Formal Semantics of a Subset of the Paderborn’s BSPIib

Frdric Gava Jean Fortin
Laboratory of Algorithms, Complexity and Logic (LACL) jean.forti n@ns-1yon.org
University of Paris-East
gava@ni v-pari sl2.fr

Abstract determinism. The Paderborn University BSPLib (PUB [6])
is a C library of BSP communication routines (and also a

PUB (Paderborn University BSPLib) is a C library Web-Java implementation [5]) initially based on the BSPIib
supporting the development of Bulk-Synchronous Parallel standard [16].

(BSP) algorithms. The BSP model allows an estimation The aim of this paper is the Coqg development of a for-
of the execution time, avoids deadlocks and indeterminism.mal operational semantics for both BSP message passing
This paper presents a formal operational semantics for a (BSMP) and remote memory accesses (DRMA) program-
C+PUB subset language using the Coq proof assistant andming styles of a kernel imperative language with PUB prim-
a certified N-body computation as example of using this for- itives. Using this semantics, we certified a classical peral
mal semantics . numerical computation: the N-body problem.

First, we briefly describe the Coq proof assistant (Sec-
tion 2) and the PUB library (Section 3). Then we give our
kernel language in Section 4 and in Section 5 its natural
semantics that has been developed using Cog. In Section 6,
our example of correctness of a BSP programs demonstrates
Solving a problem on a parallel machine is often a com- the ysefulness of this formal semantics. We end with related

plexjob. High-level tools (models, language;) are nec- orks (Section 7), conclusion and future work (Section 8).
essary to simplify both the design of parallel algorithmd an

their programming but also to ensure a better safety of the
generated applications. A classical solution is to prosigle
mantics of a language for proving correctness of programs.]]
A more recent approach is to use a proof assistaugt (The Coq sys_tel‘h [3] is a proof assistant based on
Coq [3]) for the development of the semantics [2] and then & l0gic which is a variant of type theory, following
formally prove the properties of the language and correct- the “propositions-as-types, proofs-as-terms” paradigm,
ness of programis The use of theorem-proving systems en- ncheq_wnh bwlt—m support for inductive and co-indudaiv
sures better safety (trust in the generated softwares)n Eve definitions of predicates and data types. -
if it is longer to formally prove parallel programs than to From auser's perspective, Coq offers a rich specification
code them, the development of certified Dwars] (and Ian_guage to deflne problems and state theorems about them.
tools for this) is a first step to produce less buggy paral- This language includes
lel applications: one could program using certified libeari
and really trust the results of the procedures’ calls (these
libraries are less buggy than normal ones).
BSP is a parallel model which offers a high degree of 2. inductive definitionsia inference rules and axioms;
abstraction, allows an estimation of the execution time on

a wide variety of architectures, avoids deadlocks and non- 3 & pure functional programming language with pattern-
matching and structural recursion.

1. Introduction

2. The Coqg Proof Assistant

1. a constructive logic with all the usual connectives and
guantifiers;

1some examples could be find in the users’ contributions webosi .)) .)
the Coq proof assistant. Proofs are developed interactively using tactics thatbuil
2Dwarfs are high-level abstractions of parallel numericatiods (as incrementally the proof term behind the scene. These tactic
Linear Algebra, FFTgetc), which each capture a pattern of computation
and communication common to a class of important applioatio 4Available atht t p: // coq. i nri a. fr/ with nice introductions to
3We refer to [4, 16] for a gentle introduction to the BSP model. this theorem-proving system.

range from the triviali(nt r o, which adds an abstraction

the machinebsp_nprocs returns the number of processors

to the proof term) to rather complex decision proceduresp and bsp_pid returns the own processor id in the range

(onega for Presburger arithmetic).

For example, let us define in Coq a language of numeri-

cal expressions:= n | e;+es | Z—; and its natural semantics
i.e. abstract evaluation to integers (noted Coq):
Inductive expr: Set :=

num: Z—expr
| plus: expr—expr—expr
| div: expr—expr—expr

Inductive eval_expr: expr — Z — Prop :=
eval.Lnum: V n:Z, eval (num n) n

| eval_plus: V el e2 nl n2,

eval el ni-eval e2 n2-eval (plus el e2) (nl+n2)

| eval.div: V el e2 nl n2, eval el n&

eval e2 n2-n2<>0—eval (div el e2) (nl/n2)

and we noted eval_expr e n)the evaluation of expres-
sione to integem.

3. The Paderborn University BSPIlib
3.1. Generalities

PUB is a C-Library of communication routines to sup-

port development of parallel algorithms based on the BSP
modeP. PUB offers functions for both message passing
(BSMP) and remote memory access (DRMA). Some collec-
tive communication operations like parallel prefix are also
provided, but they are not interesting for our purpose be-

cause they can easily be simulated by BSMP operations.

PUB has also a number of additional features. To be-
come more flexible, PUB allows the creation of independent

0,...,p — 1. To terminate a BSP computation, we use
bsplib_done which cleans up all PUB resources.

3.2. Message Passing and Synchronisation

According to the BSP model all messages are received
during the barrier of synchronisation and cannot be read be-
fore. Barrier is done usingsp_sync which blocks the cur-
rent super-step until all other nodes have caliep_sync
and all messages sent to this node in the current super-step
have been received.

Sending a single message is done using
void bsp_send (int dest, void = buffer, int s) where buffer
is a pointer to a memory address to send to processor id
dest ands size of this block. After calling this function the
buffer can be reused and may be overwritten or freed.

In the next super-step, each processor can ac-
cess the received messages. This can be done us-
ing t_bspmsgx* bsp_findmsg (int proc_id, int index) where
proc.id is the id of the source-node aidlex is the index of
the message (numbered frénto n — 1; if index > n — 1
thenbsp_findmsg returnsNULL). t_bspmsg is the type of
a message in the PUB. To access to the sending message
t_bspmsg, we neechspmsg_data which returns a pointer to
the sending block of data argspmsg_size which returns
its size. Alsobsp_nmsgs returns the number of messages
received in the last super-step.

Note that the messages of the last super-step are available
until the next synchronisation call. At this pointthe memor
used for these messages will be deallocated. So, if you want

BSP objects: virtual BSP computerss (with their migration ;,,se these messages later you have to copy them.

to adapt to changing load on the machines) and subset syn-
chronisation. These extensions are not modelled here be-
cause they are too complex (too architecture dependant) ang'
not portable. We will thus use only one group of processors
which is the BSP computer.

.3. Remote Memory Access

Another way of communication is remote memory

S . access: after every processor has registered a vari-
We do not model in this paper high-performance oper-) .
able for direct access, all processors can read or write

ations (unbuffered communications and oblivious synchro- L .
I the value on other processors. Registering a vari-
nisation) because they are unsafe (we research here safety . ;)
. . . .dble or deleting it from global access is done us-
and need a more complicated semantics [12] which will . . L e
void bsp_push_reg (t_bsp= bsp, void x ident, int size)

L ing:
only be used to prove safe optimisations. _ o .
As in the standard MPI, we first need to initialise our andvoid bsp.pop_reg(tbspx bsp, void « ident) whereident

. o . .~ is the local address of the variable agizk its size (it can
parallel computation which is done using the function . o
e . . be different on each node). The PUB forces that if different
bsplib_init®. Now, we can query some informations about

variables have to be registered then all processors have to
call thebsp_push_reg functions in the same order (same for
bsp_pop_reg). DRMA operations are:

SWe briefly recall that execution of a BSP program is dividetb in
super-steps, each separated by a global synchronisatsumea-step con-
sists of each processor doing some calculations on localatat commu-
nicating some data to other processors; the collectivadvaf synchro-
nisation event guarantee that all communications of date bampleted
before the commencement of the next super-step.

SWe refer to the manuaht t p: / / wwcs. uni - pader bor n. de
/ ~pub/ docunent ati on. ht Ml for C type and more details about
other functions of the PUB.

e void bsp_get (t_bsp= bsp,int srcPID,void «* src,int offset,
void * dest, int nbytes) (global reading access) and

e void bsp_put (t_bspx* bsp,int destPID,void * src,void * dest,
int offset, int nbytes) (global writing access).

bsp_get copiesnbytes bytes from the variablerc (with off- We give the semantics in an human reading format but the
setoffset) on processosrcPID to the local memory address full Coq development can be downloaded at the authors’s
dest. bsp_put copiesnbytes bytes from local memoryrc to Web pages. In the following we will write inductive rules

variabledest (with offsetoffset) on nodedestPID. All get £ and co-inductive onet (infinite but rational deriva-
and put operations are executed during the synchronisanoq
ion trees [14]).

and all get operations are served before a put overwrites a . .
getop P We recall that we do not treat high-performance routines

value. in this semantics because they are non-deterministicfeinsa
and because programs are first written using classical oper-
4. BSP Core Language ations and then optimised (by hand or by the compiler): the
main goal of this semantics is to prove the correctness of
Our core language is the classical IMP with a geatp these programs, not to optimise them.

of expressions (booleans, integers, mateixc) with oper- Our semantics is a set of inference rules. We 8ig/ v
ations on them. SeX of variables is a subset dzp with insertion or substitution i& of a new binding from to v.
two special variablegpid andnprocs. Our languageisas We noteR the received values of the previous super-step
follows (sequential control flow commands): andC communications that need to be done in the current
super-step. Finite evaluations are noednd infinite ones
¢ u= skip Null command are noted}* (this has to be read as “program diverges”).
| xz:=e Assignment
| cier Sequence 5.1. Local Reductions of the Semantics
| if ethenc; else c; endif Conditional
| whilecdocdone lteration We notel}; for local reductions (e.g. one at each proces-
| declarey := ebegincend New variable sor). Local final configurations are notéft,C’, R’, skip)

. . but we also have intermediate results due to synchronisa-

with z,y € X ande € Exzp. Expressions are evaluated . . -
o ip tions, that is when processors finish a super-stgm¢).

to valuesy (subset off'zp) and we write:£;, R; = elv \ye have thus to memorise the next instructions of each

with p the number of processors anthe pid.&; isthe store o asq0r This intermediate local configuration is noted
(memory as a mapping from variables to values) of proces- (£',C", R',SYNC(c)) wherec is the sequence of next in-

sori andR; is the set of received values. We suppose that gy,ctions for the next super-steps. Figures 1 and 2 give

£, Ri E' pid | i and&;, R; = nprocs | p. Evalua- finite and infinite rules of the local control flow. Figure 5
tion of Exp is not total (ex. evaluation df 4 true) but for gives the rules of PUB routines.

simplicity always terminates. Parallel operations are: We note a variable that has been registered for global
access (DRMA)x for the contrary and: when that is not

Syn; garr!etr of synchr(t))rlgsfatloT bal important. Messages (communications) are used g¢th
push(z) egisters a variabie for global access put or send with their natural arguments.

Note that to simplify our semantics and make it readable,
we introduce two minor modifications to the specification
from the PUB’s documentation. First, we do not require
that different variables have to be registered in the same or
der on each procesgor Second, to not have a confusion
between new variables and those that have been registered
before, one could not declare variables that have been cre-
ated befor

put(e, x,y) Distant writing ofz to y of processoe
get(e,z,y) Distant reading fromx toy

|

|

| pop(z) Deletex from global access

|

|

| send(x,e) Sending value of to processoe

In contrast to the PUB, we use basic values instead of ar-
bitrary buffer addressesHtar). FExp is extended with
findmsg(i, e) that finds theeth message of processoof

the previous super-step amansg that returns the arity of

R; (i.e. number of received values).
() 5.2. Global Reductions and Communica-

5. Natural Semantics tions
PUB programs are SPMD ones so a programstarted
A big-step (also call natural) semantics makes it easier , times. We model this aszavector ofc with its environ-
to prove properties and more closely models an actual re-ments of execution that is stofa communicationg’ and
cursive abstract interpreter (proof assistant). Programs - ,
evaluated using inference rules for building finite or irténi To respect the documentation of the PUB, we can count on eaeh p
cessor the registering of variables and compare them atteadhr.

(ratior‘al) trees. An Origina“ty of .thiS paper is that OUF. se 8We can introduce a dynamic change of variables’s name btitsttza
mantics and proofs were done using the Coq proof assistanttedious work.

£,C,RE 1 Uy (€',C", R, SYNC(c))
E,C,REX c15¢0 Ui (E,C', R/, SYNC(c; c2))

£,C, R 1 Uy (1,01, Ry, skip) £1,C1, R ¥ ca by (€2,Ca, R, Flow)
E,C,REF c1;c2 Ui (E2,C2, R2, Flow)

£,C, R ¥ skip |; (£,C, R, skip)

&R\i:’p ellv z€é&
£,C,R P z:= el (E[z/v],C, R, skip)

ERE cltrue £,C,RE ¢ Uy (€,C', R, Flow)
E,C,R \Iip if e then c; else c; endif |; (£/,C’, R/, Flow)

EREF cltalse £,C,R [e Uy (€7,C', R, Flow)
E,C,R \l—:p if e then c; else c; endif |; (£/,C’, R/, Flow)

£,C,R |7v':’p if ethen (c1; while e do ¢; done) else skip endif |; (£/,C’, R’, Flow)
E,C,R |7ip whileedoc; done |}; (£/,C’, R’, Flow)

EREF clvandegs Elz/v],C, R 1 Ui (€7,C, R/, Flow)
E,C, R F—:p declare z := ebeginc; end |; (£/,C’, R/, Flow)

whereFlow = skip or SYNC(c)

Figure 1. Inductive rules for sequential control flow

ECRE e U

£,C, R crses UF°

EC,RE ¢ b (61,C1, Ra,skip) €1,C1, Ra B en §5°

£,CRE cryea U°

ERE eftrue £.CR[E ¢ 45° E R elfalse £,CR [cy §5°

£,¢,R [if e then c; else c; endif |} £,C,R ¥ if ethen c; else ¢ endif 5

E,C,R |7v':’p if e then (¢; while e do c done) else skip endif {;°

E,C,R |i:’p while e do cdone {;°

E, R |i:’p elvandz g €& Elz/v] |i:’p cy*

E,C,R |7v':’p declare z := ebegincend |;°

Figure 2. Co-inductive (infinite) rules of the control flow

received value®. A final configuration isskip on all pro- rules of Figure 4 that is if each processor is in thmc
cessors. We note the full evaluation: case, communications are done (using@henm function
that model exchanges of messages) and the current super-
(€0,Co,Ro 2 coll - 1€p—1,Cp—1, Rp—1 ¥ cp_1) step is finished, then the program continues (and returns a

set of environments) or diverges.
The Comm function specifies the order of the mes-
(€0, Co, R, skipl| -+ 1€, 1,1, Ry, 1, skip) sages during the communications. It modifies the environ-
herel, is for global (el reduct The red ment of each processérsuch thatComm(C;, R},E!) =
wherel}, is for global (parallel) reductions. The reduc- (o7 1 cryi .
tionsy, caﬁ the local (sequential) onds with the two rules (G- Ri, &) Is Tor BSMP as follow:

Ug

defined in Figure 3 that is each processor computes a final /=0
configuration or there is at least one processor that digerge o1 M ;
Communications are modelled with the two inference Ri=U Ut 32 ne v}if {send,i v} €0 C;

Vi &£;,Ci, Ri \i:’p ci 41 (€7,C;, R, skip)

(£0,C0, Ro B coll -+ 1€p—1,Cp1,Rp—1) B cp1) Uy (€], Ch, RY, skipl| -~ €] _1,Cl_y,

R skip)

!
p—1’

Ji &,Ci, R |i:’p ci 47°

(€0,C0,Ro E coll -+ 1€p—1,Cp—1, Rp—1) £ ep_1) 4°

Figure 3. Global rules call local ones

Ry, SYNC(c)) (- [[Comme], CfRY) B el) by (- IIEL, €

i) Y10 IR R

Vi &,Ci,Ri 2 e Ui (ELC!

i) Y10

Gl Co Ry B il) Uy (- lIE), CL RY skip)| -+ +)

R, skip|| --)

Vi £,Ci,Ri 2 i Wl (E],CL R, SYNC(c))) (---lIComm(E], ¢l Ry X clfl--) 45

R R} R} i

(-l Co Ry B el) 4

Figure 4. Communications rules for both finite and finite redu ctions

£,C,R [¥¥ sync |; (£,C,R,SYNC(skip))

if {z—v}e&withe = E[T/v] if {Z+— v}eEwithe = E[z/v]
£,C,R [push(z) I (£/,C, R, skip) £,C,R ¥ pop(z) I (£',C, R, skip)

&R P elpidand{z — v} €€ and{7 — v'} €EwithC’ = C U {put, pid, 7, v} and0<pid<p
£,C,R EF put(e, z,y) I (£,C’, R, skip)

E,R |i:’p el pidand{z — v}e€and{y — v'} €EwithC’ = C U {get, pid, z,y} and0<pid<p
£,C, R get(e,x,y) b1 (£,C', R, skip)

£, R P elpidand{z — v}€EwithC’ = C U {send, pid, v} and0<pid<p
E,C,R \Iip send(z,e) {; (£,C’, R, skip)

5773\1‘:’;’ e1 | pid 5,R|i:’p ealn {pid,n,v}eR and0<pid<p
£, R 2 findmsg(er, e2) $v

n=R|
E£,R ¥ nmsgln

Figure 5. Natural semantics of the PUB'’s routines

that is we suppose that each procegshas sent:; mes- velopment. We notenstr for a list of instructionsnvnmt
sages ta and thus we take theth message (noted,) from for environments (stor€, communication§ and received
this ordering set. DRMA accesses are defined as follows: valuesR).

Local reductions|l; are modelled with the inductive

g{l—5f|:pU1[y/v] pol[?/u’] . {{g — v} egﬂ’. and{get, j, z,y} €C] nat.sem.| as follows:

' €& and{put, i, y’,v'} €C/) .)
=0 =0 ly—vies {put,i, ", v} €C; Inductive nat.sem.l (i:Z): envhmt — instr —

. . . t— ef - P =
That is, first,get accesses with the natural order of pro- ffvﬂg”se X:iek) rop

cessors are done (list of substitutions) and tlipert ac- nat.sem.assign:V x e n env env’,
cesses finish the communications (same natural order). Pro- eval i env e n~update env x n env’

grams that neither evaluate nor diverge according to the — "atseml i env (assign x e) env’ eskip
rules above are said to "go wrong”. (+ case sync;cx)
| nat.sem.sync.c: V env ¢, natsem.l i env
5.3. Coq Development and Lemmas (sequence sync c) env (esync c)

. . . * case ut =
As written above, the semantics was developed using the? nat_sen'iput): Ve pid x y env env’,

Coq proof assistant. We give here some intuitions of this de- eval i env e pid

— updateput env pid x y env’
— nat.sem.l i env (put e x y) env’' eskip
(x case sendx)
| nat.semsend:V e pid x env env’ v,

eval i env e pid—lookup (fst env) x v

— updatesend env v pid env’

— nat_.sem.l i env (send x e) env’ eskip
(x Other casesx)
| .
whereef is Flow i.e. eskip for skip Or esyncfor sync(c).
eval is the evaluation of the expressioﬁ%. updateand
assign are functions for manipulating environments and
lookup for searching a value binding by a variable.

p-vectors are represented as functions frofCoq’s in-
teger) to instructions or environments. The two rules of
global reduction|}, (doing local calculations and commu-
nications) are modelled with the inductivet.sem as fol-
lows:

Inductive nat.sem: Z—envnmt)— (Z—instr)
— (Z—env)—Prop
Global rule when local reductions give skip)
nat.sem.par_skip:Venv instrs env’,
(V pid, (0O<=pid<p)
— (nat.sem.| pid (env pid) (instrs pid)
(env’ pid) eskip))

(*

— nat.sem env instrs env’

(x Communication rule x)
| nat.sempar.comm: Venv instrs env’ envcom env'’,
(V pid, (0O<=pid<p)—
(nat.sem.l pid (env pid) (instrs pid)
(env’ pid) (esync (c pid))))
— commg e’ env.com
— nat.sem envcom c env’’
— nat.sem env intrs env’’

where at processompid there is a local evaluation
nat.sem.|. commg does the global communication. Co-
inductive rules are model in the same manner.

It is easy to prove the following lemmas by (co)-
induction on the derivations of programs:

Lemma 1l |}, is deterministic.
Lemma 2 |}, and|;° are mutually exclusive.

As examples of the co-inductive rules, we have proved us-
ing Coq that these programs diverge:

declare z := 0 begin
declarey := 1 begin
push(z); push(y);

while truedo whilex <> ydo

sync; get(z,y, pid + 1);
done get(y,z, pid — 1);
sync;
done
end end

6. Certified N-body Computation
6.1. The N-body Problem

The classicV-body problem is to calculate the gravita-

tional energy ofNV point masses:
E—_ m; X m;
; ; T — Tj

To compute this sum, V\l/;éjshow a classical parallel algorithm
using a systolic loop. At the beginning, each processor con-
tains a sub-part as a list of th€ point masses in its own
memory. Initially, each processor calculates the intéoast
among its point masses. Then it sends a copy of its particles
to its right-hand neighbour, while at the same time receiv-
ing the particles from its left-hand neighbour. It calcekat
the interactions between its own particles and those tisat ju
came in, and then it sends a copy of its particles to its right-
right-hand neighbouetc. After p — 1 super-steps, all pairs
of particles have been treated and a parallel folding ofethes
values can be done to finish the computation.

6.2. Certified Method

Figure 6 gives the BSP code in our core language of the
direct prefixes computation (each processor sends its value
to all of its right-hand neighbours and computes the final
result with its received values) and the above method. We
suppose a functiopair_energy that computes the local in-
teractions. This pure sequential function can be easily pro
grammed in IMP and is thus not important for the purpose
of this paper which is to formalise BSP communications in
the Coq proof assistant.

For the parallel prefixes, we suppose that each proces-
sor binds a value in variableand for the n-body that each
processor binds a list of particlessimy_particles.

To certify this method using our semantics, we need
to give the abstract intermediate environments, partial
sums of ther and partial applications gfair_energy. We
also need to prove that our systolic loop just apphi¢isnes
the pair_energy function on received data and then prove
that this computes the intended result.

Hundreds of applications of Coq’s tactics are needed to
prove that environments are those intended. All this work
makes the proof of this program very tedious compared to
just writing it. But, to our knowledge, no work like ours
have been done before and designing new tactics would cer-
tainly decrease the number of proof lines.

7. Related Works

Simplicity (yet efficiency) of the BSP model allows to
prove properties and correctness of BSP programs. Dif-
ferent approaches for proofs of BSP programs have thus

Parallel direct prefixes: N-body computation:

declarebuf fer := my_particles begin

declarey := pid + 1 declare energy := 0 begin

begin i
while (y < nprocs) do declarey := Ob_egln
push(my_particles);
send(z, y); i
ndtoy) while (y < nprocs — 1) do

dgﬁg yr o energy := energy + pair_energy(buf fer,my_particles);
sync; A
Y= 0; get((y + pid) mod nprocs, buf fer, my_particles);

7 ’ . sync;
while (y < pid) do done;

v == + findmsg(y, 0); energy := energy + pair_energy(buf fer, my_particles);

ng;:' o Code_of prefize_for(energy);
end 7 end
end

Figure 6. Code of the direct folding and of the N-body computa tion

been studied such as BSP functional programming usinghigh-performances features of the PUB [12]. This sec-
Coq [11], the derivation of BSP imperative programs using ond semantics would be used to create a certified software
Hoare's axiom semantics [7, 13, 17], “Refinement calcu- for optimisation (a certified version of [8]): transforming
lus” [15] or global state transformations [18]. buffered operations to unbuffered ones and BSP synchro-
The main drawback of these approaches is that they usenisations to oblivious ones. The semantics would help to
their own languages that are in general not a subset of reaprove the equivalence of classical BSP programs transform-
programming languages. Also they neither used any proofing to high-performance ones.
assistant (except [11]) nor implemented dedicated tools fo The main goal of this work is an environment where pro-
the proofs which is a lack of safety: users make hand proofsgrammers could prove correctness of their BSP programs
so they are just theoretical works. Our work simplifies and at the end automatically get high-performance versions
and extends for BSMP routines and diverging programs thein a certified manner. Adapting it to MPI programs would
BSPLib small-steps semantics of [19]. Also, our Coq de- be a great challenge.
velopment ensures safety and allows us to certify programs

that is formally prove the correctness of programs.
yp prog References

8. Conclusion and Future Work [1] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P.Hus

bands, K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf,

In this paper, we have presented a formal determinis- S. W. Williams, and K. A. Yelick. The Landscape of Par-
tic operational semantics for BSP programs and used it to allel Computing Research: A View from Berkeley. Tech-
prove the correctness of a classical numerical computation nical Report UCB/EECS-2006-183, Electrical Engineering
(the N-body problem which is considered as an important and Computer Sciences, University of California at Berke-
Dwarf [1]) and the divergence of some programs. An orig- ley, 2006.
inality of this paper is that all results were proved using a [2] B. E. Aydemir, A. Bohannon, N. Foster, B. Pierce,
proof assistant (the Coq system) which ensures a better trus D+ Vytiniotis, G. Washburn, S. Weirich, S. Zdancewic,
in the results. M. Fairbairn, and P. S_ewell. The poplmark chal-

The authors know that proving correctness of BSP com- lenge, 2005.ht tp://f1ing-1.seas. upenn. edu/

. | . hi . di K pl cl ub/ cgi - bi n/ popl nark/ .
putat!or_ls _on y using this semanu_cs IS a too tedious work. [3] Y. Berthot and P. Castrarnnteractive Theorem Proving and
But, it is intended to be the basis of better tools for the

e ; Program Development — Coq'Art: The Calculus of Induc-
proof of BSP programs. We are thinking about extending tive ConstructionsSpringer-Verlag, 2004.

the theoretical work of [9] and its C application software 4] R. H. Bisseling. Parallel Scientific Computation. A struc-

[10] which generates lemmas to be proved (using a proof tured approach using BSP and MPIOxford University

assistant) from Hoare’s assertions in C programs that en- Press, 2004.

sure correctness (using a formal semantics). [5] O.Bonorden, J. Gehweiler, and F. M. auf der Heide. A Web
We are also working on a semantics that makes appear Computing Environment for Parallel Algorithms in Java.

Scalable Computing: Practice and Experiendé2):1-14,
2006.

[6] O. Bonorden, B. Juurlink, I. V. Otte, and O. Rieping. The
Paderborn University BSP (PUB) librarfparallel Comput-
ing, 29(2):187-207, 2003.

[7] Y. Chen and W. Sanders. Top-Down Design of Bulk-
Synchronous Parallel Progranfarallel Processing Letters
13(3):389-400, 2003.

[8] A. Danalis, L. Pollock, and M. Swany. Automatic MPI ap-
plication transformation with ASPhALT. IWorkshop on
Performance Optimization for High-Level Languages and
Libraries (POHLL 2007), in conjunction with IPDR3007.

[9] J.-C. Filliatre. Verification of Non-Functional Pragms us-
ing Interpretations in Type TheoryJournal of Functional
Programming 13(4):709-745, 2003.

[10] J.-C. Filliatre and C. Marché. Multi-Prover Verifitan of C
Programs. IrSixth International Conference on Formal En-
gineering Methods (ICFEM)yolume 3308 oL.NCS pages
15-29. Springer-Verlag, 2004htt p: //why. I ri . fr/
caduceus/.

[11] F. Gava. Formal Proofs of Functional BSP Prograiat-
allel Processing Lettersl3(3):365-376, 2003.

[12] F. Gava and J. Fortin. Two Formal Operational Semantics
of the Paderborn University BSPIib using the Coq Proof As-
sistant. Technical Report 4, LACL,University of Paris-Est
2008.

[13] H. Jifeng, Q. Miller, and L. Chen. Algebraic Laws for BSP
Programming. In L. Bouge and Y. Robert, editoEsjro-
Par'96, number 1124 in LNCS, pages 359-368. Springer,
1996.

[14] X. Leroy and H. Grall. Coinductive Big-step Operatibna
SemanticsInformation and Computatiqr2008. to appear.

[15] D. B. Skillicorn. Building BSP Progams Using the Refine-
ment Calculus . IrFormal Methods for Parallel Program-
ming and Applications workshop at IPPS/SPDR’'2898.

[16] D. B. Skillicorn, J. M. D. Hill, and W. F. McColl. Questits
and Answers about BSBcientific Programmings(3):249—
274, 1997.

[17] A. Stewart and M. Clint. BSP-style Computation: a Seman
tic Investigation. The Computer Journal44(3):174-185,
2001.

[18] A. Stewart, M. Clint, and J. Gabarr6. Axiomatic Frame-
works for Developing BSP-Style ProgramBarallel Algo-
rithms and Applications14:271-292, 2000.

[19] J. Tesson and F. Loulergue. Formal Semantics for the
DRMA Programming Style Subset of the BSPIib Library.
In J. Weglarz, R. Wyrzykowski, and B. Szymanski, editors,
Seventh International Conference on Parallel Processing
and Applied Mathematics (PPAM 20Q01)NCS. Springer,
2007.

