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Abstract. We present a variant of ATL with distributed knowledge opersibased on a synchronous
and perfect recall semantics. The coalition modalitiesia kbogic are based on partial observation
of the full history, and incorporate a form of cooperatiotvEen members of the coalition in which
agents issue their actions based on the distributed knge|ddr that coalition, of the system history.
We show that model-checking is decidable for this logic. THoanique utilizes two variants of games
with imperfect information and partially observable oltjees, as well as a subset construction for
identifying states whose histories are indistinguish&blle considered coalition.

1 Introduction

Alternating-time Temporal Logic (ATL) [AHK98, AHKO02] is agneralization of the Computational Tree
Logic (CTL) in which path quantifiers3” and “v” are replaced bgooperation modalitie§A) in which

A denotes a set aigentswho act as aoalition. A formula (A)) @ expresses the fact that the agents in
coalition Acan cooperate to ensure th@holds in an appropriate type of multiplayer game.

The precise semantics of the cooperation modalities vdepending on whether the knowledge that
each agent has of the current state of the game is complets, @nd whether agents can use knowledge
of the past game states when deciding on their next move or Tbese alternatives are known as
complete resp. incomplete informationand perfect resp. imperfect recall In the case of imperfect
recall further subdivisions depend on how much memory antagellowed for storing information on
the past in addition to its possibly incomplete view of therent state. In the extreme case agents and,
consequently, the strategies they can carry outireaenoryless

It is known that the model-checking problem for the case ahglete information is decidable in
polynomial time [AHK98]. In the case of incomplete inforriwat and perfect recall model-checking is
believed to be undecidable, a statement attributed to Mndkakis in [AHK98] for which there is no
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self-contained proof that we know about. Variants of ATLwihemoryless agents have been shown
to have decidable model checking in [Sch@&5J07, vdHLWO6]. Our earlier work [GD08] is about a
special case of agents with perfect recall in which modetking is still decidable.

Incomplete information is modelled in ATL in a way which conhs with the possible worlds se-
mantics of modal epistemic logics (cf._[FHMVO04].) Theredoiit is of no surprise that the epistemic
logic community contributed extensions of ATL by knowledgedalities such aglternating Tempo-
ral Epistemic LogidfvdHWO03]. Results on model-checking ATEL with memorylessitegies can be
found in [Sch04AGJ07 [ KP05, vdHLWO0B]. Results on ATL with complete infortioa can be found in
[GJ04/BJ0O9].

In this paper we continue our investigation of ATL with kneafe operators from [GD08], where
we introduced conditions on the meaning of the cooperatiodatities which make model-checking
decidable. As in the previous paper, we do not restrict &jeshtategies to memoryless ones, but we
assume that coalition members have a communication merhamhich enables the coalitions to carry
out strategies that are based on thdistributed knowledge (Recall that a coalition hadistributed
knowledgeof fact @ iff @ is a logical consequence of the combined knowledge of thigicoamembers.)
We assume that a coalition has a strategy to achieve agyoall if the same strategy can be used in all
the cases which are indistinguishable from the actual otterespect to the distributed knowledge of the
coalition. This choice is known aie restrategies [JAQ7], and rules out the possibility for a daalito be
able to achievep by taking chances, or to be able to achigviem some of the cases which are consistent
with its knowledge and not in others. Therefore in our systeW is equivalent toKa(A)@ where
Ka stands for thalistributed knowledgeperator (also writteiDa). We call the variant of ATL which
is obtained by adopting these conventidigernating Time Logic with Knowledge and Communicating
Coalitionsand use the acronym AR for it to indicate distributed knowledge, incomplete infation
and perfect recall.

Implementing strategies which rely on distributed knowledequires some care. For instance, sim-
ply supplying coalition members with a mechanism to shaedr thbservations with each other would
have the side effect of enhancing the knowledge at each’'aghsposal upon considering the reacha-
bility of subsequent goals as part of possibly differentlitioas, whereas we assume that each agent'’s
knowledge is just what follows from its personal experieatell times. Therefore we assume that
coalition activities are carried out through the guidanbeoorespondingirtual supervisoravho receive
the coalition members’ observations and previously acdatad knowledge and in return direct their
actions for as long as the coalition exists without making @afditional information available.

In our previous work models are based ioterpreted systemas known from[[FHMVO04]. In that
setting global system states are tuples which consist dbtted views of the individual agents and the
satisfaction of atomic propositions at a global state netdea related to the local views in it. Unlike that,
in this paper we assume that the view of each agent is dedaiba set of atomic propositions which the
agent can observe. States which satisfy the same obseaiabféc propositions are indistinguishable
to the agent. Observability as in interpreted systems casirbalated in this concrete observability
semantics. However, the converse does not hold| see [Difod Gftails.

We prove our model-checking result by induction on the auietibn the formula to be checked,
like in model-checking algorithms for ATL or CTL, with twogiificant differences. Firstly, the im-
plicit distributed knowledge operator hidden in the céatitoperator is handled by means of a “subset
construction” for identifying states with indistinguidiia histories, a technique used for CTLK model-
checking in[[DIim08]. Secondly, checking whether in a givehd indistinguishable states the coalition
has a strategy to achieve gaainvolves building a tree automaton, which can be seen as a hatween
the coalition (supervisor) and the rest of the agents. Taisagresembles the two-player games with one
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player having imperfect information frorn [CDHRO06], but@lsas a notable difference: the goal of the
player with imperfect information isot fully observableSuch a goal can be achievatidifferent times
along different yet indistinguishable runs. Therefore hage a bookkeeping mechanism for the time of
achieving the goal along each run.

The tree automata we use employ only “occurrence” acceptingitions: the set of states occurring
along each run of the tree is required to belong to some gieeofsets of states. No Muller conditions,
i.e., no restrictions on the set of states occuriirfitely often are involved.

The model-checking algorithm proceeds by constructigfinementsof the given game areng,
unlike in CTL and ATL model-checking where the only modifioat of the given arena are the insertion
of new propositional variables (corresponding to subfdamwf the formula to model-check). This
refinement enables telling apart classes of histories wdmetindistinguishable to coalition members. It
involves splitting states by means of a subset constructibe technique is known from model-checking
epistemic extensions of CTL or LTL with perfect recall.

The setting and techniques presented here are differemttfrose in our previous work [GDO8]. In
[GDO038], the knowledge modalities are required to have omfpument formulas from the past subset
of LTL. ATLE has only future operators. P4sIL operators can be added to Aglin the usual way.
Also, the model-checking algorithm for Af} is based on tree-automata and not on the syntactical
transformation of past formulas as in [GDO08].

Let us also note the difference between our work and the worKTEL: the approach proposed in
ATEL is to consider that strategies are definedsequences of statewhich is aperfect observability
approach. Hence, a formula of the foffAlice)) @, saying thatlice has a strategy to ensugein a given
state, refers to the situation in whiétice would be able to ensure if she had complete information
about the system state. As in general agents do not have emplormation, ATEL proposes then to
use knowledge operators as a means to model imperfect iafamm The idea is to use formulas of the
form Kajice(Alice) @ to specify the fact thaAlice knows that she can enforgein the current state.

Unfortunately, this does not solve thefeasible strategiegroblem, studied in [GJ04]. Namely, the
knowledge operator in formullijice(Alice) ¢ does not giveAlice the ability to know what action she
has to apply in the current state. This is because the kngelegerator only gives evidence about the
fact thatstrategies exist, in all identically observable statesetsureg, but different strategies may
exist in identically observable states, and heAtiee might not be able to know what strategy she is to
apply after some sequence of observations.

Another argument against the possibility to encode théngeftom e.g. [Sch04] into the ATEL
setting from [[vdHWO3] refers to the difficulty of giving a fimmt definition to the operators involving
(Alice). The reason is that, for formulas of the fofA)< @, it is possible thatp becomes satisfied
at different times along different yet indistinguishablmg. Hence, despite thatice can enforcep by
means of a fixed strategy, she might be unable to tell whdrappens. At best, in case every global
state has only finitely many successotdice would eventually be able to tell thgt must have been
achieved This observation is related with the bookkeeping mecimanised in Subsectidn 4.2 here, in
the association of a tree automaton with each subformullasofiarm (A) @ U ¢».

In conclusion, we believe that there is little hope to encib@eimperfect information setting studied
here within the ATEL framework from [vdHW03, GJO4].

Structure of the paperThe next section recalls some basic notions and notaticed thsoughout the
paper, including the tree automata that are used in the robgeking algorithm. Sectidd 3 presents the
syntax and semantics of A'Ia_ Sectiorl 4 gives the constructions involved in the modek&ing algo-
rithm: the subset construction for identifying indistinghable histories, and then the tree automata for
handling formulas of the form§A)) p1 W p2 and (A)) p1U pz, respectively. We conclude by a summary
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of our result, discussion and topics of further work.

2 Preliminaries

Given a setA, A* stands for the set of finite sequences a%erThe empty sequence is denoted dy
The prefix order between sequences is denoted dnyd the concatenation of sequences. yhedirect
productof a family of setyXa)aca is denoted by T,ca Xa. An elemenix of [T .4 Xa Will be written in the
form x = (Xa)aca, Wherexa € X, for allac A, If BS A, thenx|B = (Xp)beg Stands for theestriction of x to
B. If the index sefA is a set of natural numbers and A, thenx|n stands f0|x|{n}. Thesupportsupp( f)
of a partial functionf : A — B is the subset of elements Afon which the function is defined.

Given a set of symbol4, aA-labeled treds a partial functiort : N*—A such that

1. gesupp(t).

2. The support of is prefix-closed: ifk € supp(t) andy < x, theny € supp(t).
3. Trees are “full”: ifxi e supp(t), thenxj e supp(t) for all j <i too.

4. All tree branches are infinite: Xfe supp(t) thenx0 e supp(t) too.

Elements obupp(t) are calledhodesof t. A pathint is an infinite sequence of nod&s= (X« )k=0 such
that for allk, X, 1 is animmediatesuccessor afy, i.e. k1 = X! for somel e N. Path(x«)kso iS initialized
if Xo is the tree root. We denote the set of labels on the pattthat is,{t(x«) | k> 0}, by t(m).

Below we use tree automatd = (Q,%,5,Qo,F) in which Q is the set ofstates X is thealphabet
Qo € Q is the set of thenitial states,d € Qx X x (29 @) is thetransition relationand the acceptance
condition F is a subset of 2.

Tree automata accefitx 2-labelled trees. A tree: N* — Q x X represents aaccepting rurnin A iff:

1. t(E) €eQox2.
2. If xesupp(t), thent(xi) |, #t(x])|, whenevei # j, and(t ()|, t(¥)l;, {t(xi)}, | xi € supp(t)}) € &.
3. t(71)|Q e F for all initialized pathsm ¢ supp(t).

Note that we only consider automata with “occurrence” atingpconditions: an initialized path is ac-
cepting if the set of statesccurring on the path is a member ¢f, even if some of these states occur
only finitely many times.

Theorem 1 ([Tho97]) The emptiness problem for tree automata with “occurrencetepting condi-
tions, i.e., the problem of checking whether, given a trederaaton.A, there exists an accepting run in
A, is decidable.

3 Syntax and semantics of AT
Throughout this paper we fix a non-empty finite sgtof agentsand, for eacta e Ag, a set ofatomic

propositions Prop, which are assumed to be observableato Given A c Ag, we write Propa for
Uaca Propa. We abbreviaté’ropag to Prop.
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3.1 Game arenas

Definition 2 A game arenas a tuplel” = (Ag, Q, (Ca)acag: 9, Qo, (Propa)acag, A ), where
» Ag and Prop, ac Ag, are as above.
* Qis a set oktates

Ca is a finite sets ohctionsavailable to agent a. We writefJor [1,.4Ca and C for Gyg.
* Qo € Q is the set oiitial states

+ A :Q— 2P s thestate-labeling functian

« 5:QxC— (2°\ @) is thetransition relation

An elementc € C will be called anaction tuple We writeq S 1 for transitions(q,c,r) € 8. We define
Aa: Q- 27°P A c Ag, by putting Aa(q) = A(g) nPropa. We assume that and A, are defined on
subsetsSof Q by puttingA (S) = U A(q) for A, and similarly forAa.

0eS

Given an arend, arun p is a sequence of transitions— qf’ such thaty, , = ¢’ for all i. We write
p=(0i-1 =N i )1<i<n, resp.p = (gi-1 8, qi )i»1 for finite, resp. infinite runs. Thiengthof p, denotedp|,
is the number of its transitions. This ¢s for infinite runs. A runp = o o, 01 2, s initialized if
0o € Qo. Runs’(I") denotes the set of initialized finite runs aRdns®(I") denotes the set of initialized
infinite runs ofl".

Given arurnp :qoiqlg..., we denotey; by p[i],i=0,...,|p|, andci,1 by act(p,i),i=0,...,|p|-
1. We writep|[0..i] for the prefix g 2 (o]} R g of p of lengthi.

A coalition is a subset oAg. Given a coalitionA, Sc Q, ca € Ca, andZ c Propa, the following set
denotes theutcome of g from S, labeled with Z

out(S,ca,Z) = {s' € Q| (3se 3¢’ e C)C/|, = cA,si s edandia(s) =2}

whereas those froRropa \ Z are false.
Runsp andp’ areindistinguishable (observationally equivalem)coalitionA, denotedo ~a p’, if

lp| = o], act(p,i)|, = act(p’,i)|, for alli < |p], andAa(p[i]) = Aa(p'[i]) for alli <|p|.
Definition 3 A strategyfor a coalition A is any mapping : (2°P2)* — Ca.

We write (A, ") for the set of all strategies of coalitichin game arena.

Note that, instead of describing strategies for coalitiaaguples of strategies for their individual
members with every member choosing its actions using jsisivin view of the past, we assumgont
strategy in which the actions of every coalition member déelpen the combined view of the past of all
the members. We may therefore assume that the coalitionidediy a supervisor who receives the
members’ view of the current state, and, in return, advigesyecoalition member of its next action. The
supervisor sends no other information. We refer the reamarshort discussion in the last section, on
this supervisor interpretation of joint strategies.

Finite sequences of subsetsRybpa will be calledA-histories
Strategyo for coalition A is compatiblewith a runp = qg a, 1 2 f

o (Aa(P[0])-Aa(p[i])) = Ciadl,

for all i <|p|. Obviously if o is compatible with rurp then it is compatible with any run that is indistin-
guishable fromp to A.
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3.2 ATLE defined

The syntax of ATI2; formulasg can be defined by the grammar

@:=pler@[-@[ (A)OR| (Aot o[ (A)@ WV @ | Kag

wherep ranges over the sétrop of atomic propositions, and ranges over the set of subsetsAgf

Below it becomes clear that admittingy as a basic temporal connective allows us to introduce all
the remaining combinations ¢A\) and its dua[A] and the temporal connectives as syntactic sugar (see
[BJOZ,[LMOO08] for more details). Satisfaction of ARLformulas is defined with respect to a given
arenal’, a runp € Runs®(I") and a position in p by the clauses:

* (I,p,i)=pif peA(p[i]).
s (Mp,i)E@A@,if (ITp,i)E@and(l,p,i) = @.
* (r’p’l)’:_‘(plf (rapal)'%(p

o (I,p,i) E (A)Oo if there exists a strategyg € Z(A,I") such that(I',p’,i+1) = ¢ for all runs
p’ € Runs®(I") which are compatible witlo and satisfyp’[0..i] ~a p[O..i].

e (I',p,i) = (A)oU @ iff there exists a strategy € Z(A, ") such that for every rup’ € Runs®(I")
which is compatible witlo and satisfiep’[0..i] ~a p[0..i] there existg >i such tha(l",p’, j) E @
and(l",p’". k) = @ forallk=i,...,j-1.

o (I,p,i) = (A)@ W @ iff there exists a strategy € Z(A,I") such that for every rup’ € Runs®(I")
which is compatible witho and satisfiep’[0..i] ~a p[0..i] one of the two situations occur:
1. Either there exist$>i such thatl",p’,j) = @ and(I",p",k) = @ for all k=1i,...,j-1.
2. Or(r,p" k)= @ forall k>i.
o (I,p,i)EKagiff (F,p’,i)E @, for all runsp’ € Runs®(I") which satisfyp’[0..i] ~a p[0..i].

The rest of the combinations between the temporal conmsctind the cooperation modaliti€a)
and[A] are defined as follows:

Pagp = -Ka-0@ [Alog=-(A)O-@
[AloU ¢ = =(A)(~YW-Yr-p) [AloW i = -(A)(~pU-Yr-¢)
(A)C @=(A)trueld ¢ (A)o = (A)pWialse
[A]C @=[A]trueld ¢ [A]lo@=[A]leWfalse

A formula @ is valid in a game arend’, writtenT = ¢, if (I',0,0) = ¢ for all p € Runs®(I"). The
model-checking problefior ATLi% is to decide whethdr = ¢ for a given formulap and arend .

Example 4 Alice and Bob, married, work in the same company. When thieyeaat work, they are
assigned (by some non-modeled agent) one of the tasks x digse Tasks need different periods of
time to be executed: tx time units for x and ty time units favlyere tx<ty. The assignment is always
such that task y cannot be assigned to both Alice and Bohx. thftg finished executing their task, Alice
and Bob have two objectives: (1) to pick their child from thesery, and (2) to do the shopping. The
supermarket closes early, so the one who does the longéstaasot do the shopping. So Alice and
Bob need to exchange information about their assigned taskder to fix who’s to do the shopping and
who's to pick the child from the nursery.
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Figure[d pictures the game arena representing this systdma.attions Alice and Bob can do are: g
for going at work, e for working on their task, tc for takingetichild, ds for doing the shopping, and i
for idling. The atomic proposition xx denotes the assigrtroétask x to both Alice and Bob, xy denotes
assignment of task x to Alice and task y to Bob, and yx denstigrament of task y to Alice and task x
to Bob. All these atomic propositions are not observablehieytivo agents. The atomic propositions x
and y, are observed only by Alice, and the atomic propositionand y, are observed only by Bob. All
these four atoms denote the fact that the respective pe@®mohexecute task x or y. Furthermore, the
atomic propositions txand ty, which are observed only by Alice, and, tand ty,, which are observed
only by Bob, denote the fact that the respective person hes Werking for tx or ty time units. The
atomic propositions ¢, s, can be observed by both Alice aridd@wal denote the fact that the child was
picked from the nursery, and, respectively, that the fridgell with food from the supermarket. An arc
labeled by two vectors of actions, e.gc,ds) (dstc), denotes two arcs with the same origin and the
same destination, each one of them labeled by one of thersecto

We suppose that the game arena contairsin& statewhich is the output of all the transitions not
pictured in Figurel (for instance, both agents idling intstas brings the sistem to the sink state). Also,
we suppose that all the states except for the sink state amddd by some atomic proposition valid
visible to Alice.

An interesting property for this system is that Alice and Bah form a coalition in order to pick
their child and do their shopping (if we ignore the sink sjatthat is, the following formula is true:

@ = ({Alice,Bob} ))(valid U cAs)

Note that Alice and Bob need a strategy which must includeesmmmunication during its execu-
tion, which would help each of them to know who is assignedwthisk during the day, and hence who
cannot do the shopping. Note also that the model incorpsratene timing information, such that the
two agents need a strategy with perfect recall in order tachetheir goal: after working tx time units
both Alice and Bob must use their observable past to remeifittey have finished working. Finally,
note that, if we consider that strategies for coalitions argles of strategies for individual members, as
in [AHK98, (Sch04] then the formule is false: whatever decision Alice and Bob take togetheren t
morning, about who is to pick the child, who is to do shoppary] in what observable circumstances
(but without exchanging any information), can be countdrgdhe task assignment, which would bring
Alice and Bob at the end of the day either with an empty fridgthe child spending his night at the
nursery.

4 Model-checking ATLE

The model-checking procedure for ARlbuilds on model checking techniques for CTL with knowledge
modalities and ATL with complete information. It works byctgsion on the construction of formulas.
Given a formulap with a cooperation modality as the main connective, the gatare involves refining
the given arend to an arend in which the state space can be partitioned into states veaitisfy ¢ and
states which do not.

The idea is to have, after the splitting, an equivalencdiogiaEa on the states of the resulting game
arenal, such thatfi =a G iff Gi anddp are reachable through the same histories, as seén by

The construction of the refined state space is inspired byghal construction of a game with perfect
information for solving two-player games with one playeving imperfect information, see [CDHRD6].
However the construction is more involved, because, contce]CDHRO6] the objectives here may not
be observable by the coalition.
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Figure 1. A game arena for Example 4

4.1 The state-splitting construction.

Given a game arend = (Ag,Q, (Ca)acag, 0, Qo, (Propa)acag,A) and a coalitionA, we construct a new
game arenfia = (Ag,Q, (Ca)acag, 8, Qo, (Propa)acag: A ). as follows:
« Q={(a,9)|Sc Q,qe Sand for allse S Aa(S) = Aa(0) };
* Qo={(00,%) | o€ QoandSy={seQo|Aa(S) = Aa(t0)} };
* A(a.5) = A(q) for all (q,5) € Q.
* (9,9 5 (¢f,S) € 8 if and only if the following properties hold:
- (qu)v(qlvs,) € /Q\andCEC;
- q>qed;
- S =out(Sc|,, Aa(d)).
The intended equivalence on states is then the followdrg; ¢ if and only if there existSc Q with
9=(9,S) andq' = (,S). | _
Every runp € Runs®(I"), p = (gi-1 4 Gi)i»1, has a unique corresponding rpre Runs®(Ta), p =
((gi-1,5-1) g, (Gi,S9))i>1. This is becausep unambiguously determine§ and, recursively,S_;
uniquely determines§, for anyi > 1. The converse holds too, that is, to each pua ((gi-1,5-1) g,

(6i,S))is1 in Runs®(T»), corresponds a unique rym= (¢j_1 4 Gi)i»1 such thatp = p. Furthemore,
every strategy foAin I is also a strategy foAin I a.

Proposition 5 1. If p andp’ are runs inl" of the same length, then~a p’ iff D ~a p’.
2. IfBcAg,0€3(B,I") =%(B,TA), andp € Runs®(I"), thena is compatible witlp iff o is compat-
ible with p.

3. If peRuns®(I"), pe Prop and i> 0, then(I", p,i) = Kap is equivalent to botlil", 7,i) = Kap, and
to pe A(s) for all s in the second component@fi].
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4. If p e Runs®(I), @is an arbitrary ATL2 formula and i> 0, then
(F.p,i) F iff (Ta,0.0) F @

Proof: (), (2) and[(B) follow directly from definition.[{4) is prodeby structural induction orp. For
example,

« if @=Kgy, for someBc Ag, then(TA,P,0) = @ iff (Ta,p’,0) = ¢ for all p’ € Runs®(TA) such
thatAg(p’[0]) = Ag(P[0]). By the induction hypothesis, this is equivalen{fap’,0) =  for all
p’ € Runs®(I") such thatAg(p’[0]) = Ag(p[0]). The latter is equivalent td", p,0) £ @.

« if @=(B)yrll Y, for someBc Ag, then(T A, P,1) E @ iff there exists a strategy < Z(B, ) such
that for every rurp’ e Runs“’(r) which is compatible witto and satisfiep’[0..i] ~a P[0..i] there
existsj > i such tha(T, 0, ) = and(T,p’,k) = yn forall k=i,..., j—1. Letp” e Runs®(I") be
a run compatible witto such thaip”[0..i] ~a p[0..i]. We have thaﬁW[O..i] ~a P[0..i] ~a P[0..i]
and by [2),0” is compatible witho. Consequently, there exists i such tha(T,p”, j) = ¢ and
(T,p",k) e gy forall k=i,...,j—1. By the induction hypothesis, we obtain tt{&it p”, j) = g
and(I,p” k) = gy forallk=i,...,j—1 which implies(I', p,i) = ¢. For the other implication we
can proceed in a similar manner.

.

Remark 6 Item [3) from Propositiof]5 gives the state partitioning gedure for knowledge operators:
we may partition the state spaceltf asQ = QXAPuQKAP, where
QUP={(a,5) € Q[ (VseS)(peA () =A(a))} 1)
QP=Q Q%P 2
Example 7 The arend (ajicepoty COrresponding td” from Figurell is obtained by replacing each state
g with:
* (a.{a}). ifa ¢ {a, 02 0s},

¢ (q’{QLQZ,Q?:})’ otherwise.
The state€q, {01,02,03}) with qe {a1,02,03} denote the fact that, from the point of view of Alice
and Bob, g is reachable through the same history as the stgpiep, and G.

4.2 The state labeling constructions

Our next step is to describe how, given an arErend a coalitiond, the stategq,S) € Q of Ta can be
labelled with the ATI formulas which they satisfy in case the considered formhkase one of the

forms (A)Op, (A)prUd p2 and(A)pL WV pe.
The three cases are different. Formulas of the foANO p are the simplest to handle. To do formulas

of the forms{A) p1Uf p2 and (A) p1 WV pe, we build appropriate tree automata.
Case(A)Op: We partition the state spaceiof in QAP andQ~(A1oP where
QWP ={(q,9) €Q|3ceCast.VScQ, VreS Vr'eS, v eC,
if (5) S (r',9) andc’|, = cthenpeA(r')} 3)
’Q\"«A»Op — 6\ Q‘((A»Op (4)
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Case(A)p1U p2:  We build a tree automaton whose states represent histohies are indistinguish-
able toA in a finitary way. A special mechanism is needed for checkihgtiver the objective; U/ p; is
satisfied on all paths of an accepted tree. The main diffididsyin the fact that the objective need not
be observable by coalitiof because neithgw, nor p, are required to belong tBropa. Hence there can
be behaviourp andp’ such thaip’[0..i] ~a p[0..i] and(p,i) satisfiesp; U p, but (p’,i) does not.

Therefore, given some group of stategepresenting some history, we need to keep track of the
subsetR’ of states inR for which the obligationp1 ¢/ p, was not yet satisfied on their history. All the
states iR’ must be labeled witlp;, and we need to find outgoing transitions in the automataretisure
the obligation to haven U/ p, on all paths leavindR. On the other hand, states R\ R are assumed
to have histories in whiclp U/ p, has been “ achieved” in the past, and, therefore, are “fremt fthe
obligation to fulfill p1 po. .

Let (q,S) € Q. Formally, the tree automaton i s) = (Q,Ca, 8,Qo, F) where:

« Q containsL, assumed to signal failure to fulfi; 2/ p, and all the sets of pairdRy, Ry) with:
- RicRcQ,
— Vr1,r2 e Ry, Aa(r1) = Aa(r2), andvri e Ry, pa ¢ A(ri) ApreA(ry),
« The initial stateQy is defined by:
1. if there exists e Sfor which A (s)n {ps1, p2} = @ thenQp = L.
2. otherwise, we deno®[pz] = {qe Q| p2€A(q)} and we puQo = {(S~ Q[p2],9)}.
e 5:0xCap - 29\ & is defined as follows: first, for angp € Ca, 0((L,ca)) ={L}. Then, for each
(R1,R2) e Q~ {1} andca € Ca, two situations may occur:
1. Ifthere existy € Ry, (r,R) e QandceC such tha(ry, Ry) 5 (r,R) €9, c[A =caand{pg,pz2} N
A(r) =2, thend((Ry,Rz),ca) = { L}
2. Otherwise,

5((R1,Rz),ca) = { (0ut(Ry,ca, Z) ~ Q[ p2],0ut(Rp,Ca, Z)) | Z < Propa,out(Ry,Ca, Z) + 2}

That is, each transition frorfR;, R;) labeled withca must embody sets of states representing
all the variants of observations which occur as outcomdseoécttion tuplea from Ry, paired
with the subset of states in which tipei/ p, obligation is not fulfiled.

» The acceptance condition is
F= {RIR< Q with (2,R) € R, for someR¢ Q}.

That is,flq accepts only trees in which each path reaches some nodéniogtdne empty set as
first state label.

Note that, in a paif(R;,Rz) representing an element @, the first componenR; represents the
subset of states d®, whose history has not yet accomplishpgl/ p,. Hence, a tree node with label
(2,R) signals that the obligatiop; U p; is accomplished for all histories endingha

Note also that, whenever the successordafR;) labeledca do not contain a state labeled bywe
have that, for any < Propa and anyse out(Ry,Ca,Z), p1eA(S) or p2 € A(S).

We may then prove the following result:

Proposition 8 For any runp € Runs®(T"4) and position i on the run for whicp[i] =g=(q,S),

(Fa.0,1) F (A)p1td pz if and only if L(Ag) #
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Proof: (=) Suppose thatT a,p,i) = (A)piUd p2. Then, there exists € (A T A) such that for any
p’ € Runs®(T») compatible witha and for whichp’[0..i] ~a p[0..i] we have(T a,p,i) £ p1Ud p2.
Lett:N* -~ QxCa be a tree constructed recursively as follows:
« The root of the tree is(¢) = ((S~ Q[p2],9),¢c) € Qo wherec = a(Aa(p[0])...Aa(p[i])). Note
that, by hypothesis, ¢ Qo.
 Suppose we have build the tree up to leyel 0. Lett(x) = ((R1,Rz),ca) be a node on the
jth level, wherex e supp(t) nN). Consider some order on the s&tt(x)) = 6((Ry,R2),Ca) =
{(RLRY),..., (RS, RY)} for somek > 1. The successors tfx) will be labeled with the elements of
this set, each one in pair with an action symbdCj+— action symbol which is chosen as follows:
Denote(xp)1<p<j the initialized path irt which ends inx. For each k| <k, put

6 = TAAt(D)Ls) .- An(t (%) |5 An(RY) ).

Then, for all 1<1 <k we putt(xl) = ((R,,R,),q).

Suppose thal(]lq) = @. This implies that is not an accepting run id. Consequently, there exists
an infinite pathrr= (% )i=0, Wherex, € N¥, int which does not satisfy any acceptance conditioftinVe
have two cases:

1. mrcontains states different frofw, R), for anyRc Q, it reaches state and then loops in this state
forever, or

2. mrcontains a cycle passing through states which are all diftsrom (@, R) or 1, for anyRc Q.

For the first case, lat be the length of the maximal prefix afcontaining only states different from
1. Lett(x) = ((R,R%),ck), for any 0< k< a. By the definition ot, we have that (Aa(RS) ... Aa(RY)) =
ck, for any O<k < a.

Letp’ = ((qk_l, Re-1) S (O, Rk))k21 be an infinite run iff o such that:
¢ p'[0..i] ~a p[0..i] andq; € RS,
* gk RS andR =R, foralla > k> 1.

« note that, by definition ofr, 5((R?"1,RI1),cd1) = 1. We define(gi,a,Ra) € @ such that
(Gita-1, R‘Z’*l) 5 (Gita,Riza) € d, for somec e C with c|A = cgfl, and{py, P2} NA(Gi+q) = 2.
By definition oft, this run exists and it is compatible with. Also, starting with position, p’ contains
a sequence of states labeled faybut not by p, followed by a state which is not labeled Ipy or p».
Consequently(T A, p’,i) # p1l4 p2 which contradicts the hypothesis.

Similarly, for the second case above, we can construct gfum s compatible witho such that
p'[0..i] ~a p[0..i] and (Fa,p’,i) # < po. Consequently(T a,p",i) # p1U p Which contradicts the hy-
pothesis.

(<) Assume that is a tree accepted by.(q. We will construct inductively a strategy which is

compatible withp[0..i] and satisfies the required conditions for witnessing thatp, i) = (A)p1/ pz.
Suppose that the rymis p = (01 g, q;j)j=1- First, we may defin@ for sequences of elements in

2P1om of length at most: for any A-history of length less than or equalitow e (2°™P)", [w| = j with
1<j<i,we put

o(w) = Cj |A if w= ;\\A(qb) . XA(QTI)
arbitrary  otherwise
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For definingo on sequences of length greater thatet's denote firsivy = A(®) ... Aa(T1). Also,
given a sequence of subsetsRIbpa, z= (Z1-...-Z) € (2°°P)* and a nodex € supp(t), we say thar
labels a path frone to x in tif the A-history along the path frorato x in t is exactlyz, that is,

¥y <x,¥0< j <X, if |yl = j thenAa(t(y)],) = Zj-1.
Then, for allk> 1 we put:

t(x)], if (Z1,...,Z) labels a path frong to xin't

oWsZs1...2¢) =
(WpZs < {arbitrary otherwise

To prove thato is a strategy that witnesses fdra, 9,i) = (A) p1U p2, take some rump’ compatible

— G -
with g and for whichp’[0..i] ~a p[0..i]. We may prove that, if we denote the runas (qg_1 BN qﬁ)jzl,
with o = (1}, Sj) € Q, and we also denot; = Aa(), then:

« there exists a patkxj_;)j»i in t with t(xj-)|, = (RS) andt(xo)|, = (R8,S), for someR{ c Q,
O<k.

e forall j>i+1,¢|,=0(Zo.. . Zj-1) =t(Xj-i-1)],.

This property follows by induction of, and ends the proof of our theorem.

Case (A)p1Wp2: The construction is almost entirely the same as for the pusvicase, the only
difference being the accepting condition. For this casectindition from the until case is relaxed: any
path of an accepting tree may still only have labels of the ffa, R») denoting the fact that all the runs
that are simulated by the path and lead to a membé&y @fre only labeled withp;. But we no longer
require that, on each path, a label of the tygeR) occurs. This is due to the fact thpi W p, does
not incorporate the obligation to reach a point whpgénolds, runs on whichp; holds forever are also
acceptable. .

So, formally, the construction fafA)pi WV p2 is the following: X(q’s) = (Q,Ca,0,Q0,F) where
Q,Qo and 3 are the same as in the construction §@) p; W p,, while the acceptance condition is the
following:

F={R|RcQ}.
The following result can be proved similarly to Propositfén
Proposition 9 For any runp e Runs®(T"4) and position i on the run for whicp[i] =g=(q,S),
(Ta,p,i) £ (A)yp W pz if and only if L(Ag) # @
Example 10 For our running example, the tree automaton constructechftbe arena'mob (given
in Examplé_¥), for the stat@yo, {qo}) and the formulap, = {{Alice,Bob} )< (cAS) is pictured in Figure

[2. Note that it accepts an infinite tree such that all its patbetain the staté@, {di2}) but never reach
1. Moreover, this tree defines a strategy for the coalit{@dice, Bob} to reach the goal ¢ s.
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(i,1)
N )
(tc,ds
ltc)

{do}, {do}

) {01,02,03}, \(i,i
{a1, 02,03} o

Figure 2: A tree automaton for the game arena in Figlre 1

4.3 The model-checking algorithm

Our algorithm for the model-checking problem for A%Iworks by structural induction on the formula
@ to be model-checked. The input of the algorithm is a gameadren(Q,C,d,Qp,Prop,A) and an
enumeratior® = {¢1,..., ¢} of the subformulas o, in which ¢ = ¢ andq is a subformula ofp; only

if i < j. The algorithm determines wheth@rholds at all the initial states df. It works by constructing

a sequence of arenég = (Qk,C,cSk,Qg,Prop(,Ak), k=0,...,n,with 'o=T. The formulag is assumed
to be written in terms of the agents frog and the atomic propositions froRTop= UacagPropa of I'.
The atomic propositions dfy,...,I, include those of andn fresh atomic propositionpy, k=1,...,n,
which represent the labelling of the states of these arepdbebcorresponding formulag. For any
1<k<n, upon stepk the algorithm constructEy from I',_1 and calculates the labelling of its states
with formula ¢. Prop = Propu ®, where®, denotes{py,,...,Pq}, k=0,...,n. The state labelling
function A is defined so that equivaleng®, < ¢ is valid in . Therefore, we define the formula
Xk = @[ @-1/Pg -, [@/Pgp ] Which has at most one connective of the fofi)o, (A)u, (A) W

or Ka. The algorithm computes the states that should be labelga,bysing the formulax which is
equivalent tog. The fresh propositionpy,,..., pg, are not assumed to be observable by any particular

agent. Therefore the requiremef®p = U Propy,x on arenas are not met by, ..., I, but this is of
acAg :
no consequence.

Let us note the need to switch, at each step, from analyizing analyzingly,1. This is needed
as .1 only has the necessary information about the identicdiiseovable histories, needed in the
semantics of coalition operators.

In caseg is atomic,lMk = (Qk-1,C, aK_l,Q('g—l, Propq, Ax) whereAy(q) nPropc1 = A-1(q) andpg, €
Ak(Q) iff @ € Ak-1(q). In casegx is not atomic, the construction ©f depends on the main connective
of xx:

1. Letxy be a boolean combination of atoms fr&ropc_1. Thenlk = (Qk_1,C, 5k,1,Q('§*1, Prop, Ax)
whereAx(q) nProp1 = Ax-1(q) andpg_ € Ac(q) iff the boolean formula\ ), , (q) P implies x«.
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2. Letxk beKApfor somepePropg_1. Consider the arend _ 1)A defined asin Subsectim 1. Then

M= (Qk 1.C, 81, Q52 Propc, A) whereA(a) n Prope_1 = A-1(d) and pg, € A(a) iff qe Q.
Whererf1 is defined in[(1L).

3. Letxy be(A)opfor somepeProp,_1. ConsiderTy_1)a. Then = (Qx_1,C, &1, 352, Prop,, Ax)
whereAy(q) nPropy1 = A_1(q) andpg, € A(q) iff ge G, whereQ{*)P is defined in[(B).

4, Let Xk be (A)p1U pz for someps, pz € Propc_1. ConS|der(I'k 1)A again and, for each state
ge Qx_1, construct the tree automato4hq Then putly = (Qk 1,C, d< 1,(5‘3 ,Propg,Ax) where

(@) NPropk-1 = A-1(0) andpg, € Ak(q) iff L(Aqg) # 2.

5. Finally, Ietxk be (A) pr W p, for somepy, p; € Propc1. Con5|der(rk 1)A again and, for each
statege Qy_1, construct the tree automatomq Then putly = (Qk 1,C, 5k 1,6}3 ,Prop, Ax)

whereAc(gq) nPropc_1 = Ak,l(q) and pg, € Ak(q) iff L(.Aq) .

The following result is a direct consequence of Proposiiong, and .

Theorem 11 Let ', = (Qn,C, &, Qp, Propn, An) be the last game arena obtained in the algorithm de-
scribed above. Then,

Py € An(0), for all states g Qy  iff (I, p,0) = @, for all runs p € Runs®(T").

5 Concluding remarks

We have presented a model-checking technique for2aTa variant of the Alternating Temporal Logic
with Knowledge, in which coalitions may coordinate theitiags, based on their distributed knowledge
of the system state. The technique is based on a state lgladdiorithm which involves tree automata for
identifying states to be labeled with cooperation modalitpformulas, and a state splitting construction
which serves for identifying (finite classes of) historieieh are indistinguishable to some coalition.

According to our semantics, while distributed knowledgesisd for constructing coalition strategies,
itis assumed that the individual agents in the coalitiom gai access to that knowledge as a side effect of
their cooperation. That is why the proposed semantics sporals to coalitions being organised under
virtual supervisorswho guide the implementation of strategies by receivingrepon observations of
the coalitions’ members and, in return, just directing themmbers’ actions without making any other
knowledge available to them.

The possibility of a subsequent increase of individual kieolge as a side effect of the use of dis-
tributed knowledge for coordinated action, which we avoydriroducing virtual supervisors, becomes
relevant only in settings such as that of ATL with incompletiermation. This possibility appears to
be an interaction between the understanding of distriblutemiviedge as established in non-temporal
epistemic logic and temporal settings. This is just one efrtmerous subtle interpretation issues which
were created by the straightforward introduction of mdgkdifrom non-temporal epistemic logic and
cooperation modalities into temporal logics. For an exangblanother such issue, a semantics for ATL
in which agents, once having chosen a strategy for achievicgrtain main goal, cannot revise it upon
considering the reachability of subgoals, was proposedsantied in AGJO7].

The state labeling algorithm suggests that tree automakepartial observations and with partially-
observable objectives might be useful to study. We belibaéthe two state-labeling constructions can
be generalized to such automata, giving us also a decisitimoehéor the “starred” version of AT}EQ.
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