A Model-theoretic Framework for Conservation Results in Arithmetic

A. Cordón–Franco A. Fernández–Margarit F.F. Lara–Martín

Dpto. Ciencias de la Computación e Inteligencia Artificial UNIVERSIDAD DE SEVILLA

> JAF27, Weak Arithmetics Days Athens, 2008

 General Question: To obtain 'nice' characterizations of the class Th_Γ(T) of the Γ–consequences of an arithmetical theory.

 $T = \Sigma_n$ -induction $\mathbf{I}\Sigma_n$, Σ_n -collection $\mathbf{B}\Sigma_n$

 $\Gamma=$ class of formulas in the arithmetic hierarchy

Equivalently, to find a 'nice' theory $T' \subset T$ satisfying

Τ' is Γ-axiomatizable, and

• T is Γ -conservative over T'.

 General Question: To obtain 'nice' characterizations of the class Th_Γ(T) of the Γ-consequences of an arithmetical theory.

 $T = \Sigma_n$ -induction $\mathbf{I}\Sigma_n$, Σ_n -collection $\mathbf{B}\Sigma_n$

 $\Gamma=$ class of formulas in the arithmetic hierarchy

• Equivalently, to find a 'nice' theory $T' \subset T$ satisfying

- T' is Γ-axiomatizable, and
- T is Γ -conservative over T'.

But, what does it mean to be a 'nice characterization'?

 R. Kaye, Using Herbrand-type Theorems to Separate Strong Fragments, in Oxford Logic Guides 23 (1993):

"... the most interesting fragments of arithmetics are the *natural* fragments (...) which are typically interesting because of their elegant axiomatizations and because of their combinatorial and number-theorteic consequences."

Kaye–Paris–Dimitracopoulos, On Parameter Free Induction Schemas, JSL,53 (1988):

"Theorems 2.1 and 2.2 give natural axiomatizations of the Σ_{n+2} and Σ_{n+1} consequences of $I\Sigma_n$. These axiomatizations are **especially nice** in that they themselves have the form of induction axioms."

But, what does it mean to be a 'nice characterization'?

 R. Kaye, Using Herbrand-type Theorems to Separate Strong Fragments, in Oxford Logic Guides 23 (1993):

"... the most interesting fragments of arithmetics are the *natural* fragments (...) which are typically interesting because of their elegant axiomatizations and because of their combinatorial and number-theorteic consequences."

Kaye–Paris–Dimitracopoulos, On Parameter Free Induction Schemas, JSL,53 (1988):

"Theorems 2.1 and 2.2 give natural axiomatizations of the Σ_{n+2} and Σ_{n+1} consequences of $I\Sigma_n$. These axiomatizations are **especially nice** in that they themselves have the form of induction axioms."

But, what does it mean to be a 'nice characterization'?

 R. Kaye, Using Herbrand-type Theorems to Separate Strong Fragments, in Oxford Logic Guides 23 (1993):

"... the most interesting fragments of arithmetics are the *natural* fragments (...) which are typically interesting because of their elegant axiomatizations and because of their combinatorial and number-theorteic consequences."

Kaye–Paris–Dimitracopoulos, On Parameter Free Induction Schemas, JSL,53 (1988):

"Theorems 2.1 and 2.2 give natural axiomatizations of the Σ_{n+2} and Σ_{n+1} consequences of $I\Sigma_n$. These axiomatizations are **especially nice** in that they themselves have the form of induction axioms."

 $I\Sigma_n$ and $B\Sigma_n$ are given by axiom schemes:

•
$$I\Sigma_n$$
 is P^- together with

 $\forall \bar{v} \left(\varphi(0, \bar{v}) \land \forall x \left(\varphi(x, \bar{v}) \rightarrow \varphi(x+1, \bar{v}) \right) \rightarrow \forall x \varphi(x, \bar{v}) \right)$ where φ runs over Σ_n

► **B** Σ_n is **I** Δ_0 together with $\forall \bar{v} (\forall x \exists y \varphi(x, y, \bar{v}) \rightarrow \forall z \exists u \forall x \leq z \exists y \leq u \varphi(x, y, \bar{v}))$ where φ runs over Σ_n

 \blacktriangleright Parameters \bar{v} are allowed to occur in φ

General Question: To find natural restrictions on an axiom scheme to obtain axiomatizations of its Σ_k/Π_k -consequences.

Axiom Scheme	Γ	Restriction
$\mathbf{I}\Sigma_n, \mathbf{B}\Sigma_n$	Π_{n+1}	Inference rule version
$\mathbf{I}\Sigma_n, \mathbf{B}\Sigma_n$	Σ_{n+2}	Parameter free version
$\mathbf{I}\Sigma_n, \mathbf{B}\Sigma_n$	Σ_{n+1}	

(*): Kaye–Paris–Dimitracopoulos [JSL'88] and Beklemishev–Visser [APAL'05] obtained axiomatizations of the Σ_{n+1} –consequences of I Σ_n

General Question: To find natural restrictions on an axiom scheme to obtain axiomatizations of its Σ_k/Π_k -consequences.

Axiom Scheme	Г	Restriction
$\mathbf{I}\Sigma_n, \mathbf{B}\Sigma_n$	Π_{n+1}	Inference rule version
$\mathbf{I}\Sigma_n, \mathbf{B}\Sigma_n$	Σ_{n+2}	Parameter free version
$\mathbf{I}\Sigma_n, \mathbf{B}\Sigma_n$	Σ_{n+1}	??*

(*): Kaye–Paris–Dimitracopoulos [JSL'88] and Beklemishev–Visser [APAL'05] obtained axiomatizations of the Σ_{n+1} –consequences of I Σ_n

Outline

Part I: We develop a model-theoretic framework for obtaining conservation results, based on an arithmetic version of the notion of an existentially closed model.

This method allows for characterizing the Π_{n+1} and Σ_{n+2} -consequences of each axiom scheme enjoying certain *logical/syntactical* properties.

Part II: We introduce axiom schemes restricted "up to" definable elements and show that this restriction captures the \sum_{n+1} -consequences of $I\sum_n$ and $B\sum_n$.

Outline

Part I: We develop a model-theoretic framework for obtaining conservation results, based on an arithmetic version of the notion of an existentially closed model.

This method allows for characterizing the Π_{n+1} and Σ_{n+2} -consequences of each axiom scheme enjoying certain *logical/syntactical* properties.

Part II: We introduce axiom schemes restricted "up to" definable elements and show that this restriction captures the Σ_{n+1} -consequences of $I\Sigma_n$ and $B\Sigma_n$.

Motivation General Definitions A general conservation result

Part I: Two inspiring works

Beklemishev's work ([APAL'97],[AML'98],[JSL'03])

- To reduce induction/collection schemes to a version of induction/collection rule, typically by cut-elimination.
- ► To derive conservation results for parameter free schemes.

Avigad's work ([APAL'02])

- To use the so-called Herbrand saturated models as a uniform method for proving conservation results.
- Such models do exist for universal theories
- "Skolemization"

A general definition

Fix a first-order language L and a new k-ary predicate symbol P.

- ▶ A *k*-scheme **E** is a sentence of $L \cup \{P\}$ of the form $A \rightarrow B$.
- ► \mathbf{E}_{φ} denotes the *L*-formula obtained by substituting $\varphi(t_1, \ldots, t_k, v)$ for each atomic subformula of **E** of the form $P(t_1, \ldots, t_k)$, where t_i are *L*-terms.

Examples

▶ Induction is a 1-scheme for:

►
$$A \equiv P(0) \land \forall x (P(x) \rightarrow P(x+1))$$

► $B \equiv \forall x P(x)$

• Collection is a 2–scheme for:

$$\blacktriangleright A \equiv \forall x \exists y P(x, y)$$

 $B \equiv \forall z \, \exists u \, \forall x \leq z \, \exists y \leq u \, P(x, y)$

A general definition

Fix a first-order language L and a new k-ary predicate symbol P.

- A *k*-scheme **E** is a sentence of $L \cup \{P\}$ of the form $A \rightarrow B$.
- ► \mathbf{E}_{φ} denotes the *L*-formula obtained by substituting $\varphi(t_1, \ldots, t_k, v)$ for each atomic subformula of **E** of the form $P(t_1, \ldots, t_k)$, where t_i are *L*-terms.

Examples

Induction is a 1–scheme for:

►
$$A \equiv P(0) \land \forall x (P(x) \rightarrow P(x+1))$$

► $B \equiv \forall x P(x)$

- Collection is a 2–scheme for:
 - $A \equiv \forall x \exists y P(x, y)$
 - $B \equiv \forall z \exists u \forall x \leq z \exists y \leq u P(x, y)$

Motivation General Definitions A general conservation result

Theories associated to a k-scheme

Parametric version:

$$\mathsf{E} \mathsf{\Gamma} \equiv \{ \forall v \, (\mathsf{A}_{\varphi}(v) \to \mathsf{B}_{\varphi}(v)) \, : \, \varphi(\bar{x}, v) \in \mathsf{\Gamma} \}$$

Uniform or separated parameter version:

$$\mathsf{UEF} \equiv \{ \forall v \, \mathsf{A}_{\varphi}(v) \to \forall v \, \mathsf{B}_{\varphi}(v) \, : \, \varphi(\bar{x}, v) \in \mathsf{F} \}$$

Parameter free version:

$$\mathbf{E}\Gamma^{-} \equiv \{\mathbf{A}_{\varphi}
ightarrow \mathbf{B}_{\varphi} \, : \, \varphi(\bar{x}) \in \Gamma^{-}\}$$

Inference rule version:

 $T + \Gamma - \mathbf{E}R$ is the closure of T under nested applications of the **E**-rule restricted to Γ -formulas:

$$\mathbf{E} - \mathsf{R}: \quad \frac{\forall v \left(\mathbf{A}_{\varphi}(v) \right)}{\forall v \left(\mathbf{B}_{\varphi}(v) \right)}$$

∃П–closed models

Fix $\Pi \subseteq Form(L)$ containing all atomic formulas, closed under \land , \lor , term substitution and subformulas, and satisfying $\neg \Pi \subseteq \exists \Pi$.

Definition

Let \mathfrak{A} be an *L*-structure. We say that \mathfrak{A} is $\exists \Pi$ -closed for *T* if,

1.
$$\mathfrak{A} \models T$$
, and

2. for each $\mathfrak{B} \models T$, $\mathfrak{A} \prec_{\Pi} \mathfrak{B} \Longrightarrow \mathfrak{A} \prec_{\exists \Pi} \mathfrak{B}$.

 Existentially closed models of arithmetic theories were studied in the early 70's: Hirschfeld–Wheeler('75).

 Applications: Dimitracopoulos('89), Adamowicz–Bigorajska('01), Beckmann('04), Adamowicz–Kołodziejczyk('07)

▶ Used to prove conservativity: Zambella-Visser('96), Avigad('02).

$\exists \Pi$ -closed models

Fix $\Pi \subseteq Form(L)$ containing all atomic formulas, closed under \land , \lor , term substitution and subformulas, and satisfying $\neg \Pi \subseteq \exists \Pi$.

Definition

Let \mathfrak{A} be an *L*-structure. We say that \mathfrak{A} is $\exists \Pi$ -closed for *T* if,

1.
$$\mathfrak{A} \models T$$
, and

- 2. for each $\mathfrak{B} \models T$, $\mathfrak{A} \prec_{\Pi} \mathfrak{B} \Longrightarrow \mathfrak{A} \prec_{\exists \Pi} \mathfrak{B}$.
- Existentially closed models of arithmetic theories were studied in the early 70's: Hirschfeld–Wheeler('75).
- Applications: Dimitracopoulos('89), Adamowicz–Bigorajska('01), Beckmann('04), Adamowicz–Kołodziejczyk('07)
- ▶ Used to prove conservativity: Zambella-Visser('96), Avigad('02).

Motivation General Definitions A general conservation result

$\exists \Pi$ -closed models. Properties

```
Lemma (Existence)
```

Suppose $T \subseteq \forall \exists \Pi$. Each $\mathfrak{A} \models T$ has a Π -elementary extension which is $\exists \Pi$ -closed for T.

Lemma (Niceness)

Suppose \mathfrak{A} is $\exists \Pi$ -closed for T. Then

 $T + D_{\Pi}(\mathfrak{A}) \vdash D_{\forall \neg \Pi}(\mathfrak{A})$

where $D_{\Gamma}(\mathfrak{A})$ denotes the Γ -diagram of \mathfrak{A} .

Motivation General Definitions A general conservation result

Monotonic schemes

 $\mathbf{E} = \mathbf{A} \to \mathbf{B}$ is *T*-monotonic over Π and Γ if, for each $\varphi(\bar{x}, v) \in \Gamma$ and $\theta(\bar{w}) \in \Pi$:

- Syntactical conditions
 - (S1) $\theta(\bar{w}) \rightarrow \varphi(\bar{x}, v) \in \Gamma$
 - (S2) $\mathbf{A}_{\varphi} \in \forall \neg \Pi$
 - (S3) $T + \Gamma \mathbf{E} \mathbf{R}$ is $\forall \exists \Pi \text{axiomatizable}$
- Logical conditions

(L1)
$$T \vdash (\theta \to \mathbf{A}_{\varphi}) \to \mathbf{A}_{\theta \to \varphi}$$

(L2) $T \vdash \mathbf{B}_{\theta \to \varphi} \to (\theta \to \mathbf{B}_{\varphi})$

Remark: Induction and collection are $I\Delta_0$ -monotonic over Π_n, Σ_n .

Motivation General Definitions A general conservation result

Axiom scheme vs Inference rule

Lemma

Suppose **E** is *T*-monotonic over Π and Γ and \mathfrak{A} is $\exists \Pi$ -closed model for *T*. Then

 $\mathfrak{A} \models T + \Gamma - \mathbf{E}R \implies \mathfrak{A} \models \mathbf{E}\Gamma$

Proof: Assume $\mathfrak{A} \models \mathbf{A}_{\varphi}(a)$. By (S2) and "niceness", it follows that

 $T + D_{\Pi}(\mathfrak{A}) \vdash \mathbf{A}_{\varphi}(a)$

There is $\theta(v, w) \in \Pi$ such that $\mathfrak{A} \models \theta(a, b)$ and

 $T \vdash heta(v,w)
ightarrow \mathbf{A}_{arphi}(v)$

By (L1), $T \vdash \mathbf{A}_{\theta \rightarrow \varphi}$ and so, by (S1),(L2)

 $(\mathcal{T} + \Gamma - \mathsf{ER}) dash heta(v,w) o \mathsf{B}_arphi(v)$

Hence, $\mathfrak{A} \models \mathbf{B}_{\varphi}(a)$ since $\mathfrak{A} \models \theta(a, b)$.

Axiom scheme vs Inference rule

Lemma

Suppose **E** is *T*-monotonic over Π and Γ and \mathfrak{A} is $\exists \Pi$ -closed model for *T*. Then

$$\mathfrak{A}\models T+\mathsf{\Gamma}-\mathsf{E}R \implies \mathfrak{A}\models\mathsf{E}\mathsf{\Gamma}$$

Proof: Assume $\mathfrak{A} \models \mathbf{A}_{\varphi}(a)$. By (S2) and "niceness", it follows that

 $T + D_{\Pi}(\mathfrak{A}) \vdash \mathbf{A}_{\varphi}(a)$

There is $\theta(v, w) \in \Pi$ such that $\mathfrak{A} \models \theta(a, b)$ and

$$T \vdash heta(v, w)
ightarrow \mathbf{A}_{arphi}(v)$$

By (L1), $T \vdash \mathbf{A}_{\theta \rightarrow \varphi}$ and so, by (S1),(L2)

$$(T + \Gamma - \mathbf{E} \mathsf{R}) \vdash \theta(v, w) \rightarrow \mathbf{B}_{\varphi}(v)$$

Hence, $\mathfrak{A} \models \mathbf{B}_{\varphi}(a)$ since $\mathfrak{A} \models \theta(a, b)$.

A general conservation result

Theorem

Suppose $T \subseteq \forall \exists \Pi$ and **E** is a *T*-monotonic scheme over Π and Γ .

1. $T + \mathbf{E}\Gamma$ is $\forall \neg \Pi$ -conservative over $T + \Gamma - \mathbf{E}R$.

2. $T + \mathbf{E}\Gamma$ is $\exists \forall \neg \Pi$ -conservative over $T + \mathbf{U}\mathbf{E}\Gamma$.

3. If $T + \mathbf{E}\Gamma^- \subseteq \forall \exists \Pi$ and its extensions are closed under $\Gamma - \mathbf{E}\mathbf{R}$, then $T + \mathbf{E}\Gamma$ is $\exists \forall \neg \Pi$ -conservative over $T + \mathbf{E}\Gamma^-$.

Proof: (1): Assume $\mathfrak{A} \models (T + \Gamma - \mathbb{E}\mathbb{R}) + \neg \varphi$, where $\varphi \in \forall \neg \Pi$. By (S3) and "existence", there is $\mathfrak{A} \prec_{\Pi} \mathfrak{B}$ such that \mathfrak{B} is $\exists \Pi - \mathsf{closed}$ for $T + \Gamma - \mathbb{E}\mathbb{R}$. Hence, $\mathfrak{B} \models T + \mathbb{E}\Gamma + \neg \varphi$.

(2,3): Similar

A general conservation result

Theorem

Suppose $T \subseteq \forall \exists \Pi$ and **E** is a *T*-monotonic scheme over Π and Γ .

1. $T + \mathbf{E}\Gamma$ is $\forall \neg \Pi$ -conservative over $T + \Gamma - \mathbf{E}R$.

2. $T + \mathbf{E}\Gamma$ is $\exists \forall \neg \Pi$ -conservative over $T + \mathbf{U}\mathbf{E}\Gamma$.

3. If $T + \mathbf{E}\Gamma^- \subseteq \forall \exists \Pi$ and its extensions are closed under $\Gamma - \mathbf{E}\mathbf{R}$, then $T + \mathbf{E}\Gamma$ is $\exists \forall \neg \Pi$ -conservative over $T + \mathbf{E}\Gamma^-$.

Proof: (1): Assume $\mathfrak{A} \models (T + \Gamma - \mathbf{ER}) + \neg \varphi$, where $\varphi \in \forall \neg \Pi$. By (S3) and "existence", there is $\mathfrak{A} \prec_{\Pi} \mathfrak{B}$ such that \mathfrak{B} is $\exists \Pi - closed$ for $T + \Gamma - \mathbf{ER}$. Hence, $\mathfrak{B} \models T + \mathbf{E}\Gamma + \neg \varphi$. (2,3): Similar

Motivation General Definitions A general conservation result

Applications (I)

Language: $L = \{0, S, +, \cdot, \leq\}$ $\Pi = \Pi_n, \Gamma = \Sigma_n$ Schemes: Σ_n -induction, Σ_n -collection

- ▶ Induction and collection are $I\Delta_0$ -monotonic over Π_n and Σ_n .
- ▶ If $T \vdash I\Sigma_n^-$, T is closed under Σ_n -induction rule.
- ▶ If $T \vdash \mathbf{B}\Sigma_n^-$, T is closed under Σ_n -collection rule.

Then, $\forall \neg \Pi = \Pi_{n+1}$ and $\exists \forall \neg \Pi = \Sigma_{n+2}$ and so...

Theorem $(n \ge 1)$

1.
$$Th_{\prod_{n+1}}(\mathbf{I}\Sigma_n) \equiv \mathbf{I}\Delta_0 + \Sigma_n - IR.$$

2.
$$Th_{\prod_{n+1}}(\mathbf{B}\Sigma_n) \equiv \mathbf{I}\Delta_0 + \Sigma_n - CR \equiv \mathbf{I}\Sigma_{n-1}.$$

3.
$$Th_{\Sigma_{n+2}}(\mathbf{I}\Sigma_n) \equiv \mathbf{I}\Sigma_n^-$$
.

4. $Th_{\Sigma_{n+2}}(\mathbf{B}\Sigma_n) \equiv \mathbf{B}\Sigma_n^-$.

Motivation General Definitions A general conservation result

Applications (II)

- Language: $L = \{0, S, +, \cdot, \leq\}$ $\Pi = \Pi_n, \Gamma = \Sigma_n$
- Scheme: Δ_n -induction

Theorem $(n \ge 1)$

- 1. $Th_{\Pi_{n+1}}(\mathbf{I}\Delta_n) \equiv \mathbf{I}\Delta_0 + \Delta_n IR \equiv \mathbf{I}\Sigma_{n-1}.$
- 2. $Th_{\Sigma_{n+2}}(\mathbf{I}\Delta_n) \equiv \mathbf{UI}\Delta_n$.
- Beklemishev[JSL'03] proved it for n = 1 and posed as a pending question to extend it to n > 1.
- From Slaman's theorem it immediately follows that

 $UI\Delta_n + exp \iff B\Sigma_n^- + exp$

So, $I\Delta_n^-$ is strictly weaker than $UI\Delta_n$.

Motivation General Definitions A general conservation result

Applications (II)

- Language: $L = \{0, S, +, \cdot, \leq\}$ $\Pi = \Pi_n, \Gamma = \Sigma_n$
- Scheme: Δ_n -induction

Theorem $(n \ge 1)$

1. $Th_{\Pi_{n+1}}(\mathbf{I}\Delta_n) \equiv \mathbf{I}\Delta_0 + \Delta_n - IR \equiv \mathbf{I}\Sigma_{n-1}.$

2.
$$Th_{\Sigma_{n+2}}(\mathbf{I}\Delta_n) \equiv \mathbf{UI}\Delta_n$$

Beklemishev[JSL'03] proved it for n = 1 and posed as a pending question to extend it to n > 1.

From Slaman's theorem it immediately follows that

 $UI\Delta_n + exp \iff B\Sigma_n^- + exp$

So, $I\Delta_n^-$ is strictly weaker than $UI\Delta_n$.

Motivation General Definitions A general conservation result

Applications (II)

- Language: $L = \{0, S, +, \cdot, \leq\}$ $\Pi = \Pi_n, \Gamma = \Sigma_n$
- Scheme: Δ_n -induction

Theorem $(n \ge 1)$

1. $Th_{\Pi_{n+1}}(\mathbf{I}\Delta_n) \equiv \mathbf{I}\Delta_0 + \Delta_n - IR \equiv \mathbf{I}\Sigma_{n-1}.$

2.
$$Th_{\Sigma_{n+2}}(\mathbf{I}\Delta_n) \equiv \mathbf{UI}\Delta_n$$

- Beklemishev[JSL'03] proved it for n = 1 and posed as a pending question to extend it to n > 1.
- From Slaman's theorem it immediately follows that

$$UI\Delta_n + exp \iff B\Sigma_n^- + exp$$

So, $I\Delta_n^-$ is strictly weaker than $UI\Delta_n$.

Applications (III)

L =Buss's Bonded Arithmetic + {MSP, -}, $\Pi = \hat{\Pi}_i^b$, $\Gamma = \hat{\Sigma}_i^b$ Schemes: Σ_i^b -induction T_2^i , Σ_i^b -polyinduction S_2^i .

- ► Both schemes are *LIOpen*-monotonic over $\hat{\Pi}_i^b$ and $\hat{\Sigma}_i^b$.
- ► If $T \vdash T_2^{i,-}$ then T is closed under $\hat{\Sigma}_i^b$ -induction rule.
- ▶ If $T \vdash S_2^{i,-}$ then T is closed under $\hat{\Sigma}_i^b$ -polyinduction rule.

Theorem $(i \ge 1)$

Tⁱ₂ is ∃∀Σ^b_i-conservative over T^{i,-}₂.
 Sⁱ₂ is ∃∀Σ^b_i-conservative over S^{i,-}₂.

• This improves previous $\forall \Sigma_i^b$ -conservativity obtained by Bloch.

Applications (III)

L =Buss's Bonded Arithmetic + {MSP, -}, $\Pi = \hat{\Pi}_i^b$, $\Gamma = \hat{\Sigma}_i^b$ Schemes: Σ_i^b -induction T_2^i , Σ_i^b -polyinduction S_2^i .

- ► Both schemes are *LIOpen*-monotonic over $\hat{\Pi}_{i}^{b}$ and $\hat{\Sigma}_{i}^{b}$.
- ► If $T \vdash T_2^{i,-}$ then T is closed under $\hat{\Sigma}_i^b$ -induction rule.
- ▶ If $T \vdash S_2^{i,-}$ then T is closed under $\hat{\Sigma}_i^b$ -polyinduction rule.

Theorem $(i \ge 1)$

- T₂ⁱ is ∃∀Σ_i^b-conservative over T₂^{i,-}.
 S₂ⁱ is ∃∀Σ_i^b-conservative over S₂^{i,-}.
- This improves previous $\forall \Sigma_i^b$ -conservativity obtained by Bloch.

 $\begin{array}{l} \textbf{Motivation} \\ \textbf{Characterizing the } \Sigma_{n+1} \text{-consequences of } \textbf{B}\Sigma_n \\ \textbf{Characterizing the } \Sigma_{n+1} \text{-consequences of } \textbf{I}\Sigma_n \end{array}$

Part II: Axiom scheme "up to" definable elements

Axiom Scheme	Г	Restriction
$\mathbf{I}\Sigma_n, \mathbf{B}\Sigma_n$	Σ_{n+1}	??

Induction

$$\forall \bar{\boldsymbol{\nu}} \left(\varphi(0,\bar{\boldsymbol{\nu}}) \land \forall x \left(\varphi(x,\bar{\boldsymbol{\nu}}) \rightarrow \varphi(x+1,\bar{\boldsymbol{\nu}}) \right) \rightarrow \forall x \, \varphi(x,\bar{\boldsymbol{\nu}}) \right)$$

Collection

$$\forall \bar{\boldsymbol{v}} (\forall x \exists y \varphi(x, y, \bar{\boldsymbol{v}}) \rightarrow \forall z \exists u \forall x \leq z \exists y \leq u \varphi(x, y, \bar{\boldsymbol{v}}))$$

Definition ("Up to" schemes)

1. $E(\Gamma, A, B)$ denotes the E-scheme up to elements in A restricted to Γ -formulas with parameters in B.

2. $E(\Gamma^-, A)$ denotes the **E**-scheme up to elements in A restricted to *parameter free* Γ -formulas.

 $\begin{array}{l} \mbox{Motivation} \\ \mbox{Characterizing the } \Sigma_{n+1}\mbox{-}\mbox{consequences of } {\rm B}\Sigma_n \\ \mbox{Characterizing the } \Sigma_{n+1}\mbox{-}\mbox{consequences of } {\rm I}\Sigma_n \end{array}$

Part II: Axiom scheme "up to" definable elements

Axiom Scheme	Г	Restriction
$\mathbf{I}\Sigma_n, \mathbf{B}\Sigma_n$	Σ_{n+1}	??

Induction

$$\forall \bar{\boldsymbol{\nu}} \left(\varphi(0, \bar{\boldsymbol{\nu}}) \land \forall x \left(\varphi(x, \bar{\boldsymbol{\nu}}) \rightarrow \varphi(x+1, \bar{\boldsymbol{\nu}}) \right) \rightarrow \forall x \varphi(x, \bar{\boldsymbol{\nu}}) \right)$$

Collection

$$\forall \bar{\boldsymbol{v}} (\forall x \exists y \varphi(x, y, \bar{\boldsymbol{v}}) \rightarrow \forall z \exists u \forall x \leq z \exists y \leq u \varphi(x, y, \bar{\boldsymbol{v}}))$$

Definition ("Up to" schemes)

1. $E(\Gamma, A, B)$ denotes the **E**-scheme up to elements in A restricted to Γ -formulas with parameters in B.

2. $E(\Gamma^-, A)$ denotes the **E**-scheme up to elements in A restricted to *parameter free* Γ -formulas.

 $\begin{array}{l} \mbox{Motivation} \\ \mbox{Characterizing the } \Sigma_{n+1}\mbox{-}\mbox{consequences of } {\rm B}\Sigma_n \\ \mbox{Characterizing the } \Sigma_{n+1}\mbox{-}\mbox{consequences of } {\rm I}\Sigma_n \end{array}$

Definable and minimal elements

► a is Γ -definable in \mathfrak{A} with parameters in $X \subseteq \mathfrak{A}$ if there are $\varphi(x, \overline{v}) \in \Gamma$ and $\overline{b} \in X$ satisfying

$$\mathfrak{A}\models \varphi(a, \overline{b}) \wedge \exists ! x \, \varphi(x, \overline{b})$$

▶ a is Γ -minimal in \mathfrak{A} with parameters in $X \subseteq \mathfrak{A}$ if there are $\varphi(x, \overline{v}) \in \Gamma$ and $\overline{b} \in X$ satisfying

$$\mathfrak{A}\models \mathsf{a}=(\mu \mathsf{x})\,(\varphi(\mathsf{x},\bar{\mathsf{b}}))$$

- ► $\mathcal{K}_n(\mathfrak{A}, X) = \{a \in \mathfrak{A} : a \text{ is } \Sigma_n \text{-definable with parameters in } X\}$
- ▶ $\mathcal{I}_n(\mathfrak{A}, X) = \{ b \in \mathfrak{A} : \exists a \in \mathcal{K}_n(\mathfrak{A}, X) \text{ such that } b \leq a \}$

 $\begin{array}{l} \textbf{Motivation} \\ \textbf{Characterizing the } \Sigma_{n+1} \text{-consequences of } \textbf{B} \Sigma_n \\ \textbf{Characterizing the } \Sigma_{n+1} \text{-consequences of } \textbf{I} \Sigma_n \end{array}$

Expressing " $\forall x \in \mathcal{K}_n$ " in the language of Aritmetic

Suppose $\mathfrak{A} \models I\Sigma_n^-$. For each $a \in \mathcal{K}_n(\mathfrak{A})$ there is $b \prod_{n-1}$ -minimal such that $a = (b)_0$.

 $\begin{array}{l} \textbf{Motivation} \\ \textbf{Characterizing the } \Sigma_{n+1} \text{-consequences of } \textbf{B} \Sigma_n \\ \textbf{Characterizing the } \Sigma_{n+1} \text{-consequences of } \textbf{I} \Sigma_n \end{array}$

Expressing " $\forall x \in \mathcal{K}_n$ " in the language of Aritmetic

Suppose $\mathfrak{A} \models I\Sigma_n^-$. For each $a \in \mathcal{K}_n(\mathfrak{A})$ there is $b \prod_{n-1}$ -minimal such that $a = (b)_0$.

$$\begin{array}{c} ``\forall x \in \mathcal{K}_n \, \Phi(x, \bar{v})" \\ & \uparrow \\ \{\forall z, x \left(\left\{ \begin{array}{c} z = (\mu t) \, (\delta(t)) \\ \wedge & x = (z)_0 \end{array} \right\} \rightarrow \Phi(x, \bar{v}) \right) : \, \delta(t) \in \Pi_{n-1} \} \\ & ``\forall x \in \mathcal{I}_n \, \Phi(x, \bar{v})" \\ & \uparrow \\ \{\forall z, x \left(\left\{ \begin{array}{c} z = (\mu t) \, (\delta(t)) \\ \wedge & x \leq (z)_0 \end{array} \right\} \rightarrow \Phi(x, \bar{v}) \right) : \, \delta(t) \in \Pi_{n-1} \} \end{array} \right. \end{array}$$

Motivation Characterizing the Σ_{n+1} -consequences of $B\Sigma_n$ Characterizing the Σ_{n+1} -consequences of $I\Sigma_n$

A "nice" axiomatization of $Th_{\Sigma_{n+1}}(B\Sigma_n)$

 $\begin{array}{l} \text{Theorem } (n \geq 1) \\ \text{Over } \mathbf{I} \Sigma_{n-1}^{-} \text{ the following theories are equivalent:} \\ 1. \ Th_{\Sigma_{n+1}}(\mathbf{B} \Sigma_n) \end{array}$

2. $B(\Sigma_n^-, \mathcal{K}_n)$

Motivation Characterizing the Σ_{n+1} -consequences of $B\Sigma_n$ Characterizing the Σ_{n+1} -consequences of $I\Sigma_n$

A "nice" axiomatization of $Th_{\Sigma_{n+1}}(B\Sigma_n)$

Theorem $(n \ge 1)$ Over $\mathbf{I}\Sigma_{n-1}^{-}$ the following theories are equivalent: 1. $Th_{\Sigma_{n+1}}(\mathbf{B}\Sigma_n)$ 2. $B(\Sigma_n^{-}, \mathcal{K}_n)$

Proof: $(1 \Longrightarrow 2)$:

$$\begin{array}{c} ``\forall x \in \mathcal{K}_n \, \Phi(x)" \\ & \\ \\ \left\{ \exists z, x \left(\forall t \neg \delta(t) \lor \left(\left\{ \begin{array}{c} z = (\mu t) \left(\delta(t) \right) \\ \land \quad x = (z)_0 \end{array} \right\} \land \, \Phi(x) \right) \right) \, : \, \delta(t) \in \Pi_{n-1} \right\} \end{array}$$

Motivation Characterizing the Σ_{n+1} -consequences of $B\Sigma_n$ Characterizing the Σ_{n+1} -consequences of $I\Sigma_n$

A "nice" axiomatization of $Th_{\Sigma_{n+1}}(B\Sigma_n)$

Theorem $(n \ge 1)$ Over $\mathbf{I}\Sigma_{n-1}^{-}$ the following theories are equivalent: 1. $Th_{\Sigma_{n+1}}(\mathbf{B}\Sigma_n)$ 2. $B(\Sigma_n^{-}, \mathcal{K}_n)$

Proof: (2 \Longrightarrow 1): Assume $\mathfrak{A} \models B(\Sigma_n, \mathcal{K}_n, \mathcal{K}_n)$. Case 1: $\mathcal{I}_n(\mathfrak{A}) = \mathfrak{A}$. Then, $\mathfrak{A} \models \mathbf{B}\Sigma_n^- \vdash Th_{\Sigma_{n+1}}(\mathbf{B}\Sigma_n)$. Case 2: $\mathcal{I}_n(\mathfrak{A}) \neq \mathfrak{A}$. Then

•
$$\mathcal{I}_n(\mathfrak{A}) \models \mathbf{B}\Sigma_n^-$$
 (end-extension properties)

•
$$\mathcal{I}_n(\mathfrak{A}) \models Th_{\prod_{n+1}}(\mathfrak{A})$$
, by $B(\Sigma_n^-, \mathcal{K}_n)$.

So, $\mathfrak{A} \models Th_{\Sigma_{n+1}}(\mathbf{B}\Sigma_n)$

Motivation Characterizing the Σ_{n+1} -consequences of $B\Sigma_n$ Characterizing the Σ_{n+1} -consequences of $I\Sigma_n$

A "nice" axiomatization of $Th_{\Sigma_{n+1}}(B\Sigma_n)$

Corollary $(n \ge 1)$

Let \mathfrak{A} be a model of $I\Sigma_{n-1}$. The following are equivalent:

- 1. $\mathfrak{A} \models Th_{\Sigma_{n+1}}(\mathbf{B}\Sigma_n)$
- 2. $\mathfrak{A} \models B(\Sigma_n^-, \mathcal{K}_n)$
- 3. $\mathfrak{A} \models \mathbf{L}\Delta_n^-$.
- (+exp) Every "locally increasing" Σ_n-definable function in Ω is "globally increasing".

Motivation Characterizing the Σ_{n+1} -consequences of $B\Sigma_n$ Characterizing the Σ_{n+1} -consequences of $I\Sigma_n$

What about $Th_{\Sigma_{n+1}}(\mathbf{I}\Sigma_n)$?

- Goal: To obtain an "up to" restriction on the Σ_n-induction scheme that captures its Σ_{n+1}-consequences.
- Does I(Σ_n⁻, K_n) axiomatize the Th_{Σn+1}(IΣ_n)? NO Because...
 - Over $I\Sigma_{n-1}^-$ it holds that $I(\Sigma_n^-, \mathcal{K}_n) \equiv I\Pi_n^-$.
 - Π_n^- is strictly weaker than $Th_{\Sigma_{n+1}}(I\Sigma_n)$.
- **Question**: How can we extend $I(\Sigma_n^-, \mathcal{K}_n)$ to capture the Σ_{n+1} -consequences of $I\Sigma_n$?

Motivation Characterizing the Σ_{n+1} -consequences of $B\Sigma_n$ Characterizing the Σ_{n+1} -consequences of $I\Sigma_n$

What about $Th_{\Sigma_{n+1}}(\mathbf{I}\Sigma_n)$?

Goal: To obtain an "up to" restriction on the Σ_n-induction scheme that captures its Σ_{n+1}-consequences.

Does I(Σ_n⁻, K_n) axiomatize the Th_{Σn+1}(IΣ_n)? NO Because...

- Over $I\Sigma_{n-1}^-$ it holds that $I(\Sigma_n^-, \mathcal{K}_n) \equiv I\Pi_n^-$.
- Π_n^- is strictly weaker than $Th_{\Sigma_{n+1}}(I\Sigma_n)$.
- **Question**: How can we extend $I(\Sigma_n^-, \mathcal{K}_n)$ to capture the Σ_{n+1} -consequences of $I\Sigma_n$?

Motivation Characterizing the Σ_{n+1} -consequences of $B\Sigma_n$ Characterizing the Σ_{n+1} -consequences of $I\Sigma_n$

What about $Th_{\Sigma_{n+1}}(\mathbf{I}\Sigma_n)$?

- Goal: To obtain an "up to" restriction on the Σ_n-induction scheme that captures its Σ_{n+1}-consequences.
- Does I(Σ_n⁻, K_n) axiomatize the Th_{Σn+1}(IΣ_n)? NO Because...
 - Over $I\Sigma_{n-1}^-$ it holds that $I(\Sigma_n^-, \mathcal{K}_n) \equiv I\Pi_n^-$.
 - Π_n^- is strictly weaker than $Th_{\Sigma_{n+1}}(\mathbf{I}\Sigma_n)$.
- **Question**: How can we extend $I(\Sigma_n^-, \mathcal{K}_n)$ to capture the Σ_{n+1} -consequences of $I\Sigma_n$?

What about $Th_{\Sigma_{n+1}}(\mathbf{I}\Sigma_n)$?

- Goal: To obtain an "up to" restriction on the Σ_n-induction scheme that captures its Σ_{n+1}-consequences.
- Does I(Σ_n⁻, K_n) axiomatize the Th_{Σn+1}(IΣ_n)? NO Because...
 - Over $I\Sigma_{n-1}^-$ it holds that $I(\Sigma_n^-, \mathcal{K}_n) \equiv I\Pi_n^-$.
 - Π_n^- is strictly weaker than $Th_{\Sigma_{n+1}}(\mathbf{I}\Sigma_n)$.
- **Question**: How can we extend $I(\Sigma_n^-, \mathcal{K}_n)$ to capture the Σ_{n+1} -consequences of $I\Sigma_n$?

Motivation Characterizing the Σ_{n+1} -consequences of B Σ_n Characterizing the Σ_{n+1} -consequences of I Σ_n

Iterating Σ_n -definability: \mathcal{H}_n^{∞}

Definition

$$\mathcal{H}_n^0(\mathfrak{A}) = \mathcal{I}_n(\mathfrak{A})$$

$$\mathbf{For each } k, \, \mathcal{H}_n^{k+1}(\mathfrak{A}) = \mathcal{I}_n(\mathfrak{A}, \mathcal{H}_n^k(\mathfrak{A}))$$

$$\mathcal{H}_n^{\infty}(\mathfrak{A}) = \int_{\mathcal{H}} \mathcal{H}_n^k(\mathfrak{A})$$

$$\blacktriangleright \ \mathcal{H}^{\infty}_{n}(\mathfrak{A}) = \bigcup_{k \geq 0} \mathcal{H}^{k}_{n}(\mathfrak{A})$$

Lemma

- 1. If $\mathfrak{A} \models \mathbf{I} \Sigma_{n-1}$ then $\mathcal{H}_n^{\infty}(\mathfrak{A}) \prec_n^{e} \mathfrak{A}$.
- 2. $\mathcal{H}_n^{\infty}(\mathfrak{A})$ is the least initial segment of \mathfrak{A} containing all the Σ_n -definable elements and closed under Σ_n -definability.

Motivation Characterizing the Σ_{n+1} -consequences of B Σ_n Characterizing the Σ_{n+1} -consequences of I Σ_n

Expressing " $\forall x \in \mathcal{H}_n^{\infty}$ " in the language of Aritmetic

Suppose $\mathfrak{A} \models I\Sigma_{n-1}$. For each $a \in \mathcal{K}_n(\mathfrak{A}, X)$ there is $b = \prod_{n-1}$ -minimal (with parameters in X) such that $a = (b)_0$.

where $\delta_0, \ldots, \delta_k$ run over $\prod_{n=1}^{k}$.

Motivation Characterizing the Σ_{n+1} -consequences of B Σ_n Characterizing the Σ_{n+1} -consequences of I Σ_n

A "nice" axiomatization of $Th_{\Sigma_{n+1}}(I\Sigma_n)$

Theorem $(n \ge 1)$ Over $I \sum_{n-1}$ the following theories are equivalent: 1. $Th_{\sum_{n+1}}(I \sum_{n})$

- 2. $I(\Sigma_n^-, \mathcal{H}_n^\infty)$
- 3. $I(\Sigma_n, \mathcal{H}_n^{\infty}, \mathcal{H}_n^{\infty})$

Motivation Characterizing the Σ_{n+1} -consequences of B Σ_n Characterizing the Σ_{n+1} -consequences of I Σ_n

A "nice" axiomatization of $Th_{\Sigma_{n+1}}(I\Sigma_n)$

Theorem $(n \ge 1)$

Over $I\Sigma_{n-1}$ the following theories are equivalent:

- 1. $Th_{\Sigma_{n+1}}(\mathbf{I}\Sigma_n)$
- 2. $I(\Sigma_n^-, \mathcal{H}_n^\infty)$
- 3. $I(\Sigma_n, \mathcal{H}_n^{\infty}, \mathcal{H}_n^{\infty})$

Proof: $(1 \Longrightarrow 2)$: For each k, $\mathcal{H}_n^k(\mathfrak{A})$ is not cofinal in \mathfrak{A} .

 $(2 \rightarrow 3)$: It follows from a general property:

$$\left.\begin{array}{l}\mathfrak{A}\models I(\Sigma_n,\{a\},\{b\})\\2^{\langle b,b\rangle}\leq a\end{array}\right\}\implies\mathfrak{A}\models I(\Sigma_n,(\leq a),(\leq b))$$

Motivation Characterizing the Σ_{n+1} -consequences of B Σ_n Characterizing the Σ_{n+1} -consequences of I Σ_n

A "nice" axiomatization of $Th_{\Sigma_{n+1}}(I\Sigma_n)$

Theorem $(n \ge 1)$

Over $I\Sigma_{n-1}$ the following theories are equivalent:

- 1. $Th_{\Sigma_{n+1}}(\mathbf{I}\Sigma_n)$
- 2. $I(\Sigma_n^-, \mathcal{H}_n^\infty)$
- 3. $I(\Sigma_n, \mathcal{H}_n^{\infty}, \mathcal{H}_n^{\infty})$
- Proof: (3 \Longrightarrow 1): Assume $\mathfrak{A} \models I(\Sigma_n, \mathcal{H}_n^{\infty}, \mathcal{H}_n^{\infty})$. Case 1: $\mathcal{H}_n^{\infty}(\mathfrak{A}) = \mathfrak{A}$. Then, $\mathfrak{A} \models I\Sigma_n$. Case 2: $\mathcal{H}_n^{\infty}(\mathfrak{A}) \neq \mathfrak{A}$. Then
 - ► $\mathcal{H}_n^{\infty}(\mathfrak{A}) \prec_n^e \mathfrak{A}$ proper.

$$\mathcal{H}_{n}^{\infty}(\mathfrak{A}) \models \mathbf{B}\Sigma_{n+1} \vdash \mathbf{I}\Sigma_{n} \text{ (end-extension properties)}$$

So, $\mathfrak{A} \models Th_{\Sigma_{n+1}}(\mathbf{I}\Sigma_{n}).$

Motivation Characterizing the Σ_{n+1} -consequences of B Σ_n Characterizing the Σ_{n+1} -consequences of I Σ_n

Kaye-Paris-Dimitracopoulos' theories [JSL'88] For each $k \ge 1$, $L\Sigma_n^{(k),-}$ denotes

$$\exists x_1, \dots, x_k \varphi(x_1, \dots, x_k) \\ \downarrow \\ \exists x_1, \dots, x_k \begin{cases} x_1 = (\mu t) (\exists x_2, \dots, x_k \varphi(t, x_2, \dots, x_k)) & \land \\ x_2 = (\mu t) (\exists x_3, \dots, x_k \varphi(x_1, t, \dots, x_k)) & \land \\ \vdots \\ x_k = (\mu t) (\varphi(x_1, x_2, \dots, t)) \end{cases} \end{cases}$$

where $\varphi(x_1, \ldots, x_k)$ runs over Σ_n .

• Theorem:
$$Th_{\Sigma_{n+1}}(\mathbf{I}\Sigma_n) \equiv \bigcup_{k \ge 1} \mathbf{L}\Sigma_n^{(k),-}$$

Motivation Characterizing the Σ_{n+1} -consequences of B Σ_n Characterizing the Σ_{n+1} -consequences of I Σ_n

Beklemishev–Visser's theories [APAL'05]

• The Σ_n^- -LIMR is given by:

$$\frac{\exists u \,\forall x > u \,(f(x+1) \leq f(x))}{\exists u \,\forall x > u \,(f(x) = f(u))},$$

where f runs over the $\sum_{n=1}^{\infty}$ -functions provably total in $I\Sigma_{n-1}$.

$$[\mathbf{I}\Sigma_{n-1}, \Sigma_n^- - \mathsf{LIMR}]_0 \equiv \mathbf{I}\Sigma_{n-1} [\mathbf{I}\Sigma_{n-1}, \Sigma_n^- - \mathsf{LIMR}]_{k+1} = [[\mathbf{I}\Sigma_{n-1}, \Sigma_n^- - \mathsf{LIMR}]_k, \Sigma_n^- - \mathsf{LIMR}]$$

► Theorem:
$$Th_{\Sigma_{n+1}}(I\Sigma_n) \equiv \bigcup_{k\geq 1} [I\Sigma_{n-1}, \Sigma_n^- - LIMR]_k$$

Motivation Characterizing the Σ_{n+1} -consequences of B Σ_n Characterizing the Σ_{n+1} -consequences of I Σ_n

The equivalence theorem

Theorem $(k \ge 0)$ Let $\mathfrak{A} \models \mathbf{I}\Sigma_{n-1}$. The following are equivalent: 1. $\mathfrak{A} \models I(\Sigma_n^-, \mathcal{H}_n^k)$ 2. $\mathfrak{A} \models [\mathbf{I}\Sigma_{n-1}, \Sigma_n^- - LIMR]_{k+1}$ 3. $\mathfrak{A} \models \mathbf{L}\Sigma_n^{(k+1),-}$

• We prove a hierarchy theorem for these families: $\mathcal{K}_n(\mathfrak{A}, \mathcal{H}_n^k(\mathfrak{A})) \models I(\Sigma_n^-, \mathcal{H}_n^k) + \neg I(\Sigma_n^-, \mathcal{H}_n^{k+1})$

In [APAL'05] Beklemishev−Visser posed the question of characterizing the theories [IΣ_{n−1}, Σ[−]_n−LIMR]_k for k > 1.

Motivation Characterizing the Σ_{n+1} -consequences of B Σ_n Characterizing the Σ_{n+1} -consequences of I Σ_n

The equivalence theorem

Theorem $(k \ge 0)$ Let $\mathfrak{A} \models \mathbf{I}\Sigma_{n-1}$. The following are equivalent: 1. $\mathfrak{A} \models I(\Sigma_n^-, \mathcal{H}_n^k)$ 2. $\mathfrak{A} \models [\mathbf{I}\Sigma_{n-1}, \Sigma_n^- - LIMR]_{k+1}$ 3. $\mathfrak{A} \models \mathbf{L}\Sigma_n^{(k+1),-}$

► We prove a hierarchy theorem for these families: $\mathcal{K}_n(\mathfrak{A}, \mathcal{H}_n^k(\mathfrak{A})) \models I(\Sigma_n^-, \mathcal{H}_n^k) + \neg I(\Sigma_n^-, \mathcal{H}_n^{k+1})$

In [APAL'05] Beklemishev−Visser posed the question of characterizing the theories [IΣ_{n−1}, Σ[−]_n−LIMR]_k for k > 1.

Motivation Characterizing the Σ_{n+1} -consequences of B Σ_n Characterizing the Σ_{n+1} -consequences of I Σ_n

The equivalence theorem

Theorem $(k \ge 0)$ Let $\mathfrak{A} \models \mathbf{I}\Sigma_{n-1}$. The following are equivalent: 1. $\mathfrak{A} \models I(\Sigma_n^-, \mathcal{H}_n^k)$ 2. $\mathfrak{A} \models [\mathbf{I}\Sigma_{n-1}, \Sigma_n^- - LIMR]_{k+1}$ 3. $\mathfrak{A} \models \mathbf{L}\Sigma_n^{(k+1),-}$

- We prove a hierarchy theorem for these families: $\mathcal{K}_n(\mathfrak{A}, \mathcal{H}_n^k(\mathfrak{A})) \models I(\Sigma_n^-, \mathcal{H}_n^k) + \neg I(\Sigma_n^-, \mathcal{H}_n^{k+1})$
- In [APAL'05] Beklemishev–Visser posed the question of characterizing the theories [IΣ_{n−1}, Σ⁻_n–LIMR]_k for k > 1.

Conclusions

- ► ∃П-closed models provide a simple method to obtain conservation results between theories described by *axiom* schemes and their *inference rule* or *parameter free* versions.
 - It leans upon the syntactical structure of the axiom scheme and no *ad hoc* model-theoretic construction is involved.
 - The notion of a monotonic scheme isolates general syntactical conditions sufficient for the method to become applicable.
 - Most of the "classic" conservation results between fragments of Arithmetic can be derived in this framework.

Conclusions

- ► ∃П-closed models provide a simple method to obtain conservation results between theories described by *axiom schemes* and their *inference rule* or *parameter free* versions.
- Axiom schemes "up to" definable elements are interesting and useful fragments of Arithmetic.
 - They capture the Σ_{n+1}−consequences of Σ_n−induction and Σ_n−collection schemes.
 - They provide nice reformulation of "classic" fragments and suggest new techniques for studying them: to consider inference rule "up to" definable elements.

A promising application: Π_n^- -induction scheme

- $\blacktriangleright \ \Pi_n^- \equiv I(\Sigma_n^-, \mathcal{K}_n)$
- By our general conservation result,

 Π_n^- is Π_{n+1} -conservative over $I\Sigma_{n-1}^- + (\Sigma_n, \mathcal{K}_n)$ -IR.

- "Σ_n-IR up to definable elements" suggests a new point of view to study Th_{Πn+1}(IΠ[−]_n).
- This approach seems to provide new, uniform proofs of...
 - Theorem(KPD): Π_1^- is Π_2 -conservative over $I\Delta_0 + exp$.
 - Theorem(Bek): Π_2^- is $Bool(\Sigma_2)$ -conservative over $I\Sigma_1^-$.

Conclusions

- ► ∃П-closed models provide a simple method to obtain conservation results between theories described by *axiom* schemes and their inference rule or parameter free versions.
- Axiom schemes "up to" definable elements are interesting and useful fragments of Arithmetic.
- Roughly speaking...

"closed models + definability = cut-elimination + reflection" How can we make explicit this apparent relation?