The first-order parts of Weihrauch degrees

Damir D. Dzhafarov
University of Connecticut

May 30, 2019

Joint work with Reed Solomon and Keita Yokoyama.

Classical reverse mathematics

Reverse mathematics

Measures the strengths of (countable versions, or countable representations of) theorems of ordinary mathematics.

Subsystems of second-order arithmetic $\left(Z_{2}\right)$ serve as benchmarks.

Base subsystem. RCA_{0} consists of:

- PA^{-};
- recursive comprehension axiom (Δ_{1}^{0} comprehension);
- Σ_{1}^{0} induction.

Stronger subsystems.

- $W K L_{0}=R C A_{0}+$ Weak König's lemma (WKL);
- $A C A_{0}=R C A_{0}+$ arithmetical comprehension (ACA).

Some principles

Second-order statements.

- Weak König's lemma (WKL) : every infinite tree $T \subseteq 2^{\mathbb{N}}$ has an infinite branch.
- Weak weak König's lemma (WWKL) : every infinite tree $T \subseteq 2^{\mathbb{N}}$ of positive measure has an infinite branch.
- Ramsey's theorem $\left(\mathrm{RT}_{k}^{n}\right)$: every coloring $c:[\omega]^{n} \rightarrow k$ has an infinite homogeneous set.

Kirby-Paris hierarchy

- $B \Gamma$ is the following scheme: for every formula $\phi \in \Gamma$,

$$
(\forall k)[(\forall x<k)(\exists y) \phi(x, y) \rightarrow(\exists j)(\forall x<k)(\exists y<j) \phi(x, y)] .
$$

- $\mid \Sigma_{1}^{0}<\mathrm{B} \Sigma_{2}^{0}<\mathrm{I} \Sigma_{2}^{0}<\mathrm{B} \Sigma_{3}^{0}<\mathrm{I} \Sigma_{3}^{0}<\cdots$.

Reverse mathematics zoo

First-order parts

Defn. Let T be a statement in the language of Z_{2}. The first-order part of T is the set of arithmetical consequences of $R C A_{0}+T$.

Examples.

- The first-order part of $R C A_{0}$ and $W K L_{0}$ is $\Sigma_{1}^{0}-P A$.
- The first-order part of $A C A_{0}$ is PA.

A combinatorial example.
Consider $(\forall k) R T_{k}^{1}$, i.e., the infinitary pigeonhole principle,

$$
(\forall k)(\forall c: \omega \rightarrow k)(\exists H)[H \text { infinite and } c \upharpoonright H \text { constant }] .
$$

Thm (Hirst 1987). $R C A_{0} \vdash R T^{1} \leftrightarrow B \Sigma_{2}^{0}$.

The first-order part(s) of Ramsey's theorem

RT_{k}^{n} : Every $\mathrm{c}:[\mathbb{N}]^{n} \rightarrow k$ has an infinite homogeneous set.
Thm.

- (Jockusch 1972). For all k and all $n \geq 3, \mathrm{RCA}_{0} \vdash \mathrm{RT}_{k}^{n} \leftrightarrow A C A_{0}$.
- (Liu 2011). $\mathrm{RCA}_{0}+\mathrm{RT}_{2}^{2} \nvdash W K L$.

Thm (Hirst 1987). $R C A_{0}+R T_{2}^{2} \vdash \mathrm{~B} \Sigma_{2}^{0}$ and $R C A_{0}+(\forall k) R T_{k}^{2} \vdash \mathrm{~B} \Sigma_{3}^{0}$.
Thm (Cholak, Jockusch, and Slaman 2001). $R C A_{0}+(\forall k) R T_{k}^{2}$ is Π_{1}^{1}-conservative over $I \Sigma_{3}^{0}$.

Thm (Slaman and Yokoyama 2016). $R C A_{0}+R T_{2}^{2}$ is Π_{1}^{1}-conservative over $B \Sigma_{3}^{0}$.
Thm (Chong, Slaman, and Yang 2017). $R C A_{0}+R T_{2}^{2} \nvdash I \Sigma_{2}^{0}$.

Reverse math, the reboot

Instance-solution problems

Typical theorems studied in reverse mathematics have the canonical form

$$
(\forall X)[\phi(X) \rightarrow(\exists Y) \psi(X, Y)]
$$

where ϕ and ψ are arithmetical predicates of reals.
We view this as a problem: given X such that $\phi(X)$, find Y such that $\psi(X, Y)$.
Defn. A problem is a partial multifunction $\mathrm{P}: \subseteq \omega^{\omega} \rightrightarrows \omega^{\omega}$.
The P-instances are the elements of dom(P).
For each $X \in \operatorname{dom}(P)$ the P-solutions to X are the elements of $P(X)$.
Example. In $R T_{2}^{2}$, the instances are the colorings $c:[\omega]^{2} \rightarrow 2$, and the solutions to such a care all the infinite homogeneous sets.

Computable reducibility

Defn (D. 2013). Let P and Q be problems. P is computably reducible to $\mathrm{Q}, \mathrm{P} \leq_{c} \mathrm{Q}$, if:

- every P-instance X computes a Q -instance \widehat{X},
- for every Q -solution \widehat{Y} to \widehat{X}, we have that $X \oplus \widehat{Y}$ computes a P-solution Y to X.

Weihrauch reducibility

Defn (Weihrauch 1990). Let P and Q be problems.
P is Weihrauch reducible to $Q, P \leq_{W} Q$, if there are Turing functionals Φ, Ψ s.t.:

- for every P-instance X, we have that $\Phi(X)$ is a Q-instance, and
- for every Q -solution \widehat{Y} to $\Phi(X)$, we have that $\Psi(X \oplus \widehat{Y})$ is a P-solution Y to X.

Equivalence classes under \leq_{w} form the Weihrauch degrees, denoted \mathcal{W}.

The Weihrauch lattice

Thm (Pauly 2010; Brattka and Gherardi 2011). Under suitable operations of \vee and $\wedge,\left(\mathcal{W}, \leq_{w}, \vee, \wedge\right)$ is a lattice.

Let P_{0} and P_{1} be problems.

- $P_{0} \times P_{1}$ is the problem with domain $\operatorname{dom}\left(P_{0}\right) \times \operatorname{dom}\left(P_{1}\right)$, with the solutions to $\left(X_{0}, X_{1}\right)$ being all pairs $\left(Y_{0}, Y_{1}\right)$ such that Y_{i} is a P_{i}-solution to X_{i}.
- $P_{0}^{2}=P_{0} \times P_{0} ; P_{0}^{n+1}=P_{0}^{n} \times P_{0} ; P_{0}^{*}=\bigcup_{n} P_{0}^{n}$.
- P_{0}^{\prime} is the problem with domain all $f: \omega^{2} \rightarrow \omega$ such that $\lim _{s} f(x, s) \downarrow$ for all x, $X=\lim _{s} f \in \operatorname{dom}(P)$, and the solutions to f are all the P_{0}-solutions to X.
- $\mathrm{P}_{0}^{(2)}=\mathrm{P}_{0}^{\prime \prime} ; \mathrm{P}_{0}^{(n+1)}=\left(\mathrm{P}_{0}^{(n)}\right)^{\prime}$.
- $P_{0} \star P_{1}$ is the composition product of P_{1} followed by P_{0}. Intuitively: "solve P_{1} first, then use your solution to create an instance of problem P_{0}."

A refinement of reverse mathematics

Implications over $R C A_{0}$ between Π_{2}^{1} principles tend to be formalizations computable or Weihrauch (or stronger) reductions.

Example.

- For all n, j, k, we have $R C A_{0} \vdash R T_{k}^{n} \leftrightarrow R T_{j}^{n}$.
- (Patey 2015.) If $j<k$ then $R T_{k}^{n} \not \leq_{c} R T_{j}^{n}$.

Defn. A coloring $c:[\omega]^{2} \rightarrow 2$ is stable if $(\forall x) \lim _{y} c(x, y)$ exists. A set X is limit-homogeneous for c if $(\exists i)(\forall x \in X) \lim _{y} c(x, y)=i$.
SRT_{2}^{2} is the restriction of RT_{2}^{2} to stable colorings.
D_{2}^{2} : Every stable coloring has an infinite limit-homogeneous set.

- (Chong, Lempp, and Yang 2011.) $R C A_{0} \vdash S_{R T}^{2} \leftrightarrow D_{2}^{2}$.
- (D. 2016.) $D_{2}^{2} \leq_{w} S R T_{2}^{2}$ but $S R T_{2}^{2} \not Z_{w} D_{2}^{2}$.

First-order Weihrauch problems

First-order problems

Defn. A problem P is first-order if $\mathrm{P}(X) \subseteq \mathbb{N}$ for all $X \in \operatorname{dom}(P)$.
Denote the collection of first-order problems by $\mathcal{F O}$.

Examples.

- LPO: instances: $0^{n} 1^{\omega} \in 2^{\omega}$ for all $n \geq 0$;
solutions: 0 if $n=0$ and 1 otherwise.
- $\lim _{\mathbb{N}}$: instances: convergent sequences $\left\langle x_{i}: i \in \mathbb{N}\right\rangle \subseteq \mathbb{N}$; solutions: $\lim _{i} x_{i}$.
- $\mathrm{C}_{\mathbb{N}}$: instances: (co-enumerations of) non-empty sets $X \subseteq \mathbb{N}$; solutions: points in X.
- $K_{\mathbb{N}}$: instances: (co-enumerations of) non-empty bounded sets $X \subseteq \mathbb{N}$; solutions: points in X.

Brattka's question

$\mathrm{C}_{\mathbb{N}}$ can be viewed as corresponding to $\mathrm{I} \Sigma_{1}^{0}$, and $\mathrm{K}_{\mathbb{N}}$ as corresponding to $\mathrm{B} \Sigma_{1}^{0}$.
Defn.

- $\max : \subseteq \mathbb{N}^{\mathbb{N}} \rightarrow \mathbb{N}, p \mapsto \max \{p(n): n \in \mathbb{N}\}$.
- $\min : \mathbb{N}^{\mathbb{N}} \rightarrow \mathbb{N}, p \mapsto \min \{p(n): n \in \mathbb{N}\}$.

Prop (Brattka). $\max \equiv_{\mathrm{w}} \mathrm{C}_{\mathbb{N}}$ and $\min \equiv_{\mathrm{w}} \mathrm{K}_{\mathbb{N}}$.
We have the following hierarchy,

$$
K_{\mathbb{N}}<w C_{\mathbb{N}}<w K_{\mathbb{N}}^{\prime}<w C_{\mathbb{N}}^{\prime}<w K_{\mathbb{N}}^{\prime \prime}<w C_{\mathbb{N}}^{\prime \prime}<w \cdots
$$

which can thus be viewed as an analogue of the Kirby-Paris hierarchy.

First-order parts of Weihrauch degrees

Defn. Let P be a problem. The first-order part of P, denoted ${ }^{1} P$, is

$$
\sup _{\leq w}\{R \in \mathcal{F O}: R \leq w P\}
$$

Prop (DSY). ${ }^{1} \mathrm{P}$ exists, for every P .
Proof. Let Q to be the following problem:

- the instances are all pairs (X, Ψ) such that $X \in \operatorname{dom}(P)$ and $\Psi(X, Y)(0) \downarrow$ for all P-solutions Y to X;
- the solutions to (X, Ψ) are all $y \in \mathbb{N}$ such that $\Psi(X, Y)(0) \downarrow=y$ for some P-solution Y to X.

Then $\mathrm{Q} \equiv \mathrm{w}{ }^{1} \mathrm{P}$.

Basic facts

Obs. If $\mathrm{P} \in \mathcal{F} \mathcal{O}$ then ${ }^{1} \mathrm{P} \equiv_{\mathrm{w}} \mathrm{P}$.
Defn. Let P be a problem. Then P is

- computably true if $P \leq_{c}$ Id.
- uniformly computably true if $P \leq_{w}$ Id.

Prop (DSY). If ${ }^{1} P$ is uniformly computably true then ${ }^{1}(P \times Q) \equiv w^{1} Q$.
Prop (DSY). A problem P is computably true iff $\mathrm{P} \leq_{\mathrm{w}} \mathrm{Q}$ for some $\mathrm{Q} \in \mathcal{F} \mathcal{O}$.
Proof. Clearly if $P \leq_{w} Q$ for some $\mathrm{Q} \in \mathcal{F} \mathcal{O}$ then P is computably true.
Conversely, suppose P is computably true. Let Q be the problem whose instances are the same as those of P, and the solutions are all (indices of) Turing functionals Φ such that $\Phi(X)$ is a P-solution to X. Then $Q \in \mathcal{F} \mathcal{O}$ and $P \leq_{w} Q$.

Non-diagonalizable problems

Defn (Hirschfeldt and Jockusch 2016). A problem P is non-diagonalizable if there is a $\{0,1\}$-valued Turing functional Δ such that for every P-instance X and every $\sigma \in \omega^{<\omega}$,

$$
\Delta(X, \sigma)= \begin{cases}1 & \text { if } \sigma \text { is extendible to a } P \text {-solution to } X \\ 0 & \text { otherwise }\end{cases}
$$

Prop (DSY). If P is non-diagonalizable then ${ }^{1} P$ is uniformly computably true.
The converse fails.
TS_{3}^{1} : Every $\mathrm{c}: \omega \rightarrow 3$ omits at least one color on some infinite set.
This is uniformly computable true, but not Weihrauch reducible to any non-diagonalizable problem (Hirschfeldt and Jockusch 2016).

Case studies

ACA

Defn. J: $\mathbb{N}^{\mathbb{N}} \rightarrow \mathbb{N}^{\mathbb{N}}, p \mapsto p^{\prime}$.
Note: the models of $A C A_{0}$ are the subsets of $\mathbb{N}^{\mathbb{N}}$ closed under J.
Defn.

- $\Sigma_{n}^{0}-\operatorname{Tr}$: instances: indices of Σ_{n}^{0} statement of second-order arithmetic; solutions: 1 if the statement is true, 0 otherwise.
- Use : instances: pairs $(X, \Gamma), X \in \mathbb{N}^{\mathbb{N}}, \Gamma$ a Turing functional s.t. $\Gamma(X)(0) \downarrow$; solutions: all $\ell \geq$ use $(\Gamma(X)(0))$.

Prop (DSY). ${ }^{1} \mathrm{~J}^{(n)} \equiv_{\mathrm{W}}\left(\Sigma_{n}^{0}-\mathrm{Tr}\right) \star$ Use $^{(n)}$.
(Recall: \star denotes the compositional product.)
In particular, ${ }^{1}{ }^{(m)} \not{ }^{(m W}{ }^{1} J^{(n)}$ whenever $m>n$.

WKL

Obs. ${ }^{1}$ WKL $\equiv{ }_{W}{ }^{1}$ WWKL.
C_{2} : instances: (co-enumerations of) non-empty $X \subseteq\{0,1\}$; solutions: points in X.

Thm (DSY).

- ${ }^{1} \mathrm{WKL} \equiv \mathrm{W}\left(\mathrm{C}_{2}\right)^{*}$.
- ${ }^{1}$ WKL ${ }^{(n)} \equiv \mathrm{W}\left(\mathrm{C}_{2}^{(n)}\right)^{*} \star \mathrm{Use}^{(n)}$.

Jumps are combinatorially natural:

- The principle COH is (provably in RCA_{0}, and as a Weihrauch equivalence) the jump inversion of WKL'. (More on COH below.)
- The Rainbow Ramsey's theorem for bounded colorings is the jump of DNR, a close relative of WKL (J. Miller, unpublished).

Ramsey's theorem

Obs. $\mathrm{RT}_{2}^{1} \equiv \mathrm{~W}{ }^{1} \mathrm{RT}_{2}^{1}$.
Prop. $\mathrm{RT}_{2}^{1} \equiv \mathrm{w} C_{2}^{\prime}$.
Thm (DSY). ${ }^{1}(\forall k) R T_{k}^{1} \equiv_{w}{ }^{1}\left(R T_{2}^{1 *}\right) \equiv_{w}(\forall k) R T_{k}^{1} \equiv_{w} R T_{2}^{1 *} \equiv_{\mathrm{w}}\left(C_{2}^{\prime}\right)^{*}$.
For higher exponents, we use the observation that $\left(R T_{k}^{1}\right)^{(n-1)} \leq w R T_{k}^{n}$.
Thm (DSY). $\left(C_{2}^{(n)}\right)^{*} \leq w^{1}(\forall k) R T_{k}^{n} \leq w\left(C_{2}^{(n)}\right)^{*} \star U s e^{(n)}$.
Recall $\mathrm{SRT}_{k^{\prime}}^{2}$ the restriction of RT_{k}^{2} to stable colorings.
Thm (DSY). $\left(C_{2}^{\prime \prime}\right)^{*} \leq_{w}{ }^{1}(\forall k) S R T_{k}^{2} \leq w\left(C_{2}^{\prime \prime}\right)^{*} \star$ Use ${ }^{\prime \prime}$.
So our best bounds on the first-order parts of $(\forall k) R T_{k}^{2}$ and $(\forall k) S R T_{k}^{2}$ agree.

Bounded first-order parts

Bounding first-order parts

Defn.
Let $\mathrm{P} \in \mathcal{F} \mathcal{O}$.
${ }^{\text {b }} P$: same instances as P, with the solutions to an instance X being all $n \in \mathbb{N}$ such that there is a P-solution $y \leq n$ to X.

Obs.

Obviously, ${ }^{1} \mathrm{P} \leq_{w}{ }^{\mathrm{b}} \mathrm{P}$ for all problems P .
Conversely, consider $\mathrm{C}_{2} \in \mathcal{F} \mathcal{O}$.

- $\mathrm{C}_{2} \equiv \mathrm{w}^{1} \mathrm{C}_{2}$ is not uniformly computably true.
- ${ }^{b} \mathrm{C}_{2}$ is uniformly computably true.

SRT_{2}^{2} and COH

COH : for every sequence $\left\langle c_{0}, c_{1}, \ldots\right\rangle$ of colorings $c_{i}: \omega \rightarrow 2$ there exists an infinite set X s.t. for all i, X is almost homogeneous for c_{i}.

Thm (Cholak, Jockusch, and Slaman 2001). $R C A_{0} \vdash \mathrm{RT}_{2}^{2} \leftrightarrow \mathrm{SRT}_{2}^{2}+\mathrm{COH}$.
The implication $\mathrm{SRT}_{2}^{2}+\mathrm{COH} \rightarrow \mathrm{RT}_{2}^{2}$ is a formalization of a Weihrauch reduction: $\mathrm{RT}_{2}^{2} \leq \mathrm{w} \mathrm{SRT}_{2}^{2} \star \mathrm{COH}$.

Thm (D., Hirschfeldt, Patey, Pauly 2019). $S_{R} T_{2}^{2} \star C O H \not Z_{W} R T_{2}^{2}$.
As mentioned, our best bounds on the first-order parts of Ramsey's theorem for pairs and the stable Ramsey's theorem agree. But they are not sharp.

Thm (DSY). ${ }^{b}\left((\forall k) S R T_{k}^{2} \star C O H\right) \equiv w^{b}(\forall k) R T_{k}^{2} \equiv{ }_{w}{ }^{b}(\forall k) S R T_{k}^{2}$.

Thanks for your attention!

