The first-order parts of Weihrauch degrees

Damir D. Dzhafarov University of Connecticut

May 30, 2019

Joint work with Reed Solomon and Keita Yokoyama.

Classical reverse mathematics

Reverse mathematics

Measures the strengths of (countable versions, or countable representations of) theorems of ordinary mathematics.

Subsystems of second-order arithmetic (Z_2) serve as benchmarks.

Base subsystem. RCA₀ consists of:

- PA⁻;
- recursive comprehension axiom (Δ_1^0 comprehension);
- Σ_1^0 induction.

Stronger subsystems.

- WKL₀ = RCA₀ + Weak König's lemma (WKL);
- $ACA_0 = RCA_0 + arithmetical comprehension (ACA).$

Some principles

Second-order statements.

- Weak König's lemma (WKL) : every infinite tree $T \subseteq 2^{\mathbb{N}}$ has an infinite branch.
- Weak weak König's lemma (WWKL): every infinite tree T ⊆ 2^N of positive measure has an infinite branch.
- Ramsey's theorem (RTⁿ_k): every coloring c : [ω]ⁿ → k has an infinite homogeneous set.

Kirby-Paris hierarchy

• BF is the following scheme: for every formula $\phi\in \Gamma$,

 $(\forall k)[(\forall x < k)(\exists y)\phi(x, y) \rightarrow (\exists j)(\forall x < k)(\exists y < j)\phi(x, y)].$

• $I\Sigma_1^0 < B\Sigma_2^0 < I\Sigma_2^0 < B\Sigma_3^0 < I\Sigma_3^0 < \cdots$

Reverse mathematics zoo

First-order parts

Defn. Let T be a statement in the language of Z_2 . The first-order part of T is the set of arithmetical consequences of RCA₀ + T.

Examples.

- The first-order part of RCA₀ and WKL₀ is Σ_1^0 -PA.
- The first-order part of ACA₀ is PA.

A combinatorial example.

Consider $(\forall k) \operatorname{RT}_{k}^{1}$, i.e., the infinitary pigeonhole principle,

 $(\forall k)(\forall c: \omega \rightarrow k)(\exists H)[H \text{ infinite and } c \upharpoonright H \text{ constant}].$

Thm (Hirst 1987). $RCA_0 \vdash RT^1 \leftrightarrow B\Sigma_2^0$.

The first-order part(s) of Ramsey's theorem

 RT_k^n : Every $c: [\mathbb{N}]^n \to k$ has an infinite homogeneous set.

Thm.

• (Jockusch 1972). For all k and all $n \ge 3$, $RCA_0 \vdash RT_k^n \leftrightarrow ACA_0$.

• (Liu 2011).
$$RCA_0 + RT_2^2 \nvDash WKL$$
.

Thm (Hirst 1987). RCA₀ + RT₂² \vdash B Σ_2^0 and RCA₀ + ($\forall k$) RT_k² \vdash B Σ_3^0 .

Thm (Cholak, Jockusch, and Slaman 2001). $RCA_0 + (\forall k) RT_k^2$ is Π_1^1 -conservative over $I\Sigma_3^0$.

Thm (Slaman and Yokoyama 2016). $RCA_0 + RT_2^2$ is Π_1^1 -conservative over $B\Sigma_3^0$.

Thm (Chong, Slaman, and Yang 2017). $RCA_0 + RT_2^2 \nvDash I\Sigma_2^0$.

Reverse math, the reboot

Instance-solution problems

Typical theorems studied in reverse mathematics have the canonical form

 $(\forall X)[\phi(X) \rightarrow (\exists Y)\psi(X,Y)],$

where ϕ and ψ are arithmetical predicates of reals.

We view this as a problem: given X such that $\phi(X)$, find Y such that $\psi(X, Y)$.

Defn. A problem is a partial multifunction $P :\subseteq \omega^{\omega} \Rightarrow \omega^{\omega}$.

The P-instances are the elements of dom(P).

For each $X \in \text{dom}(P)$ the P-solutions to X are the elements of P(X).

Example. In RT_2^2 , the instances are the colorings $c : [\omega]^2 \to 2$, and the solutions to such a *c* are all the infinite homogeneous sets.

Computable reducibility

Defn (D. 2013). Let P and Q be problems. P is computably reducible to Q, $P \leq_c Q$, if:

- every P-instance X computes a Q-instance \widehat{X} ,
- for every Q-solution \widehat{Y} to \widehat{X} , we have that $X \oplus \widehat{Y}$ computes a P-solution Y to X.

Weihrauch reducibility

Defn (Weihrauch 1990). Let P and Q be problems. P is Weihrauch reducible to Q, $P \leq_W Q$, if there are Turing functionals Φ , Ψ s.t.:

- for every P-instance X, we have that $\Phi(X)$ is a Q-instance, and
- for every Q-solution \widehat{Y} to $\Phi(X)$, we have that $\Psi(X \oplus \widehat{Y})$ is a P-solution Y to X.

Equivalence classes under \leq_W form the Weihrauch degrees, denoted \mathcal{W} .

The Weihrauch lattice

Thm (Pauly 2010; Brattka and Gherardi 2011). Under suitable operations of \lor and \land , (W, \leq_W, \lor, \land) is a lattice.

Let P_0 and P_1 be problems.

• $P_0 \times P_1$ is the problem with domain dom(P_0) × dom(P_1), with the solutions to (X_0, X_1) being all pairs (Y_0, Y_1) such that Y_i is a P_i -solution to X_i .

•
$$P_0^2 = P_0 \times P_0; P_0^{n+1} = P_0^n \times P_0; P_0^* = \bigcup_n P_0^n.$$

• P'_0 is the problem with domain all $f : \omega^2 \to \omega$ such that $\lim_s f(x, s) \downarrow$ for all x, $X = \lim_s f \in \text{dom}(P)$, and the solutions to f are all the P₀-solutions to X.

•
$$\mathsf{P}_0^{(2)} = \mathsf{P}_0''; \, \mathsf{P}_0^{(n+1)} = (\mathsf{P}_0^{(n)})'.$$

P₀ * P₁ is the composition product of P₁ followed by P₀. Intuitively:
"solve P₁ first, then use your solution to create an instance of problem P₀."

A refinement of reverse mathematics

Implications over RCA₀ between Π_2^1 principles tend to be formalizations computable or Weihrauch (or stronger) reductions.

Example.

- For all n, j, k, we have $\operatorname{RCA}_0 \vdash \operatorname{RT}_k^n \leftrightarrow \operatorname{RT}_i^n$.
- (Patey 2015.) If j < k then $\operatorname{RT}_k^n \not\leq_{\operatorname{c}} \operatorname{RT}_j^n$.

Defn. A coloring $c : [\omega]^2 \to 2$ is stable if $(\forall x) \lim_{y \to 0} c(x, y)$ exists. A set X is limit-homogeneous for c if $(\exists i)(\forall x \in X) \lim_{y \to 0} c(x, y) = i$.

 ${\sf SRT}_2^2$ is the restriction of ${\sf RT}_2^2$ to stable colorings. ${\sf D}_2^2$: Every stable coloring has an infinite limit-homogeneous set.

- (Chong, Lempp, and Yang 2011.) $RCA_0 \vdash SRT_2^2 \leftrightarrow D_2^2$.
- (D. 2016.) $\mathsf{D}^2_2 \leq_W \mathsf{SRT}^2_2 \, \mathsf{but} \, \mathsf{SRT}^2_2 \not\leq_W \mathsf{D}^2_2.$

First-order Weihrauch problems

First-order problems

Defn. A problem P is first-order if $P(X) \subseteq \mathbb{N}$ for all $X \in \text{dom}(P)$.

Denote the collection of first-order problems by \mathcal{FO} .

Examples.

- LPO : instances: 0ⁿ1^ω ∈ 2^ω for all n ≥ 0; solutions: 0 if n = 0 and 1 otherwise.
- lim_N: instances: convergent sequences ⟨x_i: i ∈ N⟩ ⊆ N; solutions: lim_i x_i.
- C_N: instances: (co-enumerations of) non-empty sets X ⊆ N; solutions: points in X.
- K_N: instances: (co-enumerations of) non-empty bounded sets X ⊆ N; solutions: points in X.

Brattka's question

 $C_{\mathbb N}$ can be viewed as corresponding to $I\Sigma_1^0,$ and $K_{\mathbb N}$ as corresponding to $B\Sigma_1^0.$

Defn.

- max : $\subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}, p \mapsto \max\{p(n) : n \in \mathbb{N}\}.$
- min : $\mathbb{N}^{\mathbb{N}} \to \mathbb{N}$, $p \mapsto \min\{p(n) : n \in \mathbb{N}\}$.

Prop (Brattka). max $\equiv_W C_{\mathbb{N}}$ and min $\equiv_W K_{\mathbb{N}}$.

We have the following hierarchy,

$$\mathsf{K}_{\mathbb{N}} <_{\mathsf{W}} \mathsf{C}_{\mathbb{N}} <_{\mathsf{W}} \mathsf{K}'_{\mathbb{N}} <_{\mathsf{W}} \mathsf{C}'_{\mathbb{N}} <_{\mathsf{W}} \mathsf{K}''_{\mathbb{N}} <_{\mathsf{W}} \mathsf{C}''_{\mathbb{N}} <_{\mathsf{W}} \cdots$$

which can thus be viewed as an analogue of the Kirby-Paris hierarchy.

First-order parts of Weihrauch degrees

Defn. Let P be a problem. The first-order part of P, denoted ¹P, is

$$\sup_{\leq_W} \{ R \in \mathcal{FO} : R \leq_W P \}.$$

Prop (DSY). ¹P exists, for every P.

Proof. Let Q to be the following problem:

- the instances are all pairs (X, Ψ) such that X ∈ dom(P) and Ψ(X, Y)(0) ↓ for all P-solutions Y to X;
- the solutions to (X, Ψ) are all $y \in \mathbb{N}$ such that $\Psi(X, Y)(0) \downarrow = y$ for some P-solution Y to X.

Then $Q \equiv_W {}^1P$.

Basic facts

Obs. If $P \in \mathcal{FO}$ then ${}^{1}P \equiv_{W} P$.

Defn. Let P be a problem. Then P is

- computably true if $P \leq_c Id$.
- uniformly computably true if $P \leq_W Id$.

Prop (DSY). If ¹P is uniformly computably true then ${}^{1}(P \times Q) \equiv_{W} {}^{1}Q$.

Prop (DSY). A problem P is computably true iff $P \leq_W Q$ for some $Q \in \mathcal{FO}$.

Proof. Clearly if $P \leq_W Q$ for some $Q \in \mathcal{FO}$ then P is computably true. Conversely, suppose P is computably true. Let Q be the problem whose instances are the same as those of P, and the solutions are all (indices of) Turing functionals Φ such that $\Phi(X)$ is a P-solution to X. Then $Q \in \mathcal{FO}$ and $P \leq_W Q$.

Non-diagonalizable problems

Defn (Hirschfeldt and Jockusch 2016). A problem P is non-diagonalizable if there is a $\{0, 1\}$ -valued Turing functional Δ such that for every P-instance X and every $\sigma \in \omega^{<\omega}$,

$$\Delta(X, \sigma) = \begin{cases} 1 & \text{if } \sigma \text{ is extendible to a P-solution to } X_i \\ 0 & \text{otherwise.} \end{cases}$$

Prop (DSY). If P is non-diagonalizable then ¹P is uniformly computably true.

The converse fails.

 TS_3^1 : Every c: $\omega \rightarrow 3$ omits at least one color on some infinite set.

This is uniformly computable true, but not Weihrauch reducible to any non-diagonalizable problem (Hirschfeldt and Jockusch 2016).

Case studies

ACA

Defn. J : $\mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$, $p \mapsto p'$.

Note: the models of ACA_0 are the subsets of $\mathbb{N}^\mathbb{N}$ closed under J.

Defn.

- $\sum_{n=1}^{\infty} -\text{Tr}$: instances: indices of $\sum_{n=1}^{\infty}$ statement of second-order arithmetic; solutions: 1 if the statement is true, 0 otherwise.
- Use : instances: pairs $(X, \Gamma), X \in \mathbb{N}^{\mathbb{N}}, \Gamma$ a Turing functional s.t. $\Gamma(X)(0) \downarrow$; solutions: all $\ell \ge \text{use}(\Gamma(X)(0))$.

Prop (DSY). ${}^{1}J^{(n)} \equiv_{W} (\Sigma_{n}^{0}-Tr) \star Use^{(n)}$.

(Recall: * denotes the compositional product.)

In particular, ${}^{1}J^{(m)} \not\leq_{W} {}^{1}J^{(n)}$ whenever m > n.

WKL

Obs. ¹WKL \equiv_W ¹WWKL.

C₂: instances: (co-enumerations of) non-empty $X \subseteq \{0, 1\}$; solutions: points in X.

Thm (DSY).

- ¹WKL $\equiv_W (C_2)^*$.
- ${}^{1}WKL^{(n)} \equiv_{W} (C_{2}^{(n)})^{*} \star Use^{(n)}.$

Jumps are combinatorially natural:

- The principle COH is (provably in RCA₀, and as a Weihrauch equivalence) the jump inversion of WKL[']. (More on COH below.)
- The Rainbow Ramsey's theorem for bounded colorings is the jump of DNR, a close relative of WKL (J. Miller, unpublished).

Ramsey's theorem

Obs. $RT_2^1 \equiv_W {}^1RT_2^1$.

Prop. $RT_2^1 \equiv_W C'_2$.

Thm (DSY). $^{1}(\forall k) \operatorname{RT}_{k}^{1} \equiv_{\operatorname{W}} ^{1}(\operatorname{RT}_{2}^{1*}) \equiv_{\operatorname{W}} (\forall k) \operatorname{RT}_{k}^{1} \equiv_{\operatorname{W}} \operatorname{RT}_{2}^{1*} \equiv_{\operatorname{W}} (C_{2}')^{*}$.

For higher exponents, we use the observation that $(\mathrm{RT}^1_k)^{(n-1)} \leq_{\mathrm{W}} \mathrm{RT}^n_k$.

Thm (DSY). $(C_2^{(n)})^* \leq_W {}^1(\forall k) \operatorname{RT}_k^n \leq_W (C_2^{(n)})^* \star \operatorname{Use}^{(n)}$.

Recall SRT_k^2 , the restriction of RT_k^2 to stable colorings.

Thm (DSY). $(C_2'')^* \leq_W {}^1(\forall k) \operatorname{SRT}_k^2 \leq_W (C_2'')^* \star \operatorname{Use}''$.

So our best bounds on the first-order parts of $(\forall k) \operatorname{RT}_k^2$ and $(\forall k) \operatorname{SRT}_k^2$ agree.

Bounded first-order parts

Bounding first-order parts

Defn.

Let $P \in \mathcal{FO}$.

^bP : same instances as P, with the solutions to an instance X being all $n \in \mathbb{N}$ such that there is a P-solution $y \leq n$ to X.

Obs.

Obviously, ${}^{1}P \leq_{W} {}^{b}P$ for all problems P.

Conversely, consider $C_2 \in \mathcal{FO}$.

- $C_2 \equiv_W {}^1C_2$ is not uniformly computably true.
- ${}^{b}C_{2}$ is uniformly computably true.

SRT₂² and COH

COH: for every sequence $\langle c_0, c_1, \ldots \rangle$ of colorings $c_i : \omega \to 2$ there exists an infinite set X s.t. for all *i*, X is almost homogeneous for c_i .

Thm (Cholak, Jockusch, and Slaman 2001). $RCA_0 \vdash RT_2^2 \leftrightarrow SRT_2^2 + COH$.

The implication $SRT_2^2+COH \rightarrow RT_2^2$ is a formalization of a Weihrauch reduction: $RT_2^2 \leq_W SRT_2^2 \star COH.$

Thm (D., Hirschfeldt, Patey, Pauly 2019). $SRT_2^2 \star COH \not\leq_W RT_2^2$.

As mentioned, our best bounds on the first-order parts of Ramsey's theorem for pairs and the stable Ramsey's theorem agree. But they are not sharp.

Thm (DSY). $^{b}((\forall k) \operatorname{SRT}_{k}^{2} \star \operatorname{COH}) \equiv_{W} ^{b}(\forall k) \operatorname{RT}_{k}^{2} \equiv_{W} ^{b}(\forall k) \operatorname{SRT}_{k}^{2}$.

Thanks for your attention!