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Classical reverse mathematics



Reverse mathematics

Measures the strengths of (countable versions, or countable representations
of) theorems of ordinary mathematics.

Subsystems of second-order arithmetic (Z2) serve as benchmarks.

Base subsystem. RCA0 consists of:

• PA−;

• recursive comprehension axiom (∆01 comprehension);

• Σ0
1 induction.

Stronger subsystems.
• WKL0 = RCA0 + Weak König’s lemma (WKL);

• ACA0 = RCA0 + arithmetical comprehension (ACA).



Some principles

Second-order statements.
• Weak König’s lemma (WKL) : every infinite tree T ⊆ 2N has an infinite branch.

• Weak weak König’s lemma (WWKL) : every infinite tree T ⊆ 2N of positive
• measure has an infinite branch.

• Ramsey’s theorem (RTnk ) : every coloring c : [ω]n → k has an infinite
• homogeneous set.

Kirby-Paris hierarchy
• BΓ is the following scheme: for every formula ϕ ∈ Γ,

(∀k)[(∀x < k)(∃y)ϕ(x, y)→ (∃j)(∀x < k)(∃y < j) ϕ(x, y)].

• IΣ0
1 < BΣ0

2 < IΣ0
2 < BΣ0

3 < IΣ0
3 < · · · .



Reverse mathematics zoo
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First-order parts

Defn. Let T be a statement in the language of Z2.
The first-order part of T is the set of arithmetical consequences of RCA0 + T.

Examples.
• The first-order part of RCA0 and WKL0 is Σ0

1-PA.
• The first-order part of ACA0 is PA.

A combinatorial example.
Consider (∀k) RT1k , i.e., the infinitary pigeonhole principle,

(∀k)(∀c : ω → k)(∃H)[H infinite and c ↾H constant].

Thm (Hirst 1987). RCA0 ⊢ RT1 ↔ BΣ0
2.



The first-order part(s) of Ramsey’s theorem

RTnk : Every c : [N]n → k has an infinite homogeneous set.

Thm.
• (Jockusch 1972). For all k and all n ≥ 3, RCA0 ⊢ RTnk ↔ ACA0.

• (Liu 2011). RCA0 + RT22 ⊬ WKL.

Thm (Hirst 1987). RCA0 + RT22 ⊢ BΣ0
2 and RCA0 + (∀k) RT2k ⊢ BΣ0

3.

Thm (Cholak, Jockusch, and Slaman 2001). RCA0 + (∀k) RT2k is
Π1
1-conservative over IΣ

0
3.

Thm (Slaman and Yokoyama 2016). RCA0 + RT22 is Π
1
1-conservative over BΣ

0
3.

Thm (Chong, Slaman, and Yang 2017). RCA0 + RT22 ⊬ IΣ0
2.



Reverse math, the reboot



Instance-solution problems

Typical theorems studied in reverse mathematics have the canonical form

(∀X)[ϕ(X)→ (∃Y)ψ(X, Y)],

where ϕ and ψ are arithmetical predicates of reals.

We view this as a problem: given X such that ϕ(X), find Y such that ψ(X, Y).

Defn. A problem is a partial multifunction P :⊆ ωω ⇒ ωω.

The P-instances are the elements of dom(P).

For each X ∈ dom(P) the P-solutions to X are the elements of P(X).

Example. In RT22, the instances are the colorings c : [ω]2 → 2, and the
solutions to such a c are all the infinite homogeneous sets.



Computable reducibility

Defn (D. 2013). Let P and Q be problems.
P is computably reducible to Q, P ≤c Q, if:

• every P-instance X computes a Q-instance X̂,

• for every Q-solution Ŷ to X̂, we have that X⊕ Ŷ computes a P-solution Y to X.

P ≤sc Q:

X X̂

Y Ŷ

computes

X-computes

is solved by is solved by



Weihrauch reducibility

Defn (Weihrauch 1990). Let P and Q be problems.
P is Weihrauch reducible to Q, P ≤W Q, if there are Turing functionalsΦ,Ψ s.t.:

• for every P-instance X, we have that Φ(X) is a Q-instance, and

• for every Q-solution Ŷ to Φ(X), we have thatΨ(X⊕ Ŷ) is a P-solution Y to X.

P ≤sc Q:

X Φ(X)

Y Ŷ

Φ

Ψ(X⊕ ·)

is solved by is solved by

Equivalence classes under ≤W form the Weihrauch degrees, denotedW .



The Weihrauch lattice

Thm (Pauly 2010; Brattka and Gherardi 2011). Under suitable operations
of ∨ and ∧, (W,≤W,∨,∧) is a lattice.

Let P0 and P1 be problems.

• P0 × P1 is the problem with domain dom(P0)× dom(P1), with the solutions
• to (X0, X1) being all pairs (Y0, Y1) such that Yi is a Pi-solution to Xi.

• P20 = P0 × P0; P
n+1
0 = Pn0 × P0; P∗0 =

∪
n P

n
0.

• P′0 is the problem with domain all f : ω2 → ω such that lims f(x, s) ↓ for all x,
• X = lims f ∈ dom(P), and the solutions to f are all the P0-solutions to X.

• P(2)0 = P′′0 ; P
(n+1)
0 = (P(n)0 )

′.

• P0 ⋆ P1 is the composition product of P1 followed by P0. Intuitively:
• “solve P1 first, then use your solution to create an instance of problem P0.”



A refinement of reverse mathematics

Implications over RCA0 between Π1
2 principles tend to be formalizations

computable or Weihrauch (or stronger) reductions.

Example.
• For all n, j, k, we have RCA0 ⊢ RTnk ↔ RTnj .

• (Patey 2015.) If j < k then RTnk ≰c RTnj .

Defn. A coloring c : [ω]2 → 2 is stable if (∀x) limy c(x, y) exists.
A set X is limit-homogeneous for c if (∃i)(∀x ∈ X) limy c(x, y) = i.

SRT22 is the restriction of RT
2
2 to stable colorings.

D2
2 : Every stable coloring has an infinite limit-homogeneous set.

• (Chong, Lempp, and Yang 2011.) RCA0 ⊢ SRT22 ↔ D2
2.

• (D. 2016.) D2
2 ≤W SRT22 but SRT

2
2 ≰W D2

2.



First-order Weihrauch problems



First-order problems

Defn. A problem P is first-order if P(X) ⊆ N for all X ∈ dom(P).

Denote the collection of first-order problems by FO.

Examples.
• LPO : instances: 0n1ω ∈ 2ω for all n ≥ 0;
• LPO : solutions: 0 if n = 0 and 1 otherwise.

• limN : instances: convergent sequences ⟨xi : i ∈ N⟩ ⊆ N;
• limN : solutions: limi xi.

• CN : instances: (co-enumerations of) non-empty sets X ⊆ N;
• CN : solutions: points in X.

• KN : instances: (co-enumerations of) non-empty bounded sets X ⊆ N;
• KN : solutions: points in X.



Brattka’s question

CN can be viewed as corresponding to IΣ0
1, and KN as corresponding to BΣ0

1.

Defn.
• max :⊆ NN → N, p 7→ max{p(n) : n ∈ N}.

• min : NN → N, p 7→ min{p(n) : n ∈ N}.

Prop (Brattka). max ≡W CN andmin ≡W KN.

We have the following hierarchy,

KN <W CN <W K′N <W C′N <W K′′N <W C′′N <W · · ·

which can thus be viewed as an analogue of the Kirby-Paris hierarchy.



First-order parts of Weihrauch degrees

Defn. Let P be a problem. The first-order part of P, denoted 1P, is

sup
≤W

{R ∈ FO : R ≤W P}.

Prop (DSY). 1P exists, for every P.

Proof. Let Q to be the following problem:

• the instances are all pairs (X,Ψ) such that X ∈ dom(P) andΨ(X, Y)(0) ↓
• for all P-solutions Y to X;

• the solutions to (X,Ψ) are all y ∈ N such thatΨ(X, Y)(0) ↓= y for some
• P-solution Y to X.

Then Q ≡W
1P.



Basic facts

Obs. If P ∈ FO then 1P ≡W P.

Defn. Let P be a problem. Then P is

• computably true if P ≤c Id.

• uniformly computably true if P ≤W Id.

Prop (DSY). If 1P is uniformly computably true then 1(P×Q) ≡W
1Q.

Prop (DSY). A problem P is computably true iff P ≤W Q for some Q ∈ FO.

Proof. Clearly if P ≤W Q for some Q ∈ FO then P is computably true.
Conversely, suppose P is computably true. Let Q be the problem whose
instances are the same as those of P, and the solutions are all (indices of) Turing
functionals Φ such that Φ(X) is a P-solution to X. Then Q ∈ FO and P ≤W Q.



Non-diagonalizable problems

Defn (Hirschfeldt and Jockusch 2016). A problem P is non-diagonalizable if
there is a {0, 1}-valued Turing functional ∆ such that for every P-instance X
and every σ ∈ ω<ω,

∆(X, σ) =

{
1 if σ is extendible to a P-solution to X,

0 otherwise.

Prop (DSY). If P is non-diagonalizable then 1P is uniformly computably true.

The converse fails.

TS13 : Every c : ω → 3 omits at least one color on some infinite set.

This is uniformly computable true, but not Weihrauch reducible to any
non-diagonalizable problem (Hirschfeldt and Jockusch 2016).



Case studies



ACA

Defn. J : NN → NN, p 7→ p′.

Note: the models of ACA0 are the subsets of NN closed under J.

Defn.
• Σ0

n-Tr : instances: indices of Σ0
n statement of second-order arithmetic;

• Σ0
n-Tr : solutions: 1 if the statement is true, 0 otherwise.

• Use : instances: pairs (X,Γ), X ∈ NN, Γ a Turing functional s.t. Γ(X)(0) ↓;
• Use : solutions: all ℓ ≥ use(Γ(X)(0)).

Prop (DSY). 1J(n) ≡W (Σ
0
n-Tr) ⋆ Use

(n).

(Recall: ⋆ denotes the compositional product.)

In particular, 1J(m) ≰W
1J(n) whenever m > n.



WKL

Obs. 1WKL ≡W
1WWKL.

C2 : instances: (co-enumerations of) non-empty X ⊆ {0, 1};
C2 : solutions: points in X.

Thm (DSY).
• 1WKL ≡W (C2)

∗.

• 1WKL(n) ≡W (C
(n)
2 )
∗ ⋆ Use(n).

Jumps are combinatorially natural:

• The principle COH is (provably in RCA0, and as a Weihrauch equivalence)
• the jump inversion of WKL′. (More on COH below.)

• The Rainbow Ramsey’s theorem for bounded colorings is the jump of
• DNR, a close relative of WKL (J. Miller, unpublished).



Ramsey’s theorem

Obs. RT12 ≡W
1RT12.

Prop. RT12 ≡W C′2.

Thm (DSY). 1(∀k) RT1k ≡W
1(RT12

∗
) ≡W (∀k) RT1k ≡W RT12

∗ ≡W (C′2)
∗.

For higher exponents, we use the observation that (RT1k)
(n−1) ≤W RTnk .

Thm (DSY). (C(n)2 )
∗ ≤W

1(∀k) RTnk ≤W (C
(n)
2 )
∗ ⋆ Use(n).

Recall SRT2k , the restriction of RT
2
k to stable colorings.

Thm (DSY). (C′′2)∗ ≤W
1(∀k) SRT2k ≤W (C

′′
2)
∗ ⋆ Use

′′
.

So our best bounds on the first-order parts of (∀k) RT2k and (∀k) SRT2k agree.



Bounded first-order parts



Bounding first-order parts

Defn.
Let P ∈ FO.
bP : same instances as P, with the solutions to an instance X being
bP : all n ∈ N such that there is a P-solution y ≤ n to X.

Obs.

Obviously, 1P ≤W
bP for all problems P.

Conversely, consider C2 ∈ FO.

• C2 ≡W
1C2 is not uniformly computably true.

• bC2 is uniformly computably true.



SRT22 and COH

COH : for every sequence ⟨c0, c1, . . .⟩ of colorings ci : ω → 2 there exists an
infinite set X s.t. for all i, X is almost homogeneous for ci.

Thm (Cholak, Jockusch, and Slaman 2001). RCA0 ⊢ RT22 ↔ SRT22 + COH.

The implication SRT22 + COH→ RT22 is a formalization of a Weihrauch
reduction: RT22 ≤W SRT22 ⋆ COH.

Thm (D., Hirschfeldt, Patey, Pauly 2019). SRT22 ⋆ COH ≰W RT22.

As mentioned, our best bounds on the first-order parts of Ramsey’s theorem
for pairs and the stable Ramsey’s theorem agree. But they are not sharp.

Thm (DSY). b((∀k) SRT2k ⋆ COH) ≡W
b(∀k) RT2k ≡W

b (∀k) SRT2k .



Thanks for your attention!


