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Classical reverse mathematics




Reverse mathematics

Measures the strengths of (countable versions, or countable representations
of) theorems of ordinary mathematics.

Subsystems of second-order arithmetic (Z,) serve as benchmarks.

Base subsystem. RCA; consists of:
e PAT;
e recursive comprehension axiom (A? comprehension);

o Z? induction.

Stronger subsystems.
* WKLy = RCAy + Weak Kénig's lemma (WKL);
e ACAy = RCAg + arithmetical comprehension (ACA).



Some principles

Second-order statements.
o Weak Kénig's lemma (WKL) : every infinite tree T C 2 has an infinite branch.

o Weak weak Konig's lermma (WWKL) : every infinite tree T C 2N of positive
measure has an infinite branch.

e Ramsey's theorem (RT]) : every coloring ¢ : [w]” — k has an infinite
homogeneous set.

Kirby-Paris hierarchy

e B[ is the following scheme: for every formula ¢ € T,

(V)[(Yx < k) (Fy)d(x. y) = (F)(Vx < k)(Fy <)) o(x y)].

¢ IZ?<BYY<IZy<BEI <<,
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First-order parts
Defn. Let T be a statement in the language of Z5.
The first-order part of T is the set of arithmetical consequences of RCAy + T.

Examples.
¢ The first-order part of RCAy and WKLy is Z?-PA.
¢ The first-order part of ACA is PA.

A combinatorial example.

Consider (Vk) RT}, i.e., the infinitary pigeonhole principle,

(Vk) (Ve : w — k)(IH)[H infinite and ¢ [ H constant].

Thm (Hirst 1987). RCAq = RT' «» BXY.



The first-order part(s) of Ramsey’s theorem

RT] : Every ¢ : [N]" — k has an infinite homogeneous set.

Thm.
* (Jockusch 1972). For all kand all n > 3, RCAq = RT} <+ ACA,.
e (Liu 2011). RCAq + RT% ¥ WKL.

Thm (Hirst 1987). RCA + RT3 F BX9 and RCAq + (Vk) RT? - BEY.

Thm (Cholak, Jockusch, and Slaman 2001). RCAq + (Vk) RTﬁ is
M}-conservative over I£9.

Thm (Slaman and Yokoyama 2016). RCA, + RT% is ﬂ]—conservative over BZ%.

Thm (Chong, Slaman, and Yang 2017). RCA, + RT% ¥ IZg.



Reverse math, the reboot




Instance-solution problems

Typical theorems studied in reverse mathematics have the canonical form
(VX)[o(X) = (3P (X, V)],

where ¢ and 1 are arithmetical predicates of reals.

We view this as a problem: given X such that ¢(X), find Y such that (X, Y).

Defn. A problem is a partial multifunction P :C w* = w®.
The P-instances are the elements of dom(P).
For each X € dom(P) the P-solutions to X are the elements of P(X).

Example. In RT2, the instances are the colorings ¢ : [w]? — 2, and the
solutions to such a c are all the infinite homogeneous sets.



Computable reducibility

Defn (D. 2013). Let P and Q be problems.
P is computably reducible to Q, P <. Q, if:

¢ every P-instance X computes a Q-instance X,

e for every Q-solution Yto 3\<, we have that X® /\;computes a P-solution Yto X.

computes

is solved by is solved by
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Weihrauch reducibility

Defn (Weihrauch 1990). Let P and Q be problems.
P is Weihrauch reducible to Q, P <\ Q, if there are Turing functionals ¢, W s.t.:

e for every P-instance X, we have that ®(X) is a Q-instance, and

e for every Q-solution Yto ®(X), we have that W(X @& Y) is a P-solution Y to X.

[0}

®(X)

is solved by is solved by
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V(X®-)

Equivalence classes under <y form the Weihrauch degrees, denoted W.



The Weihrauch lattice

Thm (Pauly 2010; Brattka and Gherardi 2011). Under suitable operations
of Vand A, (W, <w, V, A) is a lattice.
Let Py and Py be problems.

e Py x Pqis the problem with domain dom(Pg) x dom(Pq), with the solutions
to (Xp, Xi) being all pairs (Yo, Y;) such that Y; is a P;-solution to X..

PS = Po X Po; Py =Py x Po; Py = U, PE.

P/, is the problem with domain all f : w? — w such that lim, f(x, s) | for all x,
X = lims f € dom(P), and the solutions to fare all the Pg-solutions to X.

o P =py Rl = (M.

e Py Py is the composition product of Py followed by Pg. Intuitively:
"solve Py first, then use your solution to create an instance of problem Pp.”



A refinement of reverse mathematics

Implications over RCAg between l—lg principles tend to be formalizations
computable or Weihrauch (or stronger) reductions.

Example.

e Forall n,j, k we have RCAg = RT} <> RT}’.

¢ (Patey 2015.) If j < kthen RT] £ RT.

Defn. A coloring ¢ : [w]? — 2is stable if (Vx) lim, c(x, y) exists.
A set Xis limit-homogeneous for cif (3i)(Vx € X) lim, c(x,y) = i.

SRT? is the restriction of RT3 to stable colorings.
D7 : Every stable coloring has an infinite limit-homogeneous set.

* (Chong, Lempp, and Yang 2011.) RCA - SRT3 <+ D2.
* (D. 2016.) D3 <y SRT? but SRT3 % D3.



First-order Weihrauch problems




First-order problems

Defn. A problem P is first-order if P(X) C N for all X € dom(P).

Denote the collection of first-order problems by FO.

Examples.

e PO : instances: 0% € 2% foralln > O;
solutions: 0 if n = 0 and 1 otherwise.

e limpy : instances: convergent sequences (x; : i € N) C N;
solutions: lim; x;.

e Cy @ instances: (co-enumerations of) non-empty sets X C N;
solutions: points in X.

e Ky @ instances: (co-enumerations of) non-empty bounded sets X C N;

solutions: points in X.



Brattka’s question

Cn can be viewed as corresponding to 129, and Ky as corresponding to B9.

Defn.
e max :C NN = N, p— max{p(n) : n € N}.

e min: NN = N, p+ min{p(n) : n € N}.
Prop (Brattka). max =y Cy and min =y Ky.
We have the following hierarchy,
Kn <w Cn <w Ky <w Ciy <w K§§ <w C{ <w -+

which can thus be viewed as an analogue of the Kirby-Paris hierarchy.



First-order parts of Weihrauch degrees

Defn. Let P be a problem. The first-order part of P, denoted P is

sup{R € FO : R <y P}.
<w

Prop (DSY). 'P exists, for every P.

Proof. Let Q to be the following problem:

* the instances are all pairs (X, W) such that X € dom(P) and W(X, Y)(0) |
for all P-solutions Yto X;

* the solutions to (X, V) are all y € N such that W(X, Y)(0) {= y for some
P-solution Yto X.

Then Q =y 'P.



Basic facts

Obs. If P € FO then 'P =y P.

Defn. Let P be a problem. Then P is
e computably true if P <. Id.

e uniformly computably true if P <y Id.
Prop (DSY). If TP is uniformly computably true then '(P x Q) =y 'Q.
Prop (DSY). A problem P is computably true iff P <y Q for some Q € FO.

Proof. Clearly if P <y Q for some Q € FO then P is computably true.
Conversely, suppose P is computably true. Let Q be the problem whose

instances are the same as those of P, and the solutions are all (indices of) Turing
functionals @ such that ®(X) is a P-solution to X. Then Q € FO and P <y Q.



Non-diagonalizable problems

Defn (Hirschfeldt and Jockusch 2016). A problem P is non-diagonalizable if
there is a {0, 1}-valued Turing functional A such that for every P-instance X
and every 0 € w<Y,

1 if o is extendible to a P-solution to X,

0 otherwise.

A(X, 0) = {

Prop (DSY). If P is non-diagonalizable then 'P is uniformly computably true.

The converse fails.
TS} 1 Every c : w — 3 omits at least one color on some infinite set.

This is uniformly computable true, but not Weihrauch reducible to any
non-diagonalizable problem (Hirschfeldt and Jockusch 2016).



Case studies




ACA

Defn. J: NN — NN p— o',

Note: the models of ACA are the subsets of NN closed under J.

Defn.

e 7 9.Tr: instances: indices of 29 statement of second-order arithmetic;
solutions: 1 if the statement is true, 0 otherwise.

e Use: instances: pairs (X, ), X € NY, I" a Turing functional s.t. ['(X)(0) ;
solutions: all £ > use(I'(X)(0)).

Prop (DSY). 1J(" =y, (£9-Tr) * Use(".

(Recall: x denotes the compositional product.)

In particular, 1y(m) fw 1300 whenever m > n.



WKL
Obs. "WKL =y "WWKL.

C, : instances: (co-enumerations of) non-empty X C {0, 1};
solutions: points in X.

Thm (DSY).

o TWKL = (Cy)*.

o TWKLO =y, (C{7)* x Use(™,

Jumps are combinatorially natural:

¢ The principle COH is (provably in RCAg, and as a Weihrauch equivalence)
the jump inversion of WKL". (More on COH below.)

e The Rainbow Ramsey's theorem for bounded colorings is the jump of
DNR, a close relative of WKL (J. Miller, unpublished).



Ramsey’s theorem

Obs. RT) =y 'RT.

Prop. RT) =w C,.

Thm (DSY). '(Vk) RT} =w "(RT}") =w (Vk) RT] =y RT}" =y (C))*.
For higher exponents, we use the observation that (RT})("=") <y, RT].
Thm (DSY). (CS)* <y "(VK) RT? <w (CI7)* % Use(™.

Recall SRTi, the restriction of RTi to stable colorings.

Thm (DSY). (C,)* <w '(Vk) SRTZ <y (C,)* x Use'.

So our best bounds on the first-order parts of (k) RTZ and (Vk) SRT? agree.



Bounded first-order parts




Bounding first-order parts

Defn.
LetP € FO.

PP : same instances as P, with the solutions to an instance X being
all n € N such that there is a P-solution y < nto X.

Obs.
Obviously, P <\ PP forall problems P.

Conversely, consider C; € FO.
o C, =y 'Cy is not uniformly computably true.

o C, is uniformly computably true.



SRT3 and COH

COH : for every sequence (cp, ¢1, . . .) of colorings ¢; : w — 2 there exists an
infinite set X s.t. for all i, Xis almost homogeneous for c;.

Thm (Cholak, Jockusch, and Slaman 2001). RCA + RT% > SRT% + COH.

The implication SRTZ + COH — RT3 is a formalization of a Weihrauch
reduction: RT3 <y SRT3 x COH.

Thm (D., Hirschfeldt, Patey, Pauly 2019). SRT% * COH ﬁvv RT%.

As mentioned, our best bounds on the first-order parts of Ramsey’s theorem
for pairs and the stable Ramsey's theorem agree. But they are not sharp.

Thm (DSY). °((Vk) SRT2 x COH) =y °(Vk) RTZ = ® (Vk) SRT2.



Thanks for your attention!



