Π_{1}^{0}-computable quotient presentations of nonstandard models of arithmetic

Michał Tomasz Godziszewski
University of Warsaw

JAF 38
City University of New York Graduate Center
New York, New York
May 302019
joint work with T. Slaman and L. Harrington

Computable quotient presentations

Definition

A computable quotient presentation of a structure \mathcal{A} (an E-structure isomorphic to \mathcal{A}) consists of:
(1) a computable structure on the natural numbers $\langle\mathbb{N}, \star, *, \ldots\rangle$, meaning that the operations and relations of the structure are computable,
(2) an equivalence relation E on \mathbb{N} (not necessarily computable) which is a congruence with respect to this structure,

such that:

the quotient $\langle\mathbb{N}, \star, *, \ldots\rangle / E$ is isomorphic to the given structure \mathcal{A}.

Motivations for studying quotient presentations

Theorem (Homomorphism Theorem)
For any countable algebra \mathbb{A} there exists a surjective homomorphism $h: F \rightarrow \mathbb{A}$ from the term algebra \mathcal{F} into \mathbb{A} Hence, the algebra \mathbb{A} is isomorphic to \mathcal{F} / E, where E is the kernel of the homomorphism:

$$
E=\{(x, y) \mid h(x)=h(y)\} .
$$

Every countable algebra (a structure in a language with no relations) arises as the quotient of the term algebra on a countable number of generators.

Motivations for studying quotient presentations

Theorem (Homomorphism Theorem)
For any countable algebra \mathbb{A} there exists a surjective homomorphism $h: F \rightarrow \mathbb{A}$ from the term algebra \mathcal{F} into \mathbb{A} Hence, the algebra \mathbb{A} is isomorphic to \mathcal{F} / E, where E is the kernel of the homomorphism:

$$
E=\{(x, y) \mid h(x)=h(y)\} .
$$

Every countable algebra (a structure in a language with no relations) arises as the quotient of the term algebra on a countable number of generators.

Observation
Every consistent c.e. theory T in a functional language admits a computable quotient presentation by an equivalence relation E of low Turing degree.

Khoussainov's conjectures

Question: can nonstandard models of arithmetic be realized as E-structures (do they have computable quotient presentations) for sufficiently non-complex E ?

In a joint work with J.D. Hamkins we prove several generalizations of Tennebaum's theorem for computable quotient presentations of models of PA:

Theorem

No nonstandard model of arithmetic has a computable quotient presentation by a c.e. equivalence relation, that is: there is no computable structure $\langle\mathbb{N}, \oplus, \odot\rangle$ and a c.e. equivalence relation E, which is a congruence with respect to this structure, such that the quotient $\langle\mathbb{N}, \oplus, \odot\rangle / E$ is a nonstandard model of arithmetic.

Theorem

There is no computable structure $\langle\mathbb{N}, \oplus, \odot\rangle$ and a co-c.e. equivalence relation E, which is a congruence with respect to this structure, such that the quotient $\langle\mathbb{N}, \oplus, \odot\rangle / E$ is a Σ_{1}-sound nonstandard model of arithmetic, or even merely a nonstandard model of arithmetic with 0^{\prime} in the standard system of the model.
Π_{1}^{0}-recursively presentable nonstandard model of arithmetic

Theorem (G., Harrington, Slaman)
There exists a nonstandard model $M \models P A$ s.t. $M \cong\langle\mathbb{N}, \oplus, \otimes, S, 0,1\rangle / E$, where $\langle\mathbb{N}, \oplus, \otimes, S, 0,1\rangle$ is computable and E is Π_{1}^{0}.

Proof...
Let $\mathcal{L}^{+}=\mathcal{L}_{P A}+\left\{c_{i}: i \in \omega\right\}$ and let $T^{+}=P A+\neg$ Con $_{P A}$.
We simulate the Henkin construction via finite injury priority argument, doing two things:
(1) building a Henkin tree,
(2) enumerating inequalities, which will give us a c.e. complement of E, making E co-c.e.

The Construction

Let $\left\{\varphi_{n}(\bar{c})\right\}_{n \in \omega}$ be a recursive enumeration of all sentences of the langugae $\mathcal{L}_{\text {PA }}^{+}$, assuming each $\varphi_{n}(\bar{c})$ to be in a prenex normal form. Stage $s+1$:
We are given a sequence $\left(T_{s}, A_{s}, E_{s}\right)$, where:

1. $T_{s}=$

$$
=T_{0}+\left(\varphi_{1}^{*}, \psi_{1}^{*}\left(c_{i_{1}}\right), \varphi_{2}^{*}, \psi_{2}^{*}\left(c_{i_{2}}\right), \ldots, \varphi_{k_{s}}^{*}, \psi_{k_{s}}^{*}\left(c_{i_{k_{s}}}\right)\right),
$$

where for each $j \leq k_{s} \varphi_{j}^{*}$ is of the form $\exists x \psi_{j}(x)$ or $\forall x \neg \psi_{j}(x)$, and

$$
\psi_{j}^{*}\left(c_{i_{j}}\right)=\left\{\begin{array}{l}
\psi_{j}\left(c_{i_{j}}\right) \text { if } \varphi_{j}^{*}=\exists x \psi_{j}(x) \\
\neg \psi_{j}\left(c_{i_{j}}\right) \text { if } \varphi_{j}^{*}=\forall x \neg \psi_{j}(x)
\end{array}\right.
$$

The Construction

2. $A_{s}\left(b_{s}\right)$ is the set of inequalities enumerated by the stage s with number b_{s} being the highest index of a Henkin constant that occurs in any formula in the set A_{s}.
and
3. $E_{s}=\{\tau(\bar{c})=\sigma(\bar{c})$:

$$
\left.\bar{c} \subseteq\left\{c_{i_{1}}, c_{i_{2}}, \ldots, c_{i_{k_{s}}}\right\}, \tau, \sigma \in \operatorname{Trm}\left(\mathcal{L}_{P A}\right), T_{s}+A_{s} \vdash_{s} \tau(\bar{c})=\sigma(\bar{c})\right\}
$$

i.e. E_{s} is the set of equalities in constants of T_{s} that are known provable from $T_{s} \cup A_{s}$ by the end of stage s,

The Construction

Given $\left(T_{s}, A_{s}, E_{s}\right)$, we are given a pair of formulas

$$
\left(\varphi_{k_{s}+1}, \psi_{k_{s}+1}^{*}\left(c_{i_{k s}+1}\right)\right) .
$$

Let $T_{s+1}=T_{s}+\varphi_{k_{s}+1}$. We begin by considering the theory

$$
U_{s+1}:=T_{s+1}+A_{s}
$$

and the finite set of short proofs associated with this theory:

$$
\left\{x \leq s+1: \operatorname{Prf}_{U_{s+1}}(x,\ulcorner 0=1\urcorner)\right\}=\left\{x_{0}, x_{1}, \ldots, x_{m}\right\} .
$$

If the set above is non-empty, we apply the Release Protocole.

The Release Protocol

Define a function f that associates with each Gödel code $x_{i} \leq s+1$ of a proof of contradiction from U_{s+1} the least index of an initial segment T_{a} of T_{s+1} such that the proof x_{i} uses only the axioms from T_{a}. We now pick the minimum of the image of f, i.e. let:

$$
a=\min \left(f\left[\left\{x_{0}, \ldots, x_{m}\right\}\right]\right)
$$

be the index of the shortest initial segment of T_{s+1} that allows for a proof (with the Gödel number bounded by $s+1$) of inconsistency. Consider the theory T_{a}.

The Release Protocol

There are two cases:

1. there is $i \leq m$ such that

$$
f\left(x_{i}\right)=a \text { and } \forall j \leq I_{i} \alpha_{i, j} \neq \psi_{k_{a}}^{*}\left(c_{i_{k}}\right),
$$

which means that $\psi_{k_{a}}^{*}\left(c_{i_{k_{a}}}\right)$ is not necessary in deriving a contradiction from T_{a}. This just means that it is $\varphi_{k_{a}}^{*}$ that is the source of the problem.

The Release Protocol

In this case we

- release all the Henkin constants used in the construction between T_{a} and T_{s+1}, i.e. forget about all the constants with indices higher than $i_{k_{a}}$ and consider them candidates for being fresh,
- change the truth value of $\varphi_{k_{a}}^{*}$, i.e. we define

$$
S_{a}:=T_{a} \backslash\left\{\varphi_{k_{a}}^{*}\right\} \cup\left\{\neg \varphi_{k_{a}}^{*}\right\}
$$

and update T_{a} to S_{a},

- if $\neg \varphi_{k_{a}}^{*}$ is an inequality, enumerate it into A_{s}, i.e.

$$
A_{s+1}:=A_{s} \cup\left\{\neg \varphi_{k_{a}}^{*}\right\}
$$

- if $\varphi_{k_{a}}$ is existential, keep $\neg \psi^{*}\left(c_{i_{a}}\right)$ in S_{a}, otherwise keep $\psi^{*}\left(c_{i k_{a}}\right)$ in S_{a}

The Release Protocol

The second case:
2. T_{a} ends with the formula $\psi_{k_{a}}^{*}\left(c_{i_{k_{a}}}\right)$ - formally: there is $i \leq m$ such that

$$
f\left(x_{i}\right)=a \text { and } \exists j \leq I_{i} \alpha_{i, j}=\psi_{k_{a}}^{*}\left(c_{i_{k}}\right),
$$

which means that $\psi_{k_{\mathrm{a}}}^{*}\left(c_{i_{k_{a}}}\right)$ is necessary in deriving a contradiction from T_{a} (i.e. it is the source of the problem).

The Release Protocol

In this case:

- replace $\psi_{k_{a}}^{*}\left(c_{i_{k_{a}}}\right)$ with $\psi_{k_{a}}^{*}(\tilde{c})$, where \tilde{c} is a fresh constant.
- figure out the equalities E_{s}^{\prime} that are $\leq s+1$-provable (possibly with the new constant \tilde{c}), i.e. a set such that

$$
T_{a}\left(c_{i_{0}}, \ldots, \tilde{c}\right) \vdash_{s+1} E_{s}^{\prime} .
$$

- since T_{a} was inconsistent, it must have been inconsistent with the set A_{s}, so we need to handle it now before we proceed to the next stage.

Decidability Lemma and The Extension Protocol

Lemma

Let $I=\left(p_{1}, \ldots, p_{n}\right)$ be a finitely generated ideal in the ring of polynomials with integer coefficients. Then the set

$$
\left\{q\left(x_{1}, \ldots, x_{k}\right): \mathbb{Z}\left[x_{1}, \ldots, x_{k}\right] / I \models q\left(x_{1}, \ldots, x_{k}\right)=0\right\}
$$

is decidable.

Check if A_{s} is satisfiable in $\mathbb{Z}\left[c_{i_{0}}, \ldots, \tilde{c}\right] /\left(E_{s}^{\prime}\right)$. By the Lemma, this property is decidable. There are two cases again:
(1) A_{s} is satisfiable in $\mathbb{Z}\left[c_{i_{0}}, \ldots, \tilde{c}\right] /\left(E_{s}^{\prime}\right)$: then use $T_{a}\left(c_{i_{0}}, \ldots, \tilde{c}\right)$ (i.e. with $c_{i_{k_{a}}}$ replaced by $\tilde{c})$ and proceed to the next stage
(2) A_{s} is unsatisfiable in $\mathbb{Z}\left[c_{i_{0}}, \ldots, \tilde{c}\right] /\left(E_{s}^{\prime}\right)$: we found out we were wrong - it is rather $\varphi_{k_{a}}^{*}$ that was the source of the problem, but we had not checked for the new ideal before: change the Boolean value of $\varphi_{k_{a}}^{*}$ and update T_{a} as before.

The construction works

Proposition
(1) Injury Lemma:

$$
T:=\lim _{s \rightarrow \infty} T_{s}
$$

exists, i,.e. there is a theory T such that for any $\varphi \in \mathcal{L}_{P A}^{+}$it holds that $\varphi \in T$ iff $\exists t \forall s>t \varphi \in T_{s}$,
(2) T is complete, Hekinized, consistent (with $P A^{+}+\neg \operatorname{Con}(P A)$),
(3) For any inequality γ we have that $\gamma \in T$ iff γ has been enumerated during the construction,
(1) The construction yields a model for T :

$$
\left\{c_{n}: n \in \omega\right\} / E_{\infty} \models T
$$

where E_{∞} denotes all the equalities provable in T.

Notes on the Injury Lemma

What happens when we discover an inconsistency and apply the Release Protocol?
(1) $\mathbb{Z}\left[c_{i_{0}}, \ldots, c_{i_{k_{a}}}\right] /\left(E_{a}\right) \models \exists x_{i_{k_{a}+1}} \ldots \exists x_{i_{k_{b}}} A_{s}(\bar{x})$,
(2) $T_{a}(\bar{c}) \vdash \forall \bar{x} \neg A_{s}(\bar{x})$, from which it follows that:

$$
\mathbb{Z}\left[c_{i_{0}}, \ldots, c_{i_{k_{a}}}\right] /\left(E_{a}\right) \not \models T_{a} .
$$

Thus: we can extract new (via a product method) polynomials (from $\mathbb{Z}[\bar{c}]$) $p_{1}, \ldots p_{n} \notin\left(E_{a}\right)$ such that

$$
T_{a} \vdash \forall j \leq n p_{j} \equiv 0
$$

Product Method for extracting polynomials

The inconsistency given by $T_{a}(\bar{c}) \vdash \forall \bar{x} \neg A_{s}(\bar{x})$ means that there must be an identity (provbable) of the form

$$
\prod_{p \in A_{s}} p=0
$$

But the product is a polynomial itself: $\prod p=q\left(c_{i_{0}}, \ldots, c_{i_{k_{a}}}\right)=0$.
We can rewrite it as a polynomial in $\mathbb{Z}\left[c_{i_{0}}, \ldots, c_{i_{k_{a}}}\right]$, and its coefficients are polynomials that were not in the ideal $\left(E_{a}\right)$.
But since $q=0$, its coefficients all have to be 0 , so they must be put into the ideal.

Proof of the Injury Lemma

By the remarks above, we have that every time we apply the Release Protocol, we have a new ideal:

$$
J:=\left(E_{a} \cup\left\{p_{1}, \ldots, p_{n}\right\}\right)
$$

We check if

$$
\mathbb{Z}\left[c_{i_{0}}, \ldots, c_{i_{k_{a}-1}}, \tilde{c}\right] / J \models A_{s}(\bar{x})
$$

(1) If no, it means $T_{a}(\bar{c})+\exists x \psi_{k_{a}}(x) \vdash \forall x \neg A_{s}(\bar{x})$.

Then, since \tilde{c} is a new constant, it actually follows that we have to put $\forall x \neg \psi_{k_{a}}(x)$ into T_{a}.
(2) If yes, we proceed (as in the Release Protocol) - but we can do so only finitely often. Why?

Proof of the Injury Lemma

Hilbert's Nullensatz

Suppose $p_{1}, \ldots, p_{n}, \ldots$ are polynomials in a given ring. Then for an ideal generated by them, i.e. $I=\left(\left(p_{n}\right)_{n \in \omega}\right)$ there exists a natural number n such that $I=\left(p_{1}, \ldots, p_{n}\right)$.

Therefore the injury of the strategy for $\varphi_{k_{a}}$ cannot happen infinitely often:
Summary of the Injury Lemma.
Every stage t that we discover an inconsistency at, there is a new equality of the form $\tau\left(c_{i_{0}}, \ldots, c_{i_{k_{a}-1}}, x\right)=0$ provable from $T_{a}+A_{t}$ and $\tau \notin \mathcal{I}_{t}$ in
$\mathbb{Z}\left[c_{i_{1}}, \ldots, c_{k_{k_{a}}-1}\right]$, and we put τ into this ideal, i.e. the ideal generated at stage t by polynomials in the ring $\mathbb{Z}\left[c_{i_{1}}, \ldots, c_{i_{k_{a}-1}}\right]$.
If this happened ∞-often, we would get back ∞-often to the ring $\mathbb{Z}\left[c_{i_{1}}, \ldots, c_{i_{k_{d}-1}}\right][x]$ and we would have (in this ring) an infinite sequence:

$$
\mathcal{I}_{t-1} \subsetneq \mathcal{I}_{t} \subsetneq \ldots \subsetneq \mathcal{I}_{t+k-1} \subsetneq \mathcal{I}_{t+k} \subsetneq \ldots \subsetneq \ldots
$$

which would contradict Hilbert's Basis Theorem (that every ring is Noetherian).

Remarks and Question

(1) We can begin with any finite set of sentences unprovable in $P A$ as we wish (as long as they guarantee nonstandardness of the resulting model): we can construct infinitely many unequivalent models.
(2) Open problem: is it possible to construct infinitely many equivalent, but nonisomorphic such models?
(3) Our models have to be Σ_{1}-unsound for general reasons.

Thank You and Go Warriors！

