A model of second-order arithmetic satisfying AC but not DC

Victoria Gitman

vgitman@nylogic.org http://victoriagitman.github.io

Journées sur les Arithmétiques Faibles

May 29, 2019

イロン イヨン イヨン イヨン

This is joint work with Sy-David Friedman and Vladimir Kanovei.

2

・ロト ・回ト ・ヨト ・ヨト

Why second-order arithmetic

Models of second-order arithmetic have two types of objects:

- numbers
- sets of numbers (reals).

A second-order arithmetic axiom system postulates what kind of sets of numbers (reals) exist.

Given a theorem in analysis, we can ask what kind of reals need to exist in order to be able to prove it.

Second-order arithmetic provides an incredibly effective measuring stick for answering such questions.

(Most) classical results in analysis are provable within one of the main second-order arithmetic systems and indeed are equivalent to some such system (over a weak base system).

・ロト ・回ト ・ヨト ・ヨト

Second-order arithmetic

Syntax: Two-sorted logic

- Separate variables and quantifiers for numbers and sets of numbers.
- Convention: lower-case letters for numbers, upper-case letters for sets of numbers.
- Notation:

 - $\sum_{n=1}^{0} \sum_{n=1}^{\infty} \sum_$

Semantics: A model is $\mathcal{M} = \langle M, +, \times, <, 0, 1, \mathcal{S} \rangle$.

- *M* is the collection of numbers.
- *S* is the collection of sets of numbers: if $A \in S$, then $A \subseteq M$.
- Example: the full standard model $\mathcal{M} = \langle \omega, +, \times, <, 0, 1, P(\omega) \rangle$.

IAE

・ロト ・四ト ・ヨト ・ヨト

Axiom systems

First-order axioms - Peano Arithmetic PA

Arithmetical comprehension ACA_0

- Comprehension scheme for first-order formulas: for all n, $\sum_{n=0}^{n} -CA_0$ if $\varphi(n, A)$ is a first-order formula, then $\{n \mid \varphi(n, A)\}$ is a set.
- * Example: If $\langle M, +, \times, <, 0, 1 \rangle \models PA$ and S consists of definable subsets of M, then

 $\mathcal{M} = \langle M, +, \times, <, 0, 1, \mathcal{S} \rangle \models ACA_0.$

- \star Every model of PA is naturally also a model of ACA₀.
- * ACA_0 is conservative over PA.

Elementary Transfinite Recursion ATR_0

- ACA₀
- Every first-order recursion on sets along a well-order has a solution.
 - A well-order is a linear order Γ whose every subset has a minimal element.
 - A solution to a recursion is a code of a function $F : \operatorname{dom}(\Gamma) \to S$.

A code for F is $\overline{F} = \{ \langle n, m \rangle \mid n \in \operatorname{dom}(\Gamma,) m \in F(n) \}$

 Σ_n^1 -comprehension Π_n^1 -CA₀

• $\sum_{n=1}^{1}$ -comprehension: If $\varphi(n, A)$ is a $\prod_{n=1}^{1}$ -formula, then $\{n \mid \varphi(n, A)\}$ is a set.

JAF 5 / 27

Full second-order arithmetic Z₂

Full second-order comprehension: for all n, $\sum_{n=1}^{1}$ -comprehension.

Example: If $V \models ZF$, then the full standard model $\mathscr{M}^{V} = \langle \omega, +, \times, <, 0, 1, P(\omega) \rangle \models Z_{2}$.

Gödel's constructible universe L

Suppose $V \models ZF$.

•
$$L_0 = \emptyset$$

• $L_{\alpha+1}$ is the set of all subsets of L_{α} definable over L_{α} .

•
$$L_{\lambda} = \bigcup_{\alpha < \lambda} L_{\alpha}$$
 for a limit λ .

• $L = \bigcup_{\alpha \in \text{Ord}} L_{\alpha}$.

Suppose $\mathscr{M} = \langle M, +, \times, <, 0, 1, \mathcal{S} \rangle \models \mathbb{Z}_2$ and $\Gamma \in \mathcal{S}$ is a well-order.

- \mathcal{M} can construct the *L*-hierarchy along Γ (uses ATR₀).
- There is a set coding a sequence of L_{Δ} for $\Delta \leq \Gamma$ obeying the definition of L.

A model of Z_2 has its own constructible universe $L^{\mathcal{M}}$!

Theorem: (Shoenfield Absoluteness) If φ is a Σ_2^1 -assertion, then $\mathscr{M} \models \varphi$ iff $L^{\mathscr{M}} \models \varphi$. In $L^{\mathscr{M}}$ interpret φ as an assertion about numbers and reals.

・ロト ・回ト ・ヨト ・ヨト

JAF 6 / 27

ω -models and β -models of second-order arithmetic

Definition: A model of second-order arithmetic is an ω -model if it has a standard first-order part: $\mathcal{M} = \langle \omega, +, \times, <, 0, 1, S \rangle$.

Definition: A β -model of second-order arithmetic is an ω -model $\mathcal{M} = \langle \omega, +, \times, <, 0, 1, S \rangle$ that is correct about well-foundedness:

for every relation $\Gamma \in S$, $\mathscr{M} \models \Gamma$ is well-founded iff Γ is well-founded.

An ω -model of second-order arithmetic can be wrong about well-foundedness because it is missing a witnessing subset.

Example: If $V \models \text{ZF}$, then $\mathscr{M}^{V} = \langle \omega, +, \times, <, 0, 1, P(\omega) \rangle$ is a β -model of \mathbb{Z}_{2} .

Example: Suppose $\mathcal{M} = \langle \omega, +, \times, <, 0, 1, \mathcal{S} \rangle$ is a β -model of Z₂.

- *M* is correct about ordinals.
- \mathcal{M} is correct about the constructible universe L up to its height.

イロン イロン イヨン イヨン 三日

Set choice principles

Choice Scheme

"If for every *n*, there is a set *X* witnessing $\varphi(n, X, A)$, then there is a single set *Z* collecting witnesses for every *n*."

Choice scheme $\sum_{n=1}^{1} AC$: A scheme consisting of assertions for every $\sum_{n=1}^{1} formula \varphi(n, X, A)$,

 $\forall n \exists X \varphi(n, X, a) \to \exists Z \forall n \varphi(n, Z_n, A),$

where $Z_n = \{m \mid (n, m) \in Z\}$ is the *n*-th slice of Z.

 Σ^1_{∞} -AC: for all n, Σ^1_n -AC.

Example: If $V \models \text{ZF} + AC_{\omega}$, then $\mathscr{M}^{V} = \langle \omega, +, \times, <, 0, 1, P(\omega) \rangle$ is a β -model of $\mathbb{Z}_{2} + \Sigma^{1}_{\infty}$ -AC.

Dependent Choice Scheme

"Every relation on sets without terminal nodes has an infinite branch."

Dependent choice scheme $\sum_{n=0}^{1} DC$: A scheme consisting of assertions for every $\sum_{n=0}^{1} formula \varphi(X, Y, A)$,

$$\forall X \exists Y \varphi(X, Y, A) \to \exists Z \forall n \varphi(Z_n, Z_{n+1}, A).$$

 Σ^1_{∞} -DC: for all *n*, Σ^1_n -DC.

Example: If $V \models \mathbb{ZF} + \mathbb{DC}$, then $\mathscr{M}^{V} = \langle \omega, +, \times, <, 0, 1, P(\omega) \rangle$ is a β -model of $\mathbb{Z}_{2} + \Sigma_{\infty}^{1}$ - \mathbb{DC} .

Choice principles in \mathbb{Z}_2

Theorem: Z_2 proves Σ_2^1 -AC.

Proof: Suppose $\mathscr{M} \models \mathbb{Z}_2$ and $\mathscr{M} \models \forall n \exists X \varphi(n, X)$, where φ is Σ_2^1 .

- By Shoenfield Absoluteness, $L^{\mathscr{M}}$ has a witness for every Σ_2^1 -assertion $\varphi(n, X)$.
- Choose the least $L^{\mathcal{M}}$ -witness X and use comprehension to collect.

Theorem: (Mansfield, Simpson) \mathbb{Z}_2 proves Σ_2^1 -DC.

Strategy for constructing models with a failure of choice

- Construct a forcing extension V[G] having a submodel N ⊨ ZF with a definable failure of choice.
- Let $\mathscr{M}^{\mathsf{N}} = \langle \omega, +, \times, <, 0, 1, \mathsf{P}(\omega)^{\mathsf{N}} \rangle$.

(日) (四) (E) (E) (E) (E)

Quick review of forcing

Suppose $V \models \text{ZFC}$ and \mathbb{P} is a forcing notion: partial order with largest element **1**. **Dense sets and generic filters**

 $D \subseteq \mathbb{P}$ is dense if for every $p \in \mathbb{P}$, there is $q \in D$ with $q \leq p$.

 $G \subseteq \mathbb{P}$ is a filter:

- (upward closure) If $p \in G$ and $q \ge p$, then $q \in G$.
- (compability) If $p, q \in G$, then $r \in G$ such that $r \leq p, q$.

Note: If $G \neq \emptyset$, then $\mathbb{1} \in G$.

A filter $G \subseteq \mathbb{P}$ is V-generic if it meets every dense set $D \in V$ of \mathbb{P} : $D \cap G \neq \emptyset$.

Theorem: V has no V-generic filters for \mathbb{P} .

The forcing extension V[G] is constructed from V together with an external V-generic filter G.

Quick review of forcing (continued)

 \mathbb{P} -names: names for elements of V[G].

Defined recursively so that a \mathbb{P} -name σ consists of pairs $\langle \tau, p \rangle$: $p \in \mathbb{P}$ and τ is a \mathbb{P} -name.

Special P-names

- Given $a \in V$, $\check{a} = \{\langle \check{b}, 1 \rangle \mid b \in a\}$.
- $\dot{G} = \{ \langle \check{p}, p \rangle \mid p \in \mathbb{P} \}.$

Forcing extension V[G]

Suppose $G \subseteq \mathbb{P}$ is V-generic and σ is a P-name. The interpretation of σ by G: $\sigma_G = \{\tau_G \mid \langle \tau, p \rangle \in \sigma \text{ and } p \in G\}$.

Defined recursively.

The forcing extension $V[G] = \{\sigma_G \mid \sigma \text{ is a } \mathbb{P}\text{-name in } V\}.$

- $V \subseteq V[G]$: $\check{a}_G = a$.
- $G \in V[G]$: $\dot{\mathbf{G}}_G = \mathbf{G}$.
- $V[G] \models \text{ZFC}$

Forcing relation $p \Vdash \varphi(\sigma)$

Whenever G is V-generic and $p \in G$, then $V[G] \models \varphi(\sigma_G)$.

Theorem: (definability of the forcing relation) For a fixed first-order formula $\varphi(x)$, the relation $p \Vdash \varphi(\sigma)$ is definable.

Useful forcing notions

 $\operatorname{Add}(\omega,\kappa)$ - Add κ -many subsets to ω

- Conditions: functions p : D → 2, where D is a finite subset of ω × κ.
- Order: $p \leq q$ if p extends q.
- * If $G \subseteq Add(\omega, \kappa)$ is V-generic, then in V[G], $2^{\omega} \geq \kappa$.

 $Add(\omega_1,\kappa)$ - Add κ -many subsets to ω_1

- Conditions: functions $p: D \to 2$, where D is a countable subset of $\omega_1 \times \kappa$.
- Order: $p \leq q$ if p extends q.

 $\operatorname{Coll}(\omega,\kappa)$ - Collapse κ to ω

- Conditions: functions $p: D \to \kappa$, where D is a finite subset of ω .
- Order: $p \leq q$ if p extends q.
- * If $G \subseteq \operatorname{Coll}(\omega, \kappa)$ is V-generic, then in V[G], κ is a countable ordinal.

・ロト ・四ト ・ヨト ・ヨト

JAF 12 / 27

Useful forcing notions (continued)

Sacks forcing S - Add a generic real

- Conditions: Perfect trees $T \subseteq 2^{<\omega}$: every node has a splitting node above it.
- Order: $T \leq S$ if T is a subtree of S.
- * If G is V-generic for S, then there is a real $b \in V[G]$ such that $T \in G$ iff b is a branch of T.
- \star The generic real *b* determines *G*.

Products and iterations of forcing notions **Products**

Suppose \mathbb{P}_{α} for $\alpha < \beta$ are forcing notions.

A product $\mathbb{P} = \prod_{\alpha < \beta} \mathbb{P}_{\alpha}$ is also a natural forcing notion.

- Conditions: $\langle p_{\alpha} \mid \alpha < \beta \rangle$ with $p_{\alpha} \in \mathbb{P}_{\alpha}$.
- Common supports: finite, bounded, full.
- Example: $Add(\omega, \kappa) = \prod_{\alpha < \kappa} Add(\omega, 1)$ with finite support.
- Usage: adding several objects to a forcing extension.

Iterations

Suppose \mathbb{P} is a forcing notion, $G \subseteq \mathbb{P}$ is *V*-generic, and \mathbb{Q} is a forcing notion in V[G]. *V* has a \mathbb{P} -name $\dot{\mathbb{Q}}$ for \mathbb{Q} . Every element of V[G] has a \mathbb{P} -name in *V*.

In V, we can define a forcing notion $\mathbb{P} * \mathbb{Q}$ such that forcing with $\mathbb{P} * \mathbb{Q}$ is the same as forcing with \mathbb{P} followed by forcing with \mathbb{Q} .

- Conditions: (p, \dot{q}) with $p \in \mathbb{P}$ and $p \Vdash \dot{q} \in \dot{\mathbb{Q}}$.
- Order: $(p, \dot{q}) \leq (r, \dot{s})$ if $p \leq r$ and $p \Vdash \dot{q} \leq \dot{s}$.
- *n*-step iterations are defined similarly (infinite iterations can be defined as well).

Example: $\mathbb{S}\ast\dot{\mathbb{S}},$ where $\dot{\mathbb{S}}$ is the name for the Sacks forcing of the forcing extension.

Sacks forcing of V[G] is different from Sacks forcing of V because V[G] has new perfect trees.

イロン イロン イヨン イヨン 三日

Symmetric submodels of forcing extensions Set-up

- \mathbb{P} is a forcing notion.
- \mathcal{G} is a group of automorphisms of \mathbb{P} .
- \mathscr{F} is a normal filter of subgroups of \mathcal{G} .
 - (upward closure) If $H_1 \in \mathscr{F}$ and $H_2 \supseteq H_1$, then $H_2 \in \mathscr{F}$.
 - (closure under intersections) If H_1 , $H_2 \in \mathscr{F}$, then $H_1 \cap H_2 \in \mathscr{F}$.
 - (normality) If $H \in \mathscr{F}$ and $\pi \in \mathcal{G}$, then $\pi H \pi^{-1} \in \mathscr{F}$.
- $G \subseteq \mathbb{P}$ is *V*-generic

Definition: If σ is a \mathbb{P} -name and $\pi \in \mathcal{G}$, then $\pi(\sigma) = \{ \langle \pi(\tau), \pi(p) \rangle \mid \langle \tau, p \rangle \in \sigma \}.$

Proposition: For every $p \in \mathbb{P}$, $p \Vdash \varphi(\sigma)$ iff $\pi(p) \Vdash \varphi(\pi(\sigma))$.

Definition: Suppose σ is a \mathbb{P} -name.

- σ is symmetric if there is $H \in \mathscr{F}$ such that every $\pi \in H$ fixes σ : $\pi(\sigma) = \sigma$.
- σ is hereditarily symmetric if σ is symmetric and all P-names occurring hereditarily in σ are also symmetric.
- $\bullet~\mathrm{HS}$ be the collection of all hereditarily symmetric names.

 $N = \{\sigma_G \mid \sigma \in \mathrm{HS}\}$ is a symmetric submodel of V[G].

Theorem: $N \models \mathbf{ZF}$.

IAE

The Feferman-Lévy symmetric model

We work in the constructible universe L.

The forcing P

- Finite-support product $\prod_{n < \omega} \operatorname{Coll}(\omega, \omega_n)$. ω_n is *n*-th cardinal.
- Let $G \subseteq \mathbb{P}$ be *L*-generic and let $G_m = G \upharpoonright \prod_{n < m} \operatorname{Coll}(\omega, \omega_n)$.

Automorphisms of \mathbb{P}

- \mathcal{G} is the group of all coordinate-respecting automorphisms of \mathbb{P} .
- \mathscr{F} is generated by subgroups H fixing some initial segment of the product.

The symmetric submodel N

Theorem: The subsets of ordinals in N are precisely those added by initial stages of the product: $S \subseteq \text{Ord}$ is in N iff $S \in V[G_m]$ for some $m < \omega$.

The following holds in *N*:

- Each ω_n^L is countable.
- ω_{ω}^{L} is the first uncountable cardinal. ω_{ω} is countable in V[G].

IAE

(日) (四) (E) (E) (E) (E)

Independence of Π_2^1 -AC from Z_2

Theorem: (Feferman, Lévy) Π_2^1 -AC can fail in a β -model of \mathbb{Z}_2 .

Proof: Let *N* be the Feferman-Lévy symmetric submodel. Let $\mathcal{M}^N = \langle \omega, +, \times, <, 0, 1, P(\omega)^N \rangle \models \mathbb{Z}_2.$

- Every L_{ω_n} is coded in \mathscr{M}^N , but L_{ω_ω} is not coded in \mathscr{M}^N .
- We cannot collect the (codes of) L_{ω_n} .
- The assertion

$$\forall n \exists X = L_{\omega_n} \to \exists Z \,\forall n \, Z_n = L_{\omega_n}$$

fails in \mathcal{M}^N .

• The assertion $X = L_{\omega_n}$ is Π_2^1 (it is Π_1^1 whether a set of numbers codes an ordinal). \Box

・ロト ・四ト ・ヨト ・ヨト

Independence of $\Pi^1_2\text{-}\mathrm{DC}$ from $\mathrm{Z}_2+\mathrm{AC}_\infty$

Theorem (Friedman, G., Kanovei) Π_2^1 -DC can fail in a β -model of $\mathbb{Z}_2 + AC_{\infty}$.

History

- Simpson claims proof in abstract in Notices of American Mathematical Society in 1973, but proof is lost.
- Kanovei publishes proof in Russian journal in 1979.
- We prove the theorem independently and ask Kanovei to join us on the paper when we learn about the 1979 result.

Strategy

- Construct a symmetric submodel N of some forcing extension V[G] such that in N:
 - ► AC_ω holds,
 - DC fails for a Π_2^1 -definable relation on the reals.
- Let $\mathscr{M}^{\mathsf{N}} = \langle \omega, +, \times, <, 0, 1, \mathsf{P}(\omega)^{\mathsf{N}} \rangle$.

IAE

(日) (四) (E) (E) (E) (E)

Classical symmetric submodel of $AC_{\omega} + \neg DC$ (Jensen)

The forcing \mathbb{P} - "Add $(\omega_1, \omega_1^{<\omega})$ "

- Adds a tree isomorphic to $\omega_1^{<\omega}$ whose nodes are V-generic for $Add(\omega_1, 1)$.
- Conditions: $p: D \to 2$, where D is a countable subset of $\omega_1^{<\omega} \times \omega_1$.
- Order: $p \leq q$ if p extends q.
- \mathbb{P} is countably closed: every descending ω -sequence of conditions has a lower bound.

$$p \leq \cdots \leq p_n \leq p_{n-1} \leq \cdots \leq p_1 \leq p_0$$

• Let $G \subseteq \mathbb{P}$ be V-generic.

19 / 27

IAF

イロト イヨト イヨト イヨト

Classical symmetric submodel of $AC_{\omega} + \neg DC$ (Jensen)

Automorphisms of \mathbb{P}

- Every automorphism π of the tree $\omega_1^{<\omega}$ extends to an automorphism π^* of \mathbb{P} .
- \mathcal{G} is the group of all such π^* .
- A countable tree $T \subseteq \omega_1^{<\omega}$ is good if it has no infinite branch.
- Given a good tree T, let H_T be the group of all π^* with π point-wise fixing T.
- \mathscr{F} is generated by all such subgroups H_T .

The symmetric submodel N

If T is a good tree, let G_T be the restriction of G to nodes of T.

Theorem: $S \subseteq \text{Ord}$ is in N iff $S \in V[G_T]$ for some good tree T.

JAF 20 / 27

イロト イヨト イヨト イヨト 三日

Classical model of $AC_{\omega} + \neg DC$ (continued)

Preliminaries

- Let $\dot{\mathscr{T}}$ be the canonical \mathbb{P} -name for the tree of Cohen subsets of ω_1 added by \mathbb{P} .
- $\hat{\mathscr{T}}$ is hereditarily symmetric, and hence $\mathscr{T} = (\hat{\mathscr{T}})_{G} \in N$.

Lemma: DC fails in N.

Proof sketch:

- Suppose that $b \in N$ is an infinite branch through \mathscr{T} .
- Let $\sigma \in HS$ be a \mathbb{P} -name for *b*, witnessed by a good tree *T*.
- Use that eventually *b* lies outside of *T* to derive a contradiction. \Box

Lemma: AC_{ω} holds in *N*.

Proof sketch:

- Let $F = \{F_n \mid n < \omega\} \in N$ be a family of non-empty sets.
- Let $\sigma \in HS$ be a \mathbb{P} -name for F, witnessed by a good tree S.
- Build a descending sequence of conditions $p_0 \ge p_1 \ge \cdots \ge p_i \ge \cdots$ such that:
 - ▶ $p_i \Vdash \tau_i \in \sigma(i)$ for some $\tau_i \in HS$, witnessed by a good tree T_i .
 - For i < j, $T_i \cap T_j = S$.
- Let $\tau \in HS$ be a \mathbb{P} -name for the sequence of the τ_i , as witnessed by $T = \bigcup_{i < \omega} T_i$.
- Let $p \leq p_i$ for all $i < \omega$.
- $p \Vdash$ " τ is a choice function for σ ". \Box

Obstacle: \mathscr{T} is not a tree of reals.

JAF 21 / 27

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

A variation on the classical model (Friedman, G.)

- The forcing \mathbb{P} "Add($\omega, \omega_1^{<\omega}$)"
 - Adds a tree isomorphic to $\omega_1^{<\omega}$ whose nodes are V-generic for $Add(\omega, 1)$.
 - Conditions: $p: D \to 2$, where D is a finite subset of $\omega_1^{<\omega} \times \omega$.
 - Order: $p \leq q$ if p extends q.
 - $\bullet \ \mathbb{P}$ has the ccc: countable chain condition every antichain is countable.

Automorphisms of \mathbb{P}

Same as before.

The symmetric model N

- DC fails in N.
- AC_{ω} holds in *N* (use ccc instead of countable closure).

Obstacle: Why is \mathscr{T} definable over $P^{N}(\omega)$?

- Domain
 - How do we pick out which generic reals for $Add(\omega, 1)$ lie on the tree?
 - Forcing with $Add(\omega, 1)$ adds 2^{ω} -many generic reals.
- Order
 - How do we know how the generic reals are ordered in \mathcal{T} ?

IAE

イロン イロン イヨン イヨン 三日

A model of $ZF + AC_{\omega} + \neg \Pi_2^1 - DC$

The forcing \mathbb{P}

- Let $\langle \mathbb{P}_n \mid n < \omega \rangle$ be a sequence of forcing iterations such that:
 - \mathbb{P}_n is an iteration of length n,
 - ▶ a generic filter for \mathbb{P}_n is determined by an *n*-length sequence of reals,
 - for m > n, $\mathbb{P}_m \upharpoonright n = \mathbb{P}_n$,
 - The collection of all generic *n*-length sequences of reals for \mathbb{P}_n is Π_2^1 -definable.
- Conditions: $p: D_p \to \bigcup_{n < \omega} \mathbb{P}_n$ such that:
 - D_p is a finite subtree of $\omega_1^{<\omega}$,
 - for all $s \in D_p$, $p(s) \in \mathbb{P}_{\mathsf{len}(s)}$,
 - for $s \subseteq t$ in D_p , $p(s) = p(t) \upharpoonright \operatorname{len}(s)$.
- Order: $p \le q$ if $D_p \supseteq D_q$ and for all $s \in D_q$, $p(s) \le q(s)$.
- $\mathbb P$ is an "iteration along the tree $\omega_1^{<\omega"}.$
- Suppose $G \subseteq \mathbb{P}$ is *V*-generic.
- An *n*-length sequence of reals in V[G] is
 V-generic for P_n if and only if it comes from a node of the tree added by G.
- \mathbb{P} has the ccc.

IAE

A model of $ZF + AC_{\omega} + \neg \Pi_2^1 - DC$

Automorphisms of \mathbb{P}

Same as before.

The symmetric model N

- DC fails in N.
- Using that \mathbb{P} has the ccc, it follows that AC_{ω} holds in N.

The tree \mathcal{T}

- Domain: Π_2^1 -definable.
- Order: extension.

Obstacle: Find $\langle \mathbb{P}_n \mid n < \omega \rangle$ with desired properties.

イロト イヨト イヨト イヨト

Jensen's forcing $\mathbb J$

Constructed in L using the \diamond -principle.

```
Sub-forcing of Sacks forcing (conditions are perfect trees T \subseteq 2^{<\omega}).
```

Adds a unique generic real over L. $Add(\omega, 1)$ adds 2^{ω} -many generic reals.

Has the ccc.

The forcing J is constructed as a chain of countable partial orders of length ω_1 using \diamondsuit to seal antichains along the way.

Products of $\mathbb J$

The "uniqueness of generic reals" property of $\mathbb J$ extends to products.

Theorem: (Lyubetsky, Kanovei) If G is L-generic for the finite-support product $\prod_{n < \omega} \mathbb{J}$, then the only L-generic reals for \mathbb{P} in L[G] are those on the coordinates of G.

The tree iteration of Jensen's forcing

Let \mathbb{J}_n for $n < \omega$ be the *n*-length iterations of \mathbb{J} .

 \mathbb{J}_n adds a generic *n*-length sequence of reals.

Let \mathbb{T} be the tree iteration using the sequence $\langle \mathbb{J}_n \mid n < \omega \rangle$.

The forcing \mathbb{T} adds a tree \mathcal{T} isomorphic to $\omega_1^{<\omega}$: nodes on level *n* are *L*-generic sequences of reals for \mathbb{J}_n .

The "uniqueness of generic reals" property of \mathbb{J} extends to tree iterations.

Main Theorem: (Friedman, G.) If G is L-generic for the tree iteration \mathbb{T} of \mathbb{J} along the tree, then the only L-generic sequences of reals for \mathbb{J}^n are those on the nodes of \mathcal{T} .

- The domain of \mathcal{T} is Π_2^1 -definable.
- The order is extension.

・ロト ・回ト ・ヨト ・ヨト

Thank you!

JAF 27 / 27

2

・ロト ・四ト ・ヨト ・ヨト