some
instant2; along a trajectoryrj is associated with onetransition in each component (signaled

&oj=¢

by the transition(ga;_1, v2j_1) — (g2, v2;)) does not mean that the components synchronize
at that moment by some “hidden” communication mechanisncessome of thesetransitions

true,e 0

might simply be the idle transitions——— ¢. This association just avoids heavy extra notations
for the positions where visible, synchronization-usedsgtmoccur in each;.

Theorem 9. The classes of distributed time-asynchronous automatganttioned stopwatch
automata are equivalent over the class of timed langudgesth the following properties:

Le LiffVvwe L,w=wawithaeX

Proof. For the left-to-right inclusion, we will simply gather tadper all the states of the compo-
nents of a distributed time-asynchronous automaton intoglescentralized control, and trans-
form all clocks into stopwatches. Each statbelonging to some componeinwill continue to

own the stopwatches coming from that component, which waéamthat only those stopwatches

27

will be incremented during time passagejirHence, the clock partition coming from the orig-
inal distributed time-asynchronous automaton will give gtopwatch partition in the resulting
stopwatch automaton.

For ensuring that each accepting trajectory ends with a e{/mb”, we assume w.l.0.g. that
final states in each of the componentsfbtannot be reached througktransitions. This can be
easily achieved using state-splitting techniques.

Formally, starting with a given distributed time-asynaiwas automaton

A:(Qlu"'7Qn727X17'"7Xn7517"'757”@(1)7"'7@87@}”7"'62?)7

we construct the partitioned stopwatch automatbr= (Q), X', X', n, 0, Qo, Q¢) in which:

- Q=01 x...xQ, x{l,...,n} where the last item of each tuple represents the component
for which the time is allowed to elapse.

— The set of clocks ist = ;. Xi andn is such thaty(qi, .. . g, j) = X;.

— ¢ is the following set of transitions:

d={(q1, - tn:J) Gy, (qy,---,4,,7) | forall1 <i < nthere existg; i Yi, q; € 0;
witha € ¥,V = UlgignYi andC = /\mgnci}

N CeY . Ce,Y . .
U{(q17"'7Qi7"'7qn7Z) = >(q£77q7{77q;mz)‘q2 :)qgeélandqj:q;vjil}
.\ true,e,0 . .
U{(le"'v(Jnv]) >(q177Qn7]+1))|1§]<n}
true,e,()
U{(qlv"'v(JN)n) (q17"'7Q7171)}

—Qo=Qpx ... xQFx{1,...,n}andQ; = Q) x ... x Q} x {1,...,n}.
It is then straightforward to prove tha{.A) = L(A’).

For the reverse inclusion, the main idea is to distributesthte space to components, where
n is the number of distinct classes of stopwatches. Note tleatamnot use renaming here, as
we don’t wantto prove that partitioned stopwatch automata and disetbtine-asynchronous
automata are equivalemtodulo renaming

The distribution will proceed as follows: first, each componwill be in charge of exactly
one class of the stopwatches of the original automatenwhich will be referred to as (classes
of) clocks in the sequel. At each moment, only one componeyt imcrement its clocks — this
component is called thective component and all the otheriflactive components will have to
update their information about the state in which the aatm@mponent is before and after each
discrete transition, or to take into account the fact thatattive component is different after the
transition. This information update has to be cross-cheéd&e correctness by all components:
the distributed time-asynchronous automaton proceedslibaly if the active component before
a transition is ensured that the active component aftetrtduasition will start its execution in the
appropriate state and all the other components remainieact

The cross-checks are implemented by means of a commumgagchanism between com-
ponents that involves resetting some clock to zero in theweacbomponent, while the inactive

28

components check that the respective clock is zero in oamlensure consistency. We explain
first the communication mechanism for the simulation ofsrnns ind for which all associated
discrete transitions iff (.A) that occur along an accepting trajectory are preceded aiosvéyl,
on that trajectory, by non-zero delay transitions.

In this case, communications are “handshakes”:

1. The mechanism is launched by the active component whicildeleto take a transition after a
non-zero time passage in the source location of that tiansithe decision of the active com-
ponent consists of the duration of staying in the sourcetiocathe symbol to be executed
and the identity of the component that will be activatedratte transition. The state-region
determinization construction from Subsection 2.4 enstivasthese elements of the decision
uniquely identifythe transition to be taken in
We will use the ternsource componerb identify the component that owns the stopwatches
of the source state in this (unique) transition.

2. The source component “broadcasts” its decision by mearesetting some particular clock
between an extra set of clocks that is assigned to that coemponhis clock is the unique
clock that can be zero at the respective moment, betweehelkxtra clocks assigned to
the active component. The transition that represents tloigdeast is an-transition that is
executed by the source component asynchronously from otimeponents.

3. With a zero delay after thistransition, the source component executes the simuledadit
tion, which, when this simulated transition is labeled wattime symbol # ¢, triggers the
execution of a transition labeled with the same symbol ithedlother components.

4. For the whole distributed time-asynchronous automaia@ohtinue to work, the component
that corresponds to the target state of that transition i(dhle target componentwill have
to start working (orget awakég on the transition that is synchronized on symbollo this
end, on this synchronizing transition, the target compodetects the clock that was reset by
the source component, and checks that its local locatiareistical with the source location
of the transition desired by the source component. Thenilliiev a short amount of time
to pass, and, after that, reset, onzamansition, another specific clock to zero. Again, in the
target component, this specific clock will be the unique kloened by the component which
has a zero value.

5. The source component gets the “acknowledgment” thatatget component has started
working by checking that this second specific clock is zeradlevall the other clocks of
the target component are non-zero — again by employing archsynous-transition. This
e-transition will turn “asleep” the source component, réagtall its extra clocks and putting
it atransientlocation — that is, each transitions leaving that locati@uld have to check that
the component spent zero time units in that location.

6. Finally, the target component will test (on aftransition too) that the source component
has correctly reached its “sleeping” state, which ends #melbhake and permits the target
component to continue its work.

7. Additionnaly, all the other inactive components will Bato remain asleep (a fact which
is checked by both source and target component). They aveesatiowed with discrete-
transitions that allow them to consistently copy, in thezdtion, the evolution of the simu-
lated location of the given partitioned stopwatch automato

29

The above mechanism works almost identically for the sitmrieof =-transitions, because,
by state-region determinism, amstransition that occurs in an accepting trajectory mustdye s
arated from the previous and the next discrete transitioa bpn-zero delay, property which
gives the possibility for both the source and the target comepts to achieve their communica-
tion via clock resets and small time passages. The differenthat all the components no longer
have the possibility to synchronize on the simulatddansition — which may be executed asyn-
chronously. But the “handshake” mechanism is designed swththe source component can
only go into the sleeping state only after the target compbagecuted its asynchronous copy
of the simulated-transition.

The only problems that may occur in this case concern the ataetive components, since
neither the source nor the target component have the plitysibicheck that the other inactive
components have consistently simulated the curremdnsition of the given partitioned stop-
watch automaton. (The source and the target componentit@hstk that the other components
are sleeping during the “handshake” process.) But this doesause any simulation problems
since, as requested at point 4 above, when, in the rest obthpwtation, an inactive component
is to become active, it can only do so when being in the sousate sf the source component
— which means that, if it missed at a previous moment its pdggito consistently record the
simulated location, then the whole distributed time-asyanous automaton will be blocked.

There is still a third situation that has to be simulatededéhtly: it's the possibility to have
sequences of discrete transitions all taken within an vatesf length zero. This is where the
last property of state-region determinism plays its roéeatl that, by condition 5 in Definition
4, such sequences of discrete transitions separated bydetgs have the property that their
source locations are all labeled with the same set of stah®at— that is, in our terms, their
source component is the same. Furthermore, by conditiothkisame definition, none of these
transitions are labeled with— and hence they will force synchronizations with the insectiom-
ponents. And finally, by condition 2, the source componeuleigrministicon such sequences
of transitions.

In this case, the handshake mechanism is the following:

1. The active component decides to take, after some nontineegpassage in some location, a
sequence of discrete transitions in zero time. The decitre active component consists of
the duration of staying in the source location, the first sghtd be executed and the identity
of the component that will be activated after the transitibime state-region determinization
construction from Subsection 2.4 ensures that these etsroftie decisiominiquely identify
the sequence of transitions to be taken imithin an interval of zero length.

2. The source component “broadcasts” its decision by meanssetting, on ar-transition,
some particular clock between an extra set of clocks thatsgaed to that component.

3. The source component executes all the simulated transjtwith a zero delay after this
transition and with zero delays between each transitiors dlso triggers the execution of the
same sequence of transitions in all the other componentg-tadstate-region determinism
and the necessity to execute synchronously each visilisitian in all components.

4. The target component of the last transition in this segeéwhich is the only transition in this
sequence that may change the active component) gets awdke @rst transition, detects

30

the extra clock that was reset by the source component (arathdentifies which is the last
transition in the sequence) and checks that its local ssaigentical with the source state
of the transition desired by the source component. At theodénide sequence of transitions,
it will let a short amount of time to pass, and, after thatetesn ans-transition, another
specific clock to zero.

Note that, if the target component misleadingly lets timgspan a symbol that is not the last
in this sequence of transitions, the whole partitionedwsiph automaton will be blocked.

5. The source component gets the “acknowledgment” thatatget component has started
working by checking that this second specific clock is zeradlevall the other clocks of
the target component are non-zero — again by employing archsynous-transition. This
e-transition puts the source component into a “sleepingésta

6. Finally, the target component will test (on afiransition too) that the source component
has correctly reached its “sleeping” state, which ends #relbhake and permits the target
component to continue its work.

So suppose we start with a state-region deterministictjparéid stopwatch automatot =
(Q, X, X.n,0,Q0, Qy), and(X;);<;<, denotes the partition of the set of stopwatches. The distri-
buted time-asynchronous automaton equivalent wiik:

B = (Qla"'7Qn727‘)217'"7‘)?7“517"'757”@(1)7'"QSuQ}a"'?Q?)
where

1. The set of states of componeérns

Qi = (Qx{i})U(dx {i})U(dxdx{i})u(@xdx{j|j<njg#i}x{i})
U(Q x 6 x{i})U(Qx@Qxdx{i})u(Qx {0} x{i}).

Intuitively, a state(q, 7) should allow nonzero time passage onlyif) = X; — these are the
active statesA state(r,) with 7 € ¢ is a transient state which occurs both in source compo-
nent and in target component when the source componentdettidake transition. States

of the form(q GEX, r, 7,1) with n(r) = X; are states used by componend acknowledge
to componeny # i with n(q) = X} that it is awake and takes over the simulation4ofSuch
states are persistent, and the only possibility to exit states is for componenisand j

to accomplish their “handshake” mechanism described al&ta¢es of the fornir, 7,) are
transient states in which the active component enters wheididg to take, in zero time, a
sequence of transitions that starts witand ends withr. States of the fornig, 7,) are used
either by the active component or by the inactive comporduntisig sequences of transitions
taken in zero time. States of the foiq r, 7, i) with n(¢) = n(r) = &; are used at the end of
a sequence of transitions taken in zero time by both theeactimmponent and the component
that will become active after this sequence of transitiémsally, states of the fornig, 0, 7)
are used in each component at the beginning of each trajetiatr starts with a sequence of
transitions taken in zero time.

2. Qp = (Qo\ {ao} x {i}) U{(a0,0,%)} and@Q} = Qy x {i}.

31

. X, = X, U X; whereX; denotes the set of extra clocks needed by companent
?Z‘ = {yl} U {JIT’Z‘ ‘ T € (5}

The clocksy; are used for checking for non-zero time passage in companbkahce being
reset after simulating each transition whose target ssatemponent. Clocksz,; are used
for the communications betweeen components: they are Ipgstite source component of
transitionr to signal to all the other components that it will take tréinsi~. They are also
reset by the target componentrino signal to the source component that it got awake.

We also denot&’s = J,.,.,, X

. &; consists of the following transitions (we give the inforrdaiscription of the transitions in
the parentheses):

@) (q,9) 220 (2 iy for r = ¢ 5% - € S with 5(g) = ; and

C'=CAy >0)A N\)\ (=0

l?él IEGX[

(active component broadcasts intention to take transitjorAfter such a transition is
taken, between all clocks iA; only clock z,; equals zero. Also note that all the extra
clocks inX;z \ X; must be zero, which should signal the fact that componinthe only
“active” component.

zr ;=0 >0),a,XUX; . .a, . .
(b) (7,1) (o OG> 0.0 X0, (r,i) forT = ¢ GaX, 1 e § with n(q) = n(r) = A&; (transi-
tion 7 is executed in componentvhen target state is owned by the same component).

©) (q,1) G XU, (1,4) forT = ¢ X, 1 € 5 wherea € X, n(q) = X;, n(r) = &; with

1 # j,and

C=CNay=00n N @>0)0AN\ N\ @=0

xe?j,x;é:cﬂj I#] zeX,;

(target component in transitiangets awaken, case of discrete visible transitions between
distinct components). Note that by Lemma 2, we have hat »(r).

) ("ETvi:(])/\/\wefi,w#wT Z_(JE>0),CL,?Z') C.a.X
(d) (7,1) : > (r,1) forT =g —— r € § wherea € X, n(q) = X;

n(r) = X; with j # ¢ (source component gets asleep, case of discrete visilisition
between distinct components).

() (q,1) S22 (i) for = ¢ 25 1 € S with n(g) = &, n(r) = X with i # j,
and
C=CNayz=00n N @>0)0AN\ N\ @=0
IEG?J',ZE#-’ETJ l7£.7 :BE?Z

(target component in transitiangets awaken, case eftransitions between distinct com-
ponents).

32

St iy forr = g S95 v e S with n(g) = A, n(r) = X with i #

C=w>0A(z,;=0A N\ @>0A A\ N\@=0
xefj,m;é:v.,-yj l#1,j ze X,
(target components acknowledges source componenttirat it is awake, case of-
transitions between distinct components). After such asiteon is taken, between all
clocks in X; and X; only x,; andz, ; are zero, property which is “known” both by
component. and componenj. This distinguishes the configuration reached after this
transition from configurations reached from all the othansitions.

7€7X'L'

@) (r.9) 225 (r,0) for 7 = ¢ 225 € S with n(q) = X, n(r) = X; with i # 5, and

C = (2r;=0)A(zr; =0) A A @>0A N\ (=0
xe?iufj,x#xﬂi,x;ﬁx,,j Z’EXB\(?Z‘U?]‘)
(source component receives acknowledgment from targgbonant inr about its wakeup,
then goes asleep, casesatransitions between distinct components).

(h) (r.6) 225 (i) for 7 = ¢ 25 r € G with n(q) = X;, n(r) = X; with i j, and
C=(z,;=0)A /\ (x>0)/\/\/\(x20)
xe?i,x;éx.,,i l#i TEX,

(target component sees source component got asleep ang iayacontinue its execu-

tion, case ot-transitions between distinct components).

() (q.1) <5 (ri) it 7= ¢ 55 1 € 6,n(g) = &y, n(r) = Xy, with j # i, j» # i and

C=CNarjy=00A N @>0A N\ (@=0r A@=0)

mefjl XA) :BEXB\TH zeX

() (7,5,4)

and

(inactive components update their local state accordirigdiv guess of the current tran-
sition, based on their observations on clocks that haveopest reset).

Q) (i) S cr it =g SN e a7 =9 225 Fe s aae X,
n(q) = n(r) =n(q) = &;, and

C=C'ANy;>0)A N (=0
:BEXB\yi

(source component broadcast its intention to exegugero timea sequence of discrete

visible transitions which starts withand ends V\ﬂthi).

k) (7,7,1) CaX, (r,7,0)if 7 =¢q % T =7 CaX, & € d,a,a € X, n(q) =n(r) =

n(g) = X; and
C=C"A(xr:=0)A (27, = 0) A A (@>0A A (=0

)

TEX; TA T i TFTE TEXR\X;

(source component executes the first transition in the seguef discrete visible transi-
tions that it wants to execute in zero time).

33

) (q1,7,1) SN (r1,7,1) if there existé-transitionsr = ¢ GeXo 7 =g &84 7
C1,a1,X . _ —
——= ry, Witha,a1,@ € 2, n(q) = n(q1) = n(r) = n(r1) = n(g) = &; and
Cl=Cy A (2ri = 0) A (z2; = 0) A A @>0A A (=0

v€X; wtw, i vt reXB\X;

(source component continues to execute discrete visenhesitions in zero time).
(m) (g,7,17) Ca XU, (7,7,1) if there exist-transitionsr = ¢ GaX, rT=7¢q CBX, F with
a,a € X,q,re€Q,nlq) =n(r)=ng =n) =X and

C=CA (7 =0)A (5; =0) A A (@>0A A (=0

X xtT, 0 FTT; TEXR\X;

(source component ends its sequence of visible transitékes in zero time, target com-
ponent is the same as the source component).

(n) (g,7,17) SN (g,7,7,1) if there existé-transitionsr = ¢ X, rT =7 GaX, 7, with
a,a € X, n(q) =n(r) =n(@) = &, n(r) = &; with j # i and

C=CA (75 =0)A (5; =0) A A (x>0A A (=0

T€X; xtT, 00T TEXR\X;

(source component ends its sequence of visible transitaes in zero time, waits to be
informed that target componepawoke itself).

(0) (q,1) Gad, (r,7,1) if there existé-transitionsr = ¢ GaX, rNT =@ Gax, 7, with
a,a € X, n(q) =n(r)=n(q) = &;, with j # ¢ and

C=C"A(xr;=0)A(z2; =0) A A @>0A N (z=0)
TE€Xj 2T j TF LT T€XB\X
(inactive components get informed that the active compbweants to do a sequence of
discrete visible transitions in zero time).

. Cl,(l ,@ o e . . /70,, _ _ _ .
P) (q1,7,1) SN (r1,7,1) if there exist-transitionsr = ¢ X, r, T =¢q —— T, with

and

Cl=CiNA(x; =0)A (z7; =0) A /\ (x> 0)A /\ (x=0)

xefj,:c;ﬁx.,,j,x#x;’j xEXB\Tj

(inactive components guess the transition that the actweponent is executing in its
sequence of discrete visible transitions taken in zero)time

34

~ Clai0 N . - C’a, _ _ CaX _ .
@ (q1.71) =25 (ry,4) if there existy-transitionsr = ¢ —~ r, 7 = g 2% 7, with

n=q =2 e 68,a,a € 2, n(q) = n(q) = n(r) = n(r) = n(@ = X;, with j # i
and

C'=Cy A (2, =0) A (22, = 0) A A (x> 0) A (z=0)

2€X; otar jater) r€Xp\ X

(inactive components guess that the active component tsgksguence of discrete visible
transitions taken in zero time).
_ N CaX . .. ' a,X _ _ CaX _ .

(n (g,7,i) — (g,7,7,1) if there existé-transitionsr = ¢ —— r, 7 = ¢ —— 7, with
n(q) = n(r) =n(q) = &X;,n(r) = &; with j # i and

C=CNA(xr;=0)A (25, =0) A A (@>0A /\ (=0

2€X; wter oter; r€Xp\X,;

(target component in transitiohawakes itself as it guesses that source component exe-

cutesT and ends the sequence of visible transitions taken in zew)ti
yi>0,e,{x7 i} . C’a,X CaXxX

(s) (g, 7,7,1) (7,7,1) if there exist-transitionsr = ¢ —— r, 7 =7 —— T,
with n(q) = n(r) = n(q) = &;, n(r) = &; with j # i. and
C=(i>0A (@ =0A(zz; =00~ N (@>0)A (z=0)
eeX) xty; rtar, ; 2€Xp\(XiUX;)

(target component acknowledges source component thas &wwake after the end of the

sequence of discrete visible transitions taken in zero)time

® (q,7,7,1) o (7,4) if there existo-transitionsr = ¢ X, rNT =7 CEX 7 with
n(q) =

n(r) =n(q) = X;, n(r) = X; with j # i and
C=(y; >0)A(rz; =0) A (2r; = 0) A (27, = 0) A /\ (x> 0)

.I'
xerv"E?éy]va?éx‘rJ z€Xp\(T UX; 3)

(source component gets informed that target component akenat the end of the se-
guence of discrete visible transitions taken in zero tinegde it may go asleep).

() (7,7,1) oah, (7,4) if there existi-transitionsr = ¢ X, rT =7 CBX, % with
n(q) = n(r) =n(q) = Xj, n(r) = &; with j # i and

C=(xzi=00A N\ (z=0)

T€Xp\X;

(target component sees source component got asleep attquarse of discrete visible
transitions executed in zero time and whose last transgi@hand hence target compo-

nent may continue its execution).

35

W) (g,0,9) 225 (r0,0) and(q, 0,7) 225 (r,4) if ¢ <25 1 € § with

C=C'A N (x=0)

reXB

These transitions can be taken at the beginning of eaclctivaye if the trajectory starts
with a sequence of discrete transitions taken in zero time.

The inclusionL(.A) O L(B) is straightforward as each trajectory.ihcan be simulated if.
O3]

For the reverse inclusion, take a runng = (p;)1<i<n, With p; = (¢}_, 4)1<i<m,

and a trajectoryrj = ((q}_y. ..., ¢} 1, vj—1) = (¢}, ... ,qgl,vj))Kij, with p associated with
trj. o

We say that componenis sleeping during time passage intervalj — 1 if &;_; > 0 and

Ugj—2 |)€i = Ugj_1 |)€i. We also say that some componérig awake during time passage interval

2] —1if ’Ugj_2|)z.i 7é ’Ugj_1|)z.i.

A third type of situations might occur in some time intervadsrj: the time intervals for

which ;1 = 0. Within such intervals, we consider that the component ihatvake is the
last component that was awake during a previous non-zemititarval. Finallytrj might start
with a sequence of transitions taken in zero time, and tbhezahere is no component that is
awake before this sequence of transitions. We considerityetion that, during such sequences
of transitions, the only component that is active is the congmt whose set of stopwatches is
the same ag(qp), whereg, is the distinguished initial state in the definition of stagdgion
determinism.

We denoteiwake(2j — 1) = i if during time passage interval — 1 component is awake.

By extension, we also denotevake(25) = i in this case.

We may then prove, by induction on the indigesf the transitions in the trajectoty j, the

following properties

1.

2.

The definition ofuwake(j) is correct, that is, for each < j < 2m there exists exactly one
component which is active during time passage interyaif ; is odd, respy — 1 otherwise.

If, at time intervall, the active component isand starts in statgy, i) with ¢ € Qo, ¢ # qo,
then it must pass a non-zero amount of timéqgni) and therefore when it decides to take
an action, by means of transitions of type (a), any compotieithas incorrectly guessed
the initial state will block the whole distributed time-ajhronous automaton. On the other
hand, if the active component starts in stajg i) (whereqy € @ is the distinguished state
corresponding to sequences of transitions taken in zem®) fitimen all components must start
in ¢o, or otherwise again the whole trajectory will be blocked bgde components which
made the incorrect guess of the initial state.

If component is active during time passage inter2ad| — 1 and during time passage interval
27, —1 with j, > 71, no componentis active during any time passage intervalegas?2j; — 1
and2j, — 1, there exists a unique visible discrete transitiomripindexed betweegj; and
2j, — 2 and no transition of type (e) or (j) is indexed betw@gnand2j, — 2, then between
these two moments componenéxecutes a transition of type (a) followed by a transition

36

of type (b), and all the other components execute a transigfdype (i). Moreover, at the
end of these transitions, all components correctly guessttite of the active component, i.e.
Gbj,—1 = b, forall .

. If component; is active during time passage interZgl — 1, component, is active during
time passage interval, —1, with i; # i, andj, > j;, no componentis active during any time
passage intervals betwe2p —1 and2j,—1, there exists a unique visible discrete transition in
trj indexed betweenj; — 1 and2j, — 1 and no transition of type (e) or (j) is indexed between
27, and2j, — 2, then between these two moments compomeekecutes a transition of type
(a) followed by a transition of type (d), while componénexecutes a transition of type (c).
and all the other components execute a transition of typ@/@yeover, at the end of these
transitions, all components agree on the current stateyj,e, = ¢}, | = ¢;,_, forall I.

. If component; is active during time passage inter2g| — 1, component; is active during
time passage intervalj, — 2, with i; # i, andj, > j;, N0 component is active during any
time passage intervals betwe2n — 1 and2j, — 2, and there exists no discrete transition
indexed betweefj; and2j, — 2 which is of type (b), (c), (d) or (j), then between these two
moments componert executes a transition of type (a) followed by a transitiotypk (g),
while componeni, executes a transition of type (e) followed by a transitiotypie (f) and
by a third transition of type (h). Moreover, at the end of thgansitions, componenisand

i» agree on the current state, i, ; = ¢33, ;.

Note that, in this case, it might happen that not all the otloenponents execute a transition
of type (i).

. If component is active during time passage inter2al — 1 and during time passage interval
2j, — 1, with j, > 7;, no component is active during any time passage intervasdes? j;
and2j, — 1, and all the discrete and visible transitidhswith j; < j < j, are separated
by zero delays, i.€§,;11 = 0, then between these two moments comporiegtecutes a
transition of type (j) followed by transition of type (k) aadsuccession of transitions of type
() and finished by a transition of type (m), and all the oth@mponents execute transitions
of type (0), (p), resp. (g). Moreover, at the end of thesesitaons, all components agree on
the current state, i.@j;, , = ¢b;,_, forall .

. If component; is active during time passage interZg| — 1, component, is active during
time passage interval, — 1, with i; # i, andj, > j;, no component is active during any
time passage intervals betwe2f and2j, — 2, and all the discrete and visible transitions
27 with j; < j < j, are separated by zero delays, £g..1 = 0, then between these two
moments componerit executes a transition of type (j) followed by transition gpe (k)
and a succession of transitions of type (l) and finished bwrsttion of type (n) and then a
transition of type (t), componeiy executes a succession of transitions of type (o) followed by
a sequence of transitions of alternating types (p) and @fjiarshed by a transition of type (r),
then a transition of type (s) and a transition of type (u), alhthe other components execute
transitions of type (0), (p), resp. (). Moreover, at the ehthese transitions, componerits
andi, agree on the current state, i€, | = ¢5, .

. Any sequence of discrete transitions that are taken io ere are executed by a unique
component, which is the component corresponding to theuenigjtial statey, in Definition

4, the only initial state from where such sequences of disdransitions can be started.in

37

9. The following sequence

. awake(j—1 & awake(j
tT], = ((qj—l v)7’Uj—1|)() - (QJ (])7'Uj |X))1§j§2m
is a trajectory inA, and iftrj is accepting thenr;’ is accepting too.

This ends the proof of Theorem 9. O

4.1 Non-closure of partitioned stopwatch automata under itersection
This section contains the proof of the non-closure resathfProposition 3:

Proposition 5. The class of languages accepted by distributed time-asynobs automata —
and hence the class of partitioned stopwatch automata —eatrelnsed under intersection.

Let us first give the counterexample that will be used in tlggiséfor proving the non-closure
property:
L = {tiatsatzatsa | t1,ts, 83,84 €]0,1[1 +t3 =to + s =1t + s = 1}
L is the intersection of the language of the distributed tamgnchronous automaton in Figure

7 with the language of the distributed time-asynchronodsraaton in Figure 8, and is the lan-
guage accepted by the stopwatch automaton of Figure 2.
y1 €]0,1] y1 €10,1] 0.0,0

@yl_ O a, {y1} O a,{y1} Oyl @
:cg—laQ)
@)

0,a,0

x2 €]0,1] B B
/ _/

Fig.8. The two components of a distributed time-asynchronousnaation recognizing the languadg: atz atsatsa |
t1,t2,t3,1l4 €]07 1[Jt +ta = 1}

Intuitively, the constraint defining cannot be simulated by an asynchronous composition of
timed automata, as it needs some stopwatch automaton imwiealistribution of stopwatches
is not a partition. In particular, the stopwatch that chetties constraint; + ¢3 = 1 and the
stopwatch that checks the constraint- ¢, must be simultaneously active in the location where
the time passage of happens, and exactly one of them must be active in the lotatibere the
time passage af, or 3 happen.

The balance of this section gives the formalization of thevalintuitions. We will start by
introducing a subclass of distributed time-asynchronotigraata in which components can only
read their own clocks, and not the clocks owned by other corapis, and then proving a series
of useful technical properties.

Formally, adistributed time-asynchronous automaton with private clacksetsis a distri-
buted time-asynchronous automaton in which each compargamt only test clocks i}, i.e.,

forall 1<i<n, if ¢ 225 ¢ €5, thenC € Constr(X)).

38

The following property shows the connection between distad time-asynchronous auto-
maton and distributed time-asynchronous automaton witkager clocksets:

Proposition 6. For each distributed time-asynchronous automatbwith set of symbol&’ there
exists a distributed time-asynchronous automaton witkigte clocksets and with some set of
symbols¥ and a renaming : ¥ — X U {e} such thatL(A) = f(L(B)).

Moreover, if A contains nae-transition, thenf contains no symbol deletion.

Proof. The proof idea is the same as in the proof of the Kleene The&rewe use a new set
of symbols that will be used to label distinct transitionshadistinct symbols. The new symbols
will represent tuples of transitions, one in each companent

So start withAd = (Qy, ..., Qn, X, X1, ..., X, 01, ..., 00, Qg -, QF, QF, ... QF) andB =
(@1,...,@n,f,Xl,...,Xn,gl,...,En,@é,...,@g,@},...@;ﬁ). If we recall thatQ = Q; x
X Qn, Q= Qp x ... x QFandQy = Qj x ... x Qf, then, formally, the components 5f
are:

— The set of locations i§), = Q x {i}, with @ = Qo x {i} andQ} = Q x {i}.
— The set of input symbols is

f:{(trlv"'atrn)| foralllgignatri:qﬂ)TGCSi}

— Thez«-th transition relation is:

= _ N CikYi o — _
62':{((]72)—)(rvl)|q:(q17"'7QH)7T:(Tlv"'vrn)v

. C;.b,Y; . _
for all j < n there existgr; = ¢; —— r; € §; With & = (try,...,tr,),C; = C; |X}}

An easy but tedious double inclusion proves thatl) = f(L(B)). 0

In the sequel, for each < i < n, denoteA,; the timed automaton corresponding to ikié
component of4:
A = (Qu X, X, 0 lesz)
We will now show that the language of a distributed time-a$yanous automaton with
private clocksets is, in some sense, a “synchronized ptbdbithe languages ofd;. The exact
meaning of the term “synchronization” is the following:

Definition 8. Givenn timed wordsw; = tia; ...tat,,, (1 < i < n), all having the same
untiming sequence, . . ., ax, thesynchronizationof (w;),<;<,, denotedv; ® ... ® w,, is the
timed word:

o= (o (L))

. L . C;,85,X; .
Given a distributed time-asynchronous automatgra runp = (g;_, ELTLEN Gj)1<j<k iN

_ . chelxt .
Aand, foreachl <i <n,arunp; = (¢;_, 24 qj)1<j<k in the component,;, we say that

p is an.A-synchronizationof (p;)1<i<y if

39

Foreachl < j <k,&; =&, A<, C) — C;isavalid constraintand),_, ., X; = Xj.

Proposition 7. 1. In the setting of the above definition, afysynchronization of run&,)<<
isaruninA, and if eachp; is accepting in4, thenp is accepting inA.

2. For any tuple of timed words; (1 < j < n), if eachw; is associated with the rup;, then
their synchronization; © ... ® w; is associated with anyl-synchronization ofp;)1 <;<x.

3. L(A)=L(A) ®...0 L(A,).

The proofs of these results are straightforward from thendiefins.

The following technical property states that, if a run of stdbuted time-asynchronous auto-
maton with private clockset in which the time passage betwe® symbols must be in the
interval]0, 1], then exactly one component may be “active” in between tleestimbols (meaning
that all the other may only allow a zero time passage). Thetiah comes from the fact that the
constraints use integers, and we cannot decompose thgahfrl| as the sum of two non-
zero intervals with integer bounds. (Here, summation ismw®red in the sense of the following
example0, 1[+]1, 2] =|1,3[.)

Proposition 8. Consider a distributed time-asynchronous automaton withage clocksets4

with n» components and notransitions, and arupin A, p = (g;_, s @) e jepr With, =
L))) . OyNConstr(X;),a:, X:NX;
(g}, - -.q"). Denotep; the projection ofy in componeny, thatis,p; = (g/_, MConstr (%) o

)

qg)lgigk:'

1. Suppose that there exists sain@l < ig < k) such that for any timed word = ta; .. . t,a
associated withp, we havet;, €]0,1[. Then there exists a uniqug such that for any
synchronizationv; ® ... ® w, = w in whichw; = t)a, ...t.a; is associated withp;, we
have that!” € 10, 1[and for all j # jo, t,, = 0.

2. More generally, if there exist two integeis < i, such that for any timed wordh =
tiay . . . tya;, associated withy, we have thaEilSiSi2 t; €10, 1], then there exists a uniqyg

such that for any synchronizatien ©. . .©w, = w inwhichw; = t{al -tiak is associated
with p;, we have tha , _,_, /" €0, 1[and forallj # jo, > t7 = 0.

i1 <i<ia Ui

In other words, the first property states thatdiiccepts only timed words = t1a; .. . ta;
with ¢; €]0,1[for some fixedi, then in the run associated with, only one component may
have non-zero time passage between anda;, all the other components must have zero time
passage. The second property is a generalization of this.

Proof (of Proposition 8)The proof follows from a combination of Remark 4, appliedhe tuns
p;, and of Proposition 7 on synchronization of timed words eisged top;. We will prove only
the first property, the second being provable similarly.

So assume, for the sake of contradiction, that there exstiigtinct componentsg, j> such
that p;, is associated withu;, = t{'a;...t]'a;, with, £/ € 10,1, andp,, is associated with
wj, = tPay ...t With, ¢ €]0, 1], wherel < iy < k.

But then, by means of Remark 4, we may take any positiveaeal|0, 1] and construct a
new timed wordw, = u}'a; ... u}' a, which is associated with;, and withu]! = «. The same
will hold for p;,.

40

This gives us the possibility to choosé, such that:! = 0.9 andw’, such that* = 0.9,
Following Proposition 7, the synchronization © ... ©wj, © ... ©wj, ©® ... w, would still
be associated with.

But this synchronization would have asitdime interval a value larger tha&Q + t” =138,
which is in contradiction with the hypothesis, which sayat tiis time interval should always be
less thar. O

Proposition 9 (Nonclosure under intersection for distributed time-asynchronous automata).
The following language does not belong to the class of tirmeduages accepted by distributed
time-asynchronous automata:

L= {tlatgatgatw ‘ tl,tg,t3,t4 €]0, 1[,tl + t3 = tg + t4 = tl + t4 == 1}

Proof. Suppose, for the sake of contradiction, that the languaaecispted by a distributed time-
asynchronous automato#. Following Proposition 6, it would then be in the renamingtiod
language of a distributed time-asynchronous automatdmprivate clockset®. Denote further
B, the j-th component of the automatdh which is itself a timed automaton (as already noted
in the statement of Proposition 7).

So take the timed word.3a¢0.3a0.7a0.7a € L(A). It would be the renaming of a timed word
w = uyay . .. upay accepted bys, and for which, for someé < i; < iy < i3 <k,

=1

1=i1+1 i=i2+1 i=i3+1

Take further a rum that is associated witly, and denote, (1 < j < n) the projection ofp
in Bj.

Note that we are in the setting of the Proposition 8, sincetiamyd word accepted bgfwould
have to havg =1 u; €]0 1[Zz 21+1]O 1[Zz io+1 u; €]07 1[resp Zz 13+1]07 1['
Therefore, for any synchronization @ O w, =wwithw; = u{al U, assomated with
pj, we must have some unique componﬁrﬂor which ZZ Y ufl €10, 1] . The same must hold

for io, i3 andis t00, SO there must exist a unlqgtzewnh EZ 41 qu €10, 1], a uniquejs with

>, ul €]0,1[and a uniqug, with S0, L, ul* €]0,1].
Our first task is to provg, = j> = j; = ji. We prove this by contradiction: assume# js.

By Remark 4, we may construct a timed word with) = vi'a; . jlak associated withp;
in which ZZ Lo vt = 0.9. Similarly, we may construct a timed Word Wltbg = vl aj . vf’ak

associated Wltlpjg, in which 3% int1 v =0.9.

But then clearly the renaming bf of any synchronization comprising;, andw’,, which
has to be associated withby Proposition 7, would no longer satisfy the constrajnt ¢3 = 1,
since time interval which separates the actignfrom the actionz;, would have to be at least
2210 v; +Zz =io+1 53 =138.

Similarly we may prove thaj; = j, andj, = j,. But this implies that, in fact, the given
distributed time-asynchronous automaton is a timed autmm&y Proposition 8, all the other

runsp; would have to be associated to timed words in which all the imervals are zero.

41

It is then an easy exercise to repeat the proof of the Praponsitto show that our given
languagel. cannot be accepted by a timed automaton. O

5 Modeling timed systems with distributed time-asynchronois automata

In this section we discuss the use of fair shuffle expresdiang hence partitioned stopwatch
automata and distributed time-asynchronous automataptiehtimed systems.
In particular we consider two examples:

— We show how, given a set of (timed) processes, the behavitirese processes running in
a uniprocessor system adopting the Round Robin policy camddeled with distributed
time-asynchronous automata;

— We also show how, given a set of (timed) processes sharingi@atsession, the behavior
of these processes interacting with a semaphore can be edogéh distributed time-asyn-
chronous automata.

A Round-Robin scheduling moddtor the first example, considet;, ..., A, timed automata
expressing: time—dependent processes. We show how to construct ebdistti time-asynchro-
nous automaton (equivalently, a fair shuffle expressiopjessing the behavior of the processes
A, ..., A, running in a uniprocessor system adopting the Round RoblieypdVe suppose
that when a procesd; terminates its computation, it emits a special symbal,. Let k& be the
guantum of time that a process can use the processor coa$ilyubetk; andk, be respectively
the time necessary to put a process in the waiting queue andrtct a process from the waiting
gueue. Given a generic procedswe modify it in the following manner:

— We introduce a new clock storing the processor time usage.

.. C,a,X - CAy<k,a,X I .

— We replace each transitian—— ¢’ with ¢ ——— ¢/, in such a manner to give to the
process the capability of running if and only if the proceas hot finished his processor time
quantity.

— We add a new statg,;; for each state of A, representing that the process is waiting its next
turn, after finishing its processor time quantum. We alsotaadtransitions involvingy,,qi::

e atransitiong L= retdy . simulating that the process has finished his quantum

and goes in a waiting time.

y:073taTti 7{y}
7

e atransitiong,.: ¢ Simulating that the process woken up.

Let A}, ..., A, be the modified timed automata as described above. Consitberfr corre-
sponding timed expressiotts, . . ., £, with || E;|| = L(A}) for eachl <i < n.

Before defining the Round Robin Scheduler we define one mgneessiont,, , ; describing
the timek; + k5 necessary for switching the context of the enqueued-degleuwcesses:

En+1 = ((enq t deq)l)*, wherel = [k‘l +]{52, k1 +]{52]

We define next the timed automatBn= (Q), X', X, n, 0, Qo,) which represents the Round
Robin scheduler:

42

— @ is the set of tripleqi, P, d) where eitheri = 0 and P = () andd = extract, ori €
{1,...,n}andP C {1,...,n} andd € {starting, extract, put, running}.
The statg0, (), extract) represents the fact that all the processes have termirfeggdcom-
putations. The statds, P, running) represents the fact that the running proces$;iand the
non-terminated processes are dllwith j € P. The state$i, P, put) (resp.(i, P, extract))
represent the fact that the processis put (resp. is extracted) to (resp. from) the queue. The
stateqi, P, starting) represent the fact that the proce$sis about to start its execution.

— X = {z}, wherez will be a new clock that will be used to ensure that some step
performed instantaneously.

— XY ={enq,deq} UJ,_ {start;, stop;, end;}.

— ¢ is composed of five types of transitions:

e (i, P,running) frue,stopiAel, (1, P, put). This transition specifies the fact that the process
A; has finished his processor time quantity.

(1, P, put) M (i, P, extract). This transition specifies the fact that the enqueued

process fot4, is started.

e (i, P, extract) truedea, e}, (7, P, starting) with j = min(P) if i = maz(P) andj =
min{h € P | h > i} otherwise. This transition specifies the fact that the deqde
process for4,; is finished, wherg represents the index of the process that succeeds to
in P.

e (i, P, starting)

processA; is woken up.

T=Dstarts (), (1, P,running). This transition specifies the fact that the

o (i, P,running) L (i P eatract) with P/ = P\ {i}. This transition specifies

that the procesgl; has terminated his computation and hence a new process &tmng
waiting processes i® \ {:} must be woken up.
- Qo = {(1,{1,...,n}, running)}, meaning that, at the beginning, the first processes to run
is A; and no process has finished its computation.
— Qs = {(0,0, extract)}, specifying that the whole computation terminates whethallpro-
cesses have terminated their computations.

Let £, - be the zero-constrained expression equivalent with thediautomatods. Finally,
let f be the renaming which deletes symbetart;, stop;, enq, deq (and alsoend; if needed).
The expression

f((ElLLl R LUEnLUEn+1) N En—l—Z)

is the fair shuffle expression simulating the behavior ofghecessesA;, . .., A, running in a
uniprocessor system adopting the Round Robin policy.

Remark 7.Note however that we do not have global timing constrainttheé sense aleadlines
for each process. Such constraints would have to be modelgdand then require intersection
of fair regular expressions with a timed regular expresdm@mce the result would no longer be
a partitioned stopwatch automaton.

43

A partitioned stopwatch automaton model for semaphok&s. show now how to model con-
current timed processes utilizing a semaphore. Considginagtimed automatad,, ..., A,
expressing: time-dependent processes. Each procgssses symbol&ck; andunlock; to op-
erate on the binary semaphore. We suppose that the semampipteenents a LIFO policy.

We can modify eachd; such that, after each transition labeledk;, it needs to receive a

special symbobk; before entering in the critical session. More formally,egiva generic process

A; we modify it by substituting each transitian ¢' with the two transitiong Glocki X,

(¢, wait) and (¢, wait) frue ki, ¢ where (¢, wait) is a new state representing the fact that
the process has been enqueued and is waiting the "ok” by theg®re. Let4’, ..., A/ be
the timed automata modified as described above and. ., E,,, respectively, the timed regular
expressions equivalent with each of them.

We then construct a timed automatBn= (Q, X', ¥, 7,6, Qo, ()) expressing the sequence
of accesses to the critical session. Its component are lag/fol

— @ is the set of tuplesd, (i1, . ..,i,)) Whered € {manage, running}, andm > 0, i; €
{1,...,n} andi; # i, if j # j'. In a state(running, (i1, ...,1,)), the index:, represents
the fact that procesd,, is inside its critical session, and the sequeice ., i, represents the
queue of processes waiting to enter their critical sessibine statgmanage, (iy, ..., iy))
represents that a process has left the critical sessionigrpeng an unlock, and hence, a
new process amond,, , ..., .A;, could enter in the critical session.

- X =0.

— X = U {lock;, ok;, unlock;}.

— ((d, (ir, - im))) = {a}.

— ¢ is composed of three types of transitions:

true,unlock;, ,{}

o (running, (i1,...,im)) (manage, (ig, . . ., i,)) With m > 1, meaning that
processA;, has released the unlock.
true,ok;, ,
e (manage, (i1, ...,0n)) —1{}> (running, (i1, . ..,4,)) With m > 1, meaning that

the semaphore is not busy and hence the first pradgss the queue is allowed to enter
its critical session.
true,lock;, . A} o o . .
o (d,(i1,...,im)) 5 (d, (i1, 2, - - - Gmimst)) With d € {running, manage},
namely the procesd,; ., requires a lock on the critical session and hence is enqueued
— Qo = {(manage, (¢))}, meaning that, at the beginning, no process has performmtka |
— Q¢ = {(manage, (¢)) }, specifying that there are no more pending locks.

Let £, be the zero-constrained expression equivalent with thediautomatous. Finally,
let f be the renaming function that deletes all symhbéigand alsdock; andunlock; if needed).
The expression

F(ELW...wE,) A Enyq)

is a fair shuffle expression expressing the behavior of tlheqsses4,, ..., A, running in a
uniprocessor system and utilizing a semaphore for entéhnieig critical session.

44

6 Conclusion

Figure 9 summarizes the main results for partitioned, stdphy resp. timed automata and the
different types of regular expressions. We mark a propeitly symbol “*” to represent the fact
that the result is proved in this paper.

| Model | Closure | Nonclosure|Decidability of reachability
stopwatch automata™* union®, intersection, - No
timed shuffle expressions renaming, Kleene stafr
;2*
partitioned stopwatch automata’ union”, renaming, Kleene star |intersectior Yes*

fair shuffle expressions:*
distributed time-asynchronous automata

:)*
timed automata = union, intersection, — Yes
timed regular expressions renaming, Kleene star

Fig. 9. Summary of the main results

The equivalence between partitioned stopwatch automaitdiatributed time-asynchronous
automata presented here is more involved that in our preypaper [DLO7], due to the use of
clock resets to zero, and not to generalized clock resets[&8.0D7]. The communication mech-
anism between the components of the distributed time-&sgnous automaton that distributes
the centralized control of a to-be-simulated partitionegheatch automaton works by ensuring
that, during each “handshake” between what we called “soaoenponent” and “target com-
ponent” of a transition, both components achieve a formarmhmon knowledgensuring them
that the other is consistently simulating the behavior ef plartitioned stopwatch automaton.
It would be interesting to investigate whether general-tiea¢ epistemic frameworks like in
[Dim09,WLO05] can be used to get a simpler proof of our simaolatesult.

Another interesting point to be studied is the relation$lgfpween partitioned stopwatch auto-
mata and the class of Interrupt Timed Automata studied inQ8Hespecially related with the
fact that the latter, though utilizing diagonal constrajiitave a decidable emptiness problem.

References

[AAMO6] Yasmina Abdeddaim, Eugene Asarin, and Oded Mal8cheduling with timed automatal heoretical Computer
Science354(2):272-300, 2006.

[ABGT08] S. Akshay, Benedikt Bollig, Paul Gastin, Madhavan Mukuand K. Narayan Kumar. Distributed timed automata
with independently evolving clocks. IRroceedings of the 19th International Conference on Camrcway Theory
(CONCUR 2008)volume 5201 ot_ecture Notes in Computer Scienpages 82—97. Springer, 2008.

[ACM97] Eugene Asarin, Paul Caspi, and Oded Maler. A Kledreotem for timed automata. Froceedings of the 12-th
International Symposium in Logic in Computer System (L8ZH'pages 160-171. IEEE Computer Society Press,
1997.

45

[ACMO02] Eugene Asarin, Paul Caspi, and Oded Maler. TimedlagexpressionsJournal of the Association for Computing
Machinery 49:172-206, 2002.

[AD94] Rajeev Alur and David L. Dill. A theory of timed autortea Theoretical Computer Scienc&26:183-235, 1994.

[AMO1] Yasmina Abdeddaim and Oded Maler. Job-shop sclieguising timed automata. IRroceedings of the 13-th
International Conference on Computer-Aided Verificati@AY’01), volume 2102 ofLecture Notes in Computer
Sciencepages 478-492. Springer Verlag, 2001.

[AM02] Yasmina Abdeddaim and Oded Maler. Preemptive jobpsscheduling using stopwatch automataPtaceedings of
the 8-th International Conference on Tools and Algorithorglie Construction and Analysis of Systems (TACAS'02)
volume 2280 oL ecture Notes in Computer Scienpages 113-126. Springer Verlag, 2002.

[BDFPO04] Patricia Bouyer, Catherine Dufourd, EmmanueblBteand Antoine Petit. Updatable timed automataeoretical
Computer Science321(2-3):291-345, 2004.

[BHO9] Beéatrice Bérard and Serge Haddad. Interrupt tirmatbmata. InProceedings of FoSSaCS’0@lume 5504 of
Lecture Notes in Computer Scienpages 197-211. Springer, 2009.

[BKO8] Christel Baier and Joost-Pieter Katod?rinciples of Model CheckingThe MIT Press, 2008.

[BP99] Patricia Bouyer and Antoine Petit. Decompositiod aomposition of timed automata. Rroceedings of ICALP’99
volume 1644 oLNCS pages 210-219, 1999.

[BPO1] Patricia Bouyer and Antoine Petit. A kleene/blliké theorem for clock languagesJ. Autom. Lang. Comp.
7(2):167-186, 2001.

[BPTO3] Patricia Bouyer, Antoine Petit, and Denis Thériékn algebraic approach to data languages and timed language
Information and Computatiqri82(2):137-162, 2003.

[CGP99] Edmund Clarke, Orna Grumberg, and Doron Peléatlel CheckingThe MIT Press, 1999.

[Dim99] Catalin Dima. Kleene theorems for event-clock améta. InProceedings of FCT'99volume 1684 oL NCS pages
215-225, 1999.

[Dim01] Catalin Dima. Real-time automatdournal of Automata, Languages and Combinatqr&8-23, 2001.

[Dim03] Catalin Dima. A nonarchimedian discretization fimed languages. IProceedings of the First International
Workshop on Formal Modelling and Analysis of Timed Systéf@RMATS’03) volume 2791 of_ecture Notes in
Computer Sciencgages 161-181. Springer Verlag, 2003.

[Dim05] Catalin Dima. Timed shuffle expressions. Pnoceedings of the 16-th International Conference on Coeaey
Theory (CONCUR’05)volume 3653 of_ecture Notes in Computer Scienpages 95-109. Springer Verlag, 2005.

[Dim09] Catalin Dima. Positive and negative results on tleeidability of the model-checking problem for an epistemic
extension of timed ctl. IfProceedings of TIME'09pages 29—-36. IEEE Computer Society, 2009.

[DLO7] Catalin Dima and Ruggero Lanotte. Distributed tim&/nchronous automata. Pmoceedings of the 4th International
Colloquium on Theoretical Aspects of Computing (ICTAC 2083ume 4711 of ecture Notes in Computer Science
pages 185—-200. Springer Verlag, 2007.

[DZ98] Frangois Demichelis and Wieslaw Zielonka. Congdltimed automata. IRroceedings of CONCUR’9&olume
1466 ofLecture Notes in Computer Scienpages 455-469. Springer, 1998.

[FKPYO07] Elena Fersman, Pavel Krcal, Paul Pettersson Vdadg Yi. Task automata: Schedulability, decidability amadie-
cidability. Inf. Comput, 205(8):1149-1172, 2007.

[FMPYQ6] Elena Fersman, Leonid Mokrushin, Paul Pettersand Wang Yi. Schedulability analysis of fixed-priority sss
using timed automatalheor. Comput. S¢i354(2):301-317, 2006.

[HKPV98] Thomas A. Henzinger, Peter W. Kopke, Anuj Puri, d&vin Varaiya. What's decidable about hybrid automata.
Journal of Computer Systems Sciere&94—124, 1998.

[HRS98] Thomas A. Henzinger, Jean-Francois Raskin, aedrd?Yves Schobbens. The regular real-time languages. In
Proceedings of 25-th International Conference on Automladgics and Programming (ICALP’98Yyolume 1443 of
Lecture Notes in Computer Scienpages 580-591. Springer Verlag, 1998.

[Kri99] Padmanabhan Krishnan. Distributed timed automBtactronic Notes in Theoretical Computer Scieriz@, 1999.

[OWO03] Joél Ouaknine and James Worrell. Revisiting drgition, robustness, and decidability for timed automataPro-
ceedings of the 18-th International Symposium in Logic im@oter System (LICS'03)ages 198-207. IEEE Com-
puter Society Press, 2003.

[PH98] Paritosh K. Pandya and Dang Van Hung. Duration cakaf weakly monotonic time. IRroceedings of FTRTFT'98
volume 1486 ofecture Notes in Computer Scienpages 55-64. Springer, 1998.

[Wil94] Thomas Wilke. Specifying timed state sequencesdawerful decidable logics and timed automata.Pioceedings
of FTRTFT'94 volume 863 olLNCS pages 694-715, 1994.

[WLO5] Bozena Wozna and Alessio Lomuscio. A logic for knodde, correctness, and real time.Hroceedings of CLIMA
V, volume 3487 otf_ecture Notes in Computer Scienpages 1-15. Springer, 2005.

[Yov98] Sergio Yovine. Model-checking timed automata.Lkctures on Embedded Systerwume 1494 of_ecture Notes
in Computer Sciencgages 114-152. Springer Verlag, 1998.

46

[Zie87] Wieslaw Zielonka. Notes on finite asynchronous endta. Informatique Théorique et Application®1(2):99-135,
1987.

47

