
Formal Semantics of a Subset of the Paderborn’s BSPlib

Frdric Gava
Laboratory of Algorithms, Complexity and Logic (LACL)

University of Paris-East
gava@univ-paris12.fr

Jean Fortin
jean.fortin@ens-lyon.org

Abstract

PUB (Paderborn University BSPLib) is a C library
supporting the development of Bulk-Synchronous Parallel
(BSP) algorithms. The BSP model allows an estimation
of the execution time, avoids deadlocks and indeterminism.
This paper presents a formal operational semantics for a
C+PUB subset language using the Coq proof assistant and
a certified N-body computation as example of using this for-
mal semantics .

1. Introduction

Solving a problem on a parallel machine is often a com-
plex job. High-level tools (models, languages,etc.) are nec-
essary to simplify both the design of parallel algorithms and
their programming but also to ensure a better safety of the
generated applications. A classical solution is to providese-
mantics of a language for proving correctness of programs.

A more recent approach is to use a proof assistant (e.g.
Coq [3]) for the development of the semantics [2] and then
formally prove the properties of the language and correct-
ness of programs1. The use of theorem-proving systems en-
sures better safety (trust in the generated softwares). Even
if it is longer to formally prove parallel programs than to
code them, the development of certified Dwarfs2 [1] (and
tools for this) is a first step to produce less buggy paral-
lel applications: one could program using certified libraries
and really trust the results of the procedures’ calls (these
libraries are less buggy than normal ones).

BSP3 is a parallel model which offers a high degree of
abstraction, allows an estimation of the execution time on
a wide variety of architectures, avoids deadlocks and non-

1Some examples could be find in the users’ contributions web site of
the Coq proof assistant.

2Dwarfs are high-level abstractions of parallel numerical methods (as
Linear Algebra, FFT,etc.), which each capture a pattern of computation
and communication common to a class of important applications.

3We refer to [4, 16] for a gentle introduction to the BSP model.

determinism. The Paderborn University BSPLib (PUB [6])
is a C library of BSP communication routines (and also a
Web-Java implementation [5]) initially based on the BSPlib
standard [16].

The aim of this paper is the Coq development of a for-
mal operational semantics for both BSP message passing
(BSMP) and remote memory accesses (DRMA) program-
ming styles of a kernel imperative language with PUB prim-
itives. Using this semantics, we certified a classical parallel
numerical computation: the N-body problem.

First, we briefly describe the Coq proof assistant (Sec-
tion 2) and the PUB library (Section 3). Then we give our
kernel language in Section 4 and in Section 5 its natural
semantics that has been developed using Coq. In Section 6,
our example of correctness of a BSP programs demonstrates
the usefulness of this formal semantics. We end with related
works (Section 7), conclusion and future work (Section 8).

2. The Coq Proof Assistant

The Coq system4 [3] is a proof assistant based on
a logic which is a variant of type theory, following
the “propositions-as-types, proofs-as-terms” paradigm,en-
riched with built-in support for inductive and co-inductive
definitions of predicates and data types.

From a user’s perspective, Coq offers a rich specification
language to define problems and state theorems about them.
This language includes

1. a constructive logic with all the usual connectives and
quantifiers;

2. inductive definitionsvia inference rules and axioms;

3. a pure functional programming language with pattern-
matching and structural recursion.

Proofs are developed interactively using tactics that build
incrementally the proof term behind the scene. These tactics

4Available athttp://coq.inria.fr/ with nice introductions to
this theorem-proving system.

range from the trivial (intro, which adds an abstraction
to the proof term) to rather complex decision procedures
(omega for Presburger arithmetic).

For example, let us define in Coq a language of numeri-
cal expressionse := n | e1+e2 |

e1

e2

and its natural semantics
i.e. abstract evaluation to integers (notedZ in Coq):

I nduc t i ve expr : Set :=
num : Z→ expr

| p l u s : expr→ expr→ expr
| d iv : expr→ expr→ expr

I nduc t i ve e v a l e x p r : expr → Z → Prop :=
eval num : ∀ n :Z , e v a l (num n) n

| e v a l p l u s : ∀ e1 e2 n1 n2 ,
e v a l e1 n1→ e v a l e2 n2→ e v a l (p l u s e1 e2) (n1+n2)
| e v a l d i v : ∀ e1 e2 n1 n2 , e v a l e1 n1→
e v a l e2 n2→n2<>0→ e v a l (d i v e1 e2) (n1 / n2)

and we noted(e v a l e x p r e n) the evaluation of expres-
sione to integern.

3. The Paderborn University BSPlib

3.1. Generalities

PUB is a C-Library of communication routines to sup-
port development of parallel algorithms based on the BSP
model5. PUB offers functions for both message passing
(BSMP) and remote memory access (DRMA). Some collec-
tive communication operations like parallel prefix are also
provided, but they are not interesting for our purpose be-
cause they can easily be simulated by BSMP operations.

PUB has also a number of additional features. To be-
come more flexible, PUB allows the creation of independent
BSP objects: virtual BSP computerss (with their migration
to adapt to changing load on the machines) and subset syn-
chronisation. These extensions are not modelled here be-
cause they are too complex (too architecture dependant) and
not portable. We will thus use only one group of processors
which is the BSP computer.

We do not model in this paper high-performance oper-
ations (unbuffered communications and oblivious synchro-
nisation) because they are unsafe (we research here safety)
and need a more complicated semantics [12] which will
only be used to prove safe optimisations.

As in the standard MPI, we first need to initialise our
parallel computation which is done using the function
bsplib init6. Now, we can query some informations about

5We briefly recall that execution of a BSP program is divided into
super-steps, each separated by a global synchronisation; asuper-step con-
sists of each processor doing some calculations on local data and commu-
nicating some data to other processors; the collective barrier of synchro-
nisation event guarantee that all communications of data have completed
before the commencement of the next super-step.

6We refer to the manual,http://wwwcs.uni-paderborn.de
/∼pub/documentation.html for C type and more details about
other functions of the PUB.

the machine:bsp nprocs returns the number of processors
p and bsp pid returns the own processor id in the range
0, . . . , p − 1. To terminate a BSP computation, we use
bsplib done which cleans up all PUB resources.

3.2. Message Passing and Synchronisation

According to the BSP model all messages are received
during the barrier of synchronisation and cannot be read be-
fore. Barrier is done usingbsp sync which blocks the cur-
rent super-step until all other nodes have calledbsp sync
and all messages sent to this node in the current super-step
have been received.

Sending a single message is done using
void bsp send (int dest, void ∗ buffer, int s) where buffer
is a pointer to a memory address to send to processor id
dest ands size of this block. After calling this function the
buffer can be reused and may be overwritten or freed.

In the next super-step, each processor can ac-
cess the received messages. This can be done us-
ing t bspmsg∗ bsp findmsg (int proc id, int index) where
proc id is the id of the source-node andindex is the index of
the message (numbered from0 to n − 1; if index > n − 1
thenbsp findmsg returnsNULL). t bspmsg is the type of
a message in the PUB. To access to the sending message
t bspmsg, we needbspmsg data which returns a pointer to
the sending block of data andbspmsg size which returns
its size. Alsobsp nmsgs returns the number of messages
received in the last super-step.

Note that the messages of the last super-step are available
until the next synchronisation call. At this point the memory
used for these messages will be deallocated. So, if you want
to use these messages later you have to copy them.

3.3. Remote Memory Access

Another way of communication is remote memory
access: after every processor has registered a vari-
able for direct access, all processors can read or write
the value on other processors. Registering a vari-
able or deleting it from global access is done us-
ing: void bsp push reg (t bsp∗ bsp, void ∗ ident, int size)
and void bsp pop reg(t bsp∗ bsp, void ∗ ident) where ident
is the local address of the variable andsize its size (it can
be different on each node). The PUB forces that if different
variables have to be registered then all processors have to
call thebsp push reg functions in the same order (same for
bsp pop reg). DRMA operations are:

• void bsp get (t bsp∗ bsp,int srcPID,void ∗ src,int offset,
void ∗ dest, int nbytes) (global reading access) and

• void bsp put (t bsp∗ bsp,int destPID,void ∗ src,void ∗ dest,
int offset, int nbytes) (global writing access).

bsp get copiesnbytes bytes from the variablesrc (with off-
setoffset) on processorsrcPID to the local memory address
dest. bsp put copiesnbytes bytes from local memorysrc to
variabledest (with offsetoffset) on nodedestPID. All get
and put operations are executed during the synchronisation
and all get operations are served before a put overwrites a
value.

4. BSP Core Language

Our core language is the classical IMP with a setExp
of expressions (booleans, integers, matrix,etc.) with oper-
ations on them. SetX of variables is a subset ofExp with
two special variables:pid andnprocs. Our language is as
follows (sequential control flow commands):

c ::= skip Null command
| x := e Assignment
| c1; c2 Sequence
| if e then c1 else c2 endif Conditional
| while edo cdone Iteration
| declare y := ebegin c end New variable

with x, y ∈ X and e ∈ Exp. Expressions are evaluated
to valuesv (subset ofExp) and we write:Ei,Ri |=

i,p

e⇓ v
with p the number of processors andi the pid.Ei is the store
(memory as a mapping from variables to values) of proces-
sor i andRi is the set of received values. We suppose that
Ei,Ri |=

i,p

pid ⇓ i andEi,Ri |=
i,p

nprocs ⇓ p. Evalua-
tion of Exp is not total (ex. evaluation of1 + true) but for
simplicity always terminates. Parallel operations are:

| sync Barrier of synchronisation
| push(x) Registers a variablex for global access
| pop(x) Deletex from global access
| put(e, x, y) Distant writing ofx to y of processore
| get(e, x, y) Distant reading fromx to y
| send(x, e) Sending value ofx to processore

In contrast to the PUB, we use basic values instead of ar-
bitrary buffer addresses (char ∗). Exp is extended with
findmsg(i, e) that finds theeth message of processori of
the previous super-step andnmsg that returns the arity of
Ri (i.e. number of received values).

5. Natural Semantics

A big-step (also call natural) semantics makes it easier
to prove properties and more closely models an actual re-
cursive abstract interpreter (proof assistant). Programsare
evaluated using inference rules for building finite or infinite
(rational) trees. An originality of this paper is that our se-
mantics and proofs were done using the Coq proof assistant.

We give the semantics in an human reading format but the
full Coq development can be downloaded at the authors’s
web pages. In the following, we will write inductive rules
P
c and co-inductive ones

P

c
(infinite but rational deriva-

tion trees [14]).
We recall that we do not treat high-performance routines

in this semantics because they are non-deterministic, unsafe
and because programs are first written using classical oper-
ations and then optimised (by hand or by the compiler): the
main goal of this semantics is to prove the correctness of
these programs, not to optimise them.

Our semantics is a set of inference rules. We noteE [x/v]
insertion or substitution inE of a new binding fromx to v.
We noteR the received values of the previous super-step
andC communications that need to be done in the current
super-step. Finite evaluations are noted⇓ and infinite ones
are noted⇓∞ (this has to be read as “program diverges”).

5.1. Local Reductions of the Semantics

We note⇓l for local reductions (e.g. one at each proces-
sor). Local final configurations are noted〈E ′, C′,R′, skip〉
but we also have intermediate results due to synchronisa-
tions, that is when processors finish a super-step (sync).
We have thus to memorise the next instructions of each
processor. This intermediate local configuration is noted
〈E ′, C′,R′,SYNC(c)〉 wherec is the sequence of next in-
structions for the next super-steps. Figures 1 and 2 give
finite and infinite rules of the local control flow. Figure 5
gives the rules of PUB routines.

We notex a variable that has been registered for global
access (DRMA),x for the contrary andx when that is not
important. Messages (communications) are used withget,
put or send with their natural arguments.

Note that to simplify our semantics and make it readable,
we introduce two minor modifications to the specification
from the PUB’s documentation. First, we do not require
that different variables have to be registered in the same or-
der on each processor7. Second, to not have a confusion
between new variables and those that have been registered
before, one could not declare variables that have been cre-
ated before8.

5.2. Global Reductions and Communica-
tions

PUB programs are SPMD ones so a programc is started
p times. We model this as ap-vector ofc with its environ-
ments of execution that is storeE , communicationsC and

7To respect the documentation of the PUB, we can count on each pro-
cessor the registering of variables and compare them at eachbarrier.

8We can introduce a dynamic change of variables’s name but that is a
tedious work.

E,C,R |=
i,p

c1 ⇓l 〈E′, C′,R′, SYNC(c)〉

E, C,R |=i,p c1; c2 ⇓l 〈E′, C′,R′, SYNC(c; c2)〉

E, C,R |=
i,p

c1 ⇓l 〈E1, C1,R1, skip〉 E1, C1,R1 |=
i,p

c2 ⇓l 〈E2, C2,R2, Flow〉

E, C,R |=
i,p

c1; c2 ⇓l 〈E2, C2,R2, Flow〉

E, C,R |=i,p
skip ⇓l 〈E, C,R, skip〉

E,R |=
i,p

e⇓v x ∈ E

E, C,R |=i,p x := e ⇓l 〈E[x/v], C,R, skip〉

E,R |=
i,p

e⇓true E, C,R |=
i,p

c1 ⇓l 〈E′, C′,R′, Flow〉

E,C,R |=
i,p

if e then c1 else c2 endif ⇓l 〈E′, C′,R′, Flow〉

E,R |=
i,p

e⇓ false E, C,R |=
i,p

c2 ⇓l 〈E′, C′,R′, Flow〉

E,C,R |=
i,p

if e then c1 else c2 endif ⇓l 〈E′, C′,R′, Flow〉

E, C,R |=
i,p

if e then (c1;while e do c1 done) else skip endif ⇓l 〈E′, C′,R′, Flow〉

E, C,R |=i,p
while e do c1 done ⇓l 〈E′, C′,R′, Flow〉

E,R |=
i,p

e⇓v andx 6∈E E[x/v], C,R |=
i,p

c1 ⇓l 〈E′, C′,R′, Flow〉

E, C,R |=i,p
declare x := e begin c1 end ⇓l 〈E′, C′,R′, Flow〉

whereFlow = skip or SYNC(c)

Figure 1. Inductive rules for sequential control flow

E, C,R, |=
i,p

c1 ⇓∞

l

E, C,R, |=
i,p

c1; c2 ⇓∞

l

E,C,R |=
i,p

c1 ⇓l 〈E1, C1,R1, skip〉 E1, C1,R1 |=
i,p

c2 ⇓∞

l

E, C,R |=
i,p

c1; c2 ⇓∞

l

E,R |=
i,p

e⇓true E, C,R |=
i,p

c1 ⇓∞

l

E, C,R |=
i,p

if e then c1 else c2 endif ⇓∞

l

E,R |=
i,p

e⇓ false E, C,R |=
i,p

c2 ⇓∞

l

E,C,R |=
i,p

if e then c1 else c2 endif ⇓∞

l

E,C,R |=
i,p

if e then (c;while edo c done) else skip endif ⇓∞

l

E, C,R |=
i,p

while e do c done ⇓∞

l

E,R |=
i,p

e⇓v andx 6∈E E[x/v] |=
i,p

c ⇓∞

l

E,C,R |=
i,p

declare x := e begin c end ⇓∞

l

Figure 2. Co-inductive (infinite) rules of the control flow

received valuesR. A final configuration isskip on all pro-
cessors. We note the full evaluation:

〈〈E0, C0,R0 |=
i,p

c0‖ · · · ‖Ep−1, Cp−1,Rp−1 |=
i,p

cp−1〉〉

⇓g

〈〈E′

0
, C′

0
,R′

0
, skip‖ · · · ‖E′

p−1
, C′

p−1
,R′

p−1
, skip〉〉

where⇓g is for global (parallel) reductions. The reduc-
tions⇓g call the local (sequential) ones⇓l with the two rules
defined in Figure 3 that is each processor computes a final
configuration or there is at least one processor that diverges.

Communications are modelled with the two inference

rules of Figure 4 that is if each processor is in thesync

case, communications are done (using theComm function
that model exchanges of messages) and the current super-
step is finished, then the program continues (and returns a
set of environments) or diverges.

The Comm function specifies the order of the mes-
sages during the communications. It modifies the environ-
ment of each processori such thatComm(C′

i,R
′
i, E

′
i) =

(C′′
i ,R′′

i , E ′′
i) is for BSMP as follow:

C′′

i = ∅

R′′

i =
p−1
S

j=0

nj
S

n=0

{j, n +
j

P

a=0

na, v} if {send, i, v} ∈n C′

j

∀i Ei, Ci,Ri |=
i,p

ci ⇓l 〈E′

i, C
′

i,R
′

i, skip〉

〈〈E0, C0,R0 |=i,p c0‖ · · · ‖Ep−1, Cp−1,Rp−1〉〉 |=i,p cp−1〉〉 ⇓g 〈〈E′

0
, C′

0
,R′

0
, skip‖ · · · ‖E′

p−1
, C′

p−1
,R′

p−1
, skip〉〉

∃i Ei, Ci,Ri |=
i,p

ci ⇓∞

l

〈〈E0, C0,R0 |=
i,p

c0‖ · · · ‖Ep−1, Cp−1,Rp−1〉〉 |=
i,p

cp−1〉〉 ⇓∞

g

Figure 3. Global rules call local ones

∀i Ei, Ci,Ri |=
i,p

ci ⇓l 〈E′

i, C
′

i, R
′

i, SYNC(c′i)〉 〈〈· · · ‖Comm(E′

i, C
′

i,R
′

i) |=
i,p

c′i‖ · · ·〉〉 ⇓g 〈〈· · · ‖E′′

i , C′′

i ,R′′

i , skip‖ · · ·〉〉

〈〈· · · ‖Ei, Ci,Ri |=i,p ci‖ · · ·〉〉 ⇓g 〈〈· · · ‖E′′

i
, C′′

i
,R′′

i
, skip‖ · · ·〉〉

∀i Ei, Ci,Ri |=
i,p

ci ⇓l 〈E′

i, C
′

i,R
′

i, SYNC(c′i)〉 〈〈· · · ‖Comm(E′

i, C
′

i,R
′

i) |=
i,p

c′i‖ · · ·〉〉 ⇓∞

g

〈〈· · · ‖Ei, Ci,Ri |=
i,p

ci‖ · · ·〉〉 ⇓∞

g

Figure 4. Communications rules for both finite and finite redu ctions

E,C,R |=i,p
sync ⇓l 〈E,C,R, SYNC(skip)〉

if {x 7→ v}∈E with E′ = E[x/v]

E, C,R |=i,p
push(x) ⇓l 〈E′, C,R, skip〉

if {x 7→ v}∈E with E′ = E[x/v]

E,C,R |=i,p
pop(x) ⇓l 〈E′, C,R, skip〉

E,R |=
i,p

e⇓pid and{x 7→ v}∈E and{y 7→ v′}∈E with C′ = C ∪ {put, pid, y, v} and0≤pid<p

E, C,R |=i,p
put(e, x, y) ⇓l 〈E, C′,R, skip〉

E,R |=
i,p

e⇓pid and{x 7→ v}∈E and{y 7→ v′}∈E with C′ = C ∪ {get, pid, x, y} and0≤pid<p

E,C,R |=
i,p

get(e, x, y) ⇓l 〈E, C′,R, skip〉

E,R |=
i,p

e⇓pid and{x 7→ v}∈E with C′ = C ∪ {send, pid, v} and0≤pid<p

E, C,R |=
i,p

send(x, e) ⇓l 〈E, C′,R, skip〉

E,R |=
i,p

e1 ⇓pid E,R |=
i,p

e2⇓n {pid, n, v}∈R and0≤pid<p

E,R |=i,p
findmsg(e1, e2)⇓v

n = |R|

E,R |=i,p
nmsg⇓n

Figure 5. Natural semantics of the PUB’s routines

that is we suppose that each processorj has sentnj mes-
sages toi and thus we take thenth message (noted∈n) from
this ordering set. DRMA accesses are defined as follows:

E′′

i =E′

i

2

4

p−1
[

j=0

[y/v]

p−1
[

j=0

[y′/v′] if



{y 7→ v}∈E′

j and{get, j, x, y}∈C′

i

{y′ 7→ v}∈E′

i and{put, i, y′, v′}∈C′

j

3

5

That is, first,get accesses with the natural order of pro-
cessors are done (list of substitutions) and thenput ac-
cesses finish the communications (same natural order). Pro-
grams that neither evaluate nor diverge according to the
rules above are said to ”go wrong”.

5.3. Coq Development and Lemmas

As written above, the semantics was developed using the
Coq proof assistant. We give here some intuitions of this de-

velopment. We notei n s t r for a list of instructionsenvnmt

for environments (storeE , communicationsC and received
valuesR).

Local reductions⇓l are modelled with the inductive
n a t s e m l as follows:

I nduc t i ve n a t s e m l (i : Z) : envnmt → i n s t r →
envnmt → e f → Prop :=
(∗ case x :=e∗)

n a t s e m a s s i g n : ∀ x e n env env ’ ,
e v a l i env e n→ upda te env x n env ’
→ n a t s e m l i env (a s s i g n x e) env ’ e s k i p

(∗ case sync ; c ∗)
| n a t s e m s y n c c : ∀ env c , n a t s e m l i env

(sequence sync c) env (esync c)

(∗ case pu t ∗)
| n a t s e m p u t : ∀ e p id x y env env ’ ,

e v a l i env e p id

→ u p d a t e p u t env p id x y env ’
→ n a t s e m l i env (pu t e x y) env ’ e s k i p

(∗ case send∗)
| na t sem send : ∀ e p id x env env ’ v ,

e v a l i env e p id→ lookup (f s t env) x v
→ upda tesend env v p id env ’
→ n a t s e m l i env (send x e) env ’ e s k i p

(∗ Other cases ∗)
| . . .

wheree f is Flow i.e. e s k i p for skip or esyncfor SYNC(c).
e v a l is the evaluation of the expressions|=

i,p

. upda te and
a s s i g n are functions for manipulating environments and
lookup for searching a value binding by a variable.

p-vectors are represented as functions fromZ (Coq’s in-
teger) to instructions or environments. The two rules of
global reduction⇓g (doing local calculations and commu-
nications) are modelled with the inductivenat sem as fol-
lows:

I nduc t i ve nat sem : (Z→envnmt)→ (Z→ i n s t r)
→ (Z→env)→Prop :=

(∗ Globa l r u l e when l o c a l r e d u c t i o n s g i v e s k i p∗)
n a t s e m p a r s k i p :∀env i n s t r s env ’ ,

(∀ pid , (0<=pid<p)
→ (n a t s e m l p id (env p id) (i n s t r s p id)

(env ’ p id) e s k i p))
→ nat sem env i n s t r s env ’

(∗ Communicat ion r u l e ∗)
| nat sem par comm : ∀env i n s t r s env ’ envcom env ’ ’ ,

(∀ pid , (0<=pid<p)→
(n a t s e m l p id (env p id) (i n s t r s p id)

(env ’ p id) (esync (c p id))))
→ comm g e ’ env com
→ nat sem envcom c env ’ ’
→ nat sem env i n t r s env ’ ’

where at processorp id there is a local evaluation
n a t s e m l . comm g does the global communication. Co-
inductive rules are model in the same manner.

It is easy to prove the following lemmas by (co)-
induction on the derivations of programs:

Lemma 1 ⇓g is deterministic.

Lemma 2 ⇓g and⇓∞
g are mutually exclusive.

As examples of the co-inductive rules, we have proved us-
ing Coq that these programs diverge:

while truedo

sync;
done

declarex := 0begin

declare y := 1begin

push(x);push(y);
whilex <> y do

get(x, y,pid + 1);
get(y, x,pid − 1);
sync;

done

endend

6. Certified N-body Computation

6.1. The N-body Problem

The classicN -body problem is to calculate the gravita-
tional energy ofN point masses:

E = −

N∑

i=1
i6=j

N∑

j=1

mi × mj

ri − rj

To compute this sum, we show a classical parallel algorithm
using a systolic loop. At the beginning, each processor con-
tains a sub-part as a list of theN point masses in its own
memory. Initially, each processor calculates the interactions
among its point masses. Then it sends a copy of its particles
to its right-hand neighbour, while at the same time receiv-
ing the particles from its left-hand neighbour. It calculates
the interactions between its own particles and those that just
came in, and then it sends a copy of its particles to its right-
right-hand neighbouretc. After p − 1 super-steps, all pairs
of particles have been treated and a parallel folding of these
values can be done to finish the computation.

6.2. Certified Method

Figure 6 gives the BSP code in our core language of the
direct prefixes computation (each processor sends its value
to all of its right-hand neighbours and computes the final
result with its received values) and the above method. We
suppose a functionpair energy that computes the local in-
teractions. This pure sequential function can be easily pro-
grammed in IMP and is thus not important for the purpose
of this paper which is to formalise BSP communications in
the Coq proof assistant.

For the parallel prefixes, we suppose that each proces-
sor binds a value in variablex and for the n-body that each
processor binds a list of particles inmy particles.

To certify this method using our semantics, we need
to give the abstract intermediate environments,i.e. partial
sums of thex and partial applications ofpair energy. We
also need to prove that our systolic loop just appliesp times
thepair energy function on received data and then prove
that this computes the intended result.

Hundreds of applications of Coq’s tactics are needed to
prove that environments are those intended. All this work
makes the proof of this program very tedious compared to
just writing it. But, to our knowledge, no work like ours
have been done before and designing new tactics would cer-
tainly decrease the number of proof lines.

7. Related Works

Simplicity (yet efficiency) of the BSP model allows to
prove properties and correctness of BSP programs. Dif-
ferent approaches for proofs of BSP programs have thus

Parallel direct prefixes: N-body computation:

declare y := pid + 1
begin

while (y < nprocs)do

send(x, y);
y := y + 1;

done

sync;
y := 0;
while (y < pid)do

x := x + findmsg(y, 0);
y := y + 1

done;
end

declare buffer := my particlesbegin

declare energy := 0begin

declare y := 0begin

push(my particles);
while (y < nprocs − 1)do

energy := energy + pair energy(buffer,my particles);
y := y + 1;
get((y + pid)modnprocs, buffer, my particles);
sync;

done;
energy := energy + pair energy(buffer,my particles);
Code of prefixe for(energy);
end

end

Figure 6. Code of the direct folding and of the N-body computa tion

been studied such as BSP functional programming using
Coq [11], the derivation of BSP imperative programs using
Hoare’s axiom semantics [7, 13, 17], “Refinement calcu-
lus” [15] or global state transformations [18].

The main drawback of these approaches is that they use
their own languages that are in general not a subset of real
programming languages. Also they neither used any proof
assistant (except [11]) nor implemented dedicated tools for
the proofs which is a lack of safety: users make hand proofs
so they are just theoretical works. Our work simplifies
and extends for BSMP routines and diverging programs the
BSPLib small-steps semantics of [19]. Also, our Coq de-
velopment ensures safety and allows us to certify programs
that is formally prove the correctness of programs.

8. Conclusion and Future Work

In this paper, we have presented a formal determinis-
tic operational semantics for BSP programs and used it to
prove the correctness of a classical numerical computation
(the N-body problem which is considered as an important
Dwarf [1]) and the divergence of some programs. An orig-
inality of this paper is that all results were proved using a
proof assistant (the Coq system) which ensures a better trust
in the results.

The authors know that proving correctness of BSP com-
putations only using this semantics is a too tedious work.
But, it is intended to be the basis of better tools for the
proof of BSP programs. We are thinking about extending
the theoretical work of [9] and its C application software
[10] which generates lemmas to be proved (using a proof
assistant) from Hoare’s assertions in C programs that en-
sure correctness (using a formal semantics).

We are also working on a semantics that makes appear

high-performances features of the PUB [12]. This sec-
ond semantics would be used to create a certified software
for optimisation (a certified version of [8]): transforming
buffered operations to unbuffered ones and BSP synchro-
nisations to oblivious ones. The semantics would help to
prove the equivalence of classical BSP programs transform-
ing to high-performance ones.

The main goal of this work is an environment where pro-
grammers could prove correctness of their BSP programs
and at the end automatically get high-performance versions
in a certified manner. Adapting it to MPI programs would
be a great challenge.

References

[1] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Hus-
bands, K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf,
S. W. Williams, and K. A. Yelick. The Landscape of Par-
allel Computing Research: A View from Berkeley. Tech-
nical Report UCB/EECS-2006-183, Electrical Engineering
and Computer Sciences, University of California at Berke-
ley, 2006.

[2] B. E. Aydemir, A. Bohannon, N. Foster, B. Pierce,
D. Vytiniotis, G. Washburn, S. Weirich, S. Zdancewic,
M. Fairbairn, and P. Sewell. The poplmark chal-
lenge, 2005. http://fling-l.seas.upenn.edu/
plclub/ cgi-bin/poplmark/.

[3] Y. Berthot and P. Castran.Interactive Theorem Proving and
Program Development — Coq’Art: The Calculus of Induc-
tive Constructions. Springer-Verlag, 2004.

[4] R. H. Bisseling. Parallel Scientific Computation. A struc-
tured approach using BSP and MPI. Oxford University
Press, 2004.

[5] O. Bonorden, J. Gehweiler, and F. M. auf der Heide. A Web
Computing Environment for Parallel Algorithms in Java.

Scalable Computing: Practice and Experience, 7(2):1–14,
2006.

[6] O. Bonorden, B. Juurlink, I. V. Otte, and O. Rieping. The
Paderborn University BSP (PUB) library.Parallel Comput-
ing, 29(2):187–207, 2003.

[7] Y. Chen and W. Sanders. Top-Down Design of Bulk-
Synchronous Parallel Programs.Parallel Processing Letters,
13(3):389–400, 2003.

[8] A. Danalis, L. Pollock, and M. Swany. Automatic MPI ap-
plication transformation with ASPhALT. InWorkshop on
Performance Optimization for High-Level Languages and
Libraries (POHLL 2007), in conjunction with IPDPS, 2007.

[9] J.-C. Filliâtre. Verification of Non-Functional Programs us-
ing Interpretations in Type Theory.Journal of Functional
Programming, 13(4):709–745, 2003.

[10] J.-C. Filliâtre and C. Marché. Multi-Prover Verification of C
Programs. InSixth International Conference on Formal En-
gineering Methods (ICFEM), volume 3308 ofLNCS, pages
15–29. Springer-Verlag, 2004.http://why.lri.fr/
caduceus/.

[11] F. Gava. Formal Proofs of Functional BSP Programs.Par-
allel Processing Letters, 13(3):365–376, 2003.

[12] F. Gava and J. Fortin. Two Formal Operational Semantics
of the Paderborn University BSPlib using the Coq Proof As-
sistant. Technical Report 4, LACL,University of Paris-Est,
2008.

[13] H. Jifeng, Q. Miller, and L. Chen. Algebraic Laws for BSP
Programming. In L. Bouge and Y. Robert, editors,Euro-
Par’96, number 1124 in LNCS, pages 359–368. Springer,
1996.

[14] X. Leroy and H. Grall. Coinductive Big-step Operational
Semantics.Information and Computation, 2008. to appear.

[15] D. B. Skillicorn. Building BSP Progams Using the Refine-
ment Calculus . InFormal Methods for Parallel Program-
ming and Applications workshop at IPPS/SPDP’98, 1998.

[16] D. B. Skillicorn, J. M. D. Hill, and W. F. McColl. Questions
and Answers about BSP.Scientific Programming, 6(3):249–
274, 1997.

[17] A. Stewart and M. Clint. BSP-style Computation: a Seman-
tic Investigation. The Computer Journal, 44(3):174–185,
2001.

[18] A. Stewart, M. Clint, and J. Gabarró. Axiomatic Frame-
works for Developing BSP-Style Programs.Parallel Algo-
rithms and Applications, 14:271–292, 2000.

[19] J. Tesson and F. Loulergue. Formal Semantics for the
DRMA Programming Style Subset of the BSPlib Library.
In J. Weglarz, R. Wyrzykowski, and B. Szymanski, editors,
Seventh International Conference on Parallel Processing
and Applied Mathematics (PPAM 2007), LNCS. Springer,
2007.

