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Introduction

Computable quotient presentations

Definition
A computable quotient presentation of a structure A (an E -structure
isomorphic to A) consists of:

1 a computable structure on the natural numbers 〈N, ?, ∗, . . . 〉, meaning
that the operations and relations of the structure are computable,

2 an equivalence relation E on N (not necessarily computable) which is
a congruence with respect to this structure,

such that:
the quotient 〈N, ?, ∗, . . . 〉 /E is isomorphic to the given structure A.
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Introduction

Motivations for studying quotient presentations

Theorem (Homomorphism Theorem)

For any countable algebra A there exists a surjective homomorphism
h : F → A from the term algebra F into A Hence, the algebra A is isomor-
phic to F/E , where E is the kernel of the homomorphism:

E = {(x , y) | h(x) = h(y)}.

Every countable algebra (a structure in a language with no relations) arises
as the quotient of the term algebra on a countable number of generators.

Observation

Every consistent c.e. theory T in a functional language admits a computable
quotient presentation by an equivalence relation E of low Turing degree.

Michał Tomasz Godziszewski Π0
1-Computable Quotient Presentations May 30 2019 3 / 21



Introduction

Motivations for studying quotient presentations

Theorem (Homomorphism Theorem)

For any countable algebra A there exists a surjective homomorphism
h : F → A from the term algebra F into A Hence, the algebra A is isomor-
phic to F/E , where E is the kernel of the homomorphism:

E = {(x , y) | h(x) = h(y)}.

Every countable algebra (a structure in a language with no relations) arises
as the quotient of the term algebra on a countable number of generators.

Observation

Every consistent c.e. theory T in a functional language admits a computable
quotient presentation by an equivalence relation E of low Turing degree.

Michał Tomasz Godziszewski Π0
1-Computable Quotient Presentations May 30 2019 3 / 21



Computable quotients for arithmetic

Khoussainov’s conjectures

Question: can nonstandard models of arithmetic be realized as E -structures (do
they have computable quotient presentations) for sufficiently non-complex E?

In a joint work with J.D. Hamkins we prove several generalizations of Tennebaum’s
theorem for computable quotient presentations of models of PA:

Theorem
No nonstandard model of arithmetic has a computable quotient presentation by a
c.e. equivalence relation, that is: there is no computable structure 〈N,⊕,�〉 and
a c.e. equivalence relation E , which is a congruence with respect to this structure,
such that the quotient 〈N,⊕,�〉 /E is a nonstandard model of arithmetic.

Theorem

There is no computable structure 〈N,⊕,�〉 and a co-c.e. equivalence relation
E , which is a congruence with respect to this structure, such that the quotient
〈N,⊕,�〉 /E is a Σ1-sound nonstandard model of arithmetic, or even merely a
nonstandard model of arithmetic with 0′ in the standard system of the model.
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Π0
1-recursively presentable nonstandard model of arithmetic

Π0
1-recursively presentable nonstandard model of arithmetic

Theorem (G., Harrington, Slaman)

There exists a nonstandard model M |= PA s.t. M ∼= 〈N,⊕,⊗,S , 0, 1〉/E ,
where 〈N,⊕,⊗,S , 0, 1〉 is computable and E is Π0

1.

Proof...

Let L+ = LPA + {ci : i ∈ ω} and let T+ = PA + ¬ConPA.
We simulate the Henkin construction via finite injury priority argument,
doing two things:

1 building a Henkin tree,
2 enumerating inequalities, which will give us a c.e. complement of E ,

making E co-c.e.
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Π0
1-recursively presentable nonstandard model of arithmetic

The Construction

Let {ϕn(c)}n∈ω be a recursive enumeration of all sentences of the langugae
L+
PA, assuming each ϕn(c) to be in a prenex normal form.

Stage s + 1:
We are given a sequence (Ts ,As ,Es), where:

1. Ts =

= T0 +
(
ϕ∗1, ψ

∗
1(ci1), ϕ∗2, ψ

∗
2(ci2), . . . , ϕ∗ks , ψ

∗
ks (ciks )

)
,

where for each j ≤ ks ϕ
∗
j is of the form ∃x ψj(x) or ∀x ¬ψj(x), and

ψ∗j (cij ) =

{
ψj(cij ) if ϕ∗j = ∃x ψj(x)

¬ψj(cij ) if ϕ∗j = ∀x ¬ψj(x),
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Π0
1-recursively presentable nonstandard model of arithmetic

The Construction

2. As(bs) is the set of inequalities enumerated by the stage s with
number bs being the highest index of a Henkin constant that occurs in
any formula in the set As .
and

3. Es = {τ(c) = σ(c) :

c ⊆ {ci1 , ci2 , . . . , ciks }, τ, σ ∈ Trm(LPA),Ts + As `s τ(c) = σ(c)},

i.e. Es is the set of equalities in constants of Ts that are known
provable from Ts ∪ As by the end of stage s,
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Π0
1-recursively presentable nonstandard model of arithmetic

The Construction

Given (Ts ,As ,Es), we are given a pair of formulas(
ϕks+1, ψ

∗
ks+1(ciks+1)

)
.

Let Ts+1 = Ts + ϕks+1. We begin by considering the theory

Us+1 := Ts+1 + As ,

and the finite set of short proofs associated with this theory:

{x ≤ s + 1 : PrfUs+1(x , p0 = 1q)} = {x0, x1, . . . , xm}.

If the set above is non-empty, we apply the Release Protocole.
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Π0
1-recursively presentable nonstandard model of arithmetic

The Release Protocol

Define a function f that associates with each Gödel code xi ≤ s + 1 of a
proof of contradiction from Us+1 the least index of an initial segment Ta of
Ts+1 such that the proof xi uses only the axioms from Ta.
We now pick the minimum of the image of f , i.e. let:

a = min(f [{x0, . . . , xm}])

be the index of the shortest initial segment of Ts+1 that allows for a proof
(with the Gödel number bounded by s + 1) of inconsistency. Consider the
theory Ta.
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Π0
1-recursively presentable nonstandard model of arithmetic

The Release Protocol

There are two cases:

1. there is i ≤ m such that

f (xi ) = a and ∀j ≤ li αi ,j 6= ψ∗ka(cika ),

which means that ψ∗ka(cika ) is not necessary in deriving a contradiction
from Ta. This just means that it is ϕ∗ka that is the source of the
problem.
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Π0
1-recursively presentable nonstandard model of arithmetic

The Release Protocol

In this case we
release all the Henkin constants used in the construction between Ta

and Ts+1, i.e. forget about all the constants with indices higher than
ika and consider them candidates for being fresh,
change the truth value of ϕ∗ka , i.e. we define

Sa := Ta \ {ϕ∗ka} ∪ {¬ϕ
∗
ka}

and update Ta to Sa,
if ¬ϕ∗ka is an inequality, enumerate it into As , i.e.

As+1 := As ∪ {¬ϕ∗ka},

if ϕka is existential, keep ¬ψ∗(cika ) in Sa, otherwise keep ψ∗(ci ka) in Sa
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Π0
1-recursively presentable nonstandard model of arithmetic

The Release Protocol

The second case:
2. Ta ends with the formula ψ∗ka(cika ) - formally:

there is i ≤ m such that

f (xi ) = a and ∃j ≤ li αi ,j = ψ∗ka(cika ),

which means that ψ∗ka(cika ) is necessary in deriving
a contradiction from Ta (i.e. it is the source of the problem).
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Π0
1-recursively presentable nonstandard model of arithmetic

The Release Protocol

In this case:
replace ψ∗ka(cika ) with ψ∗ka(c̃), where c̃ is a fresh constant.
figure out the equalities E ′s that are ≤ s + 1-provable (possibly with
the new constant c̃), i.e. a set such that

Ta(ci0 , . . . , c̃) `s+1 E ′s .

since Ta was inconsistent, it must have been inconsistent with the set
As , so we need to handle it now before we proceed to the next stage.
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Π0
1-recursively presentable nonstandard model of arithmetic

Decidability Lemma and The Extension Protocol

Lemma

Let I = (p1, . . . , pn) be a finitely generated ideal in the ring of polynomials with
integer coefficients. Then the set

{q(x1, . . . , xk) : Z[x1, . . . , xk ]/I |= q(x1, . . . , xk) = 0}

is decidable.

Check if As is satisfiable in Z[ci0 , . . . , c̃]/(E ′s). By the Lemma, this property is
decidable. There are two cases again:

1 As is satisfiable in Z[ci0 , . . . , c̃]/(E ′s): then use Ta(ci0 , . . . , c̃) (i.e. with cika
replaced by c̃) and proceed to the next stage

2 As is unsatisfiable in Z[ci0 , . . . , c̃]/(E ′s): we found out we were wrong - it is
rather ϕ∗ka that was the source of the problem, but we had not checked for
the new ideal before: change the Boolean value of ϕ∗ka and update Ta as
before.
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Π0
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The construction works

Proposition
1 Injury Lemma:

T := lim
s→∞

Ts

exists, i,.e. there is a theory T such that for any ϕ ∈ L+
PA it holds that

ϕ ∈ T iff ∃t∀s > t ϕ ∈ Ts ,
2 T is complete, Hekinized, consistent (with PA+ + ¬Con(PA)),
3 For any inequality γ we have that γ ∈ T iff γ has been enumerated

during the construction,
4 The construction yields a model for T :

{cn : n ∈ ω}/E∞ |= T ,

where E∞ denotes all the equalities provable in T .
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Notes on the Injury Lemma

What happens when we discover an inconsistency and apply the Release
Protocol?

1 Z[ci0 , . . . , cika ]/(Ea) |= ∃xika+1 . . . ∃xikbAs(x),
2 Ta(c) ` ∀x¬As(x),

from which it follows that:

Z[ci0 , . . . , cika ]/(Ea) 6|= Ta.

Thus: we can extract new (via a product method) polynomials (from Z[c])
p1, . . . pn 6∈ (Ea) such that

Ta ` ∀j ≤ n pj ≡ 0.
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Π0
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Product Method for extracting polynomials

The inconsistency given by Ta(c) ` ∀x¬As(x) means that there must be
an identity (provbable) of the form∏

p∈As

p = 0.

But the product is a polynomial itself:
∏

p = q(ci0 , . . . , cika ) = 0.
We can rewrite it as a polynomial in Z[ci0 , . . . , cika ], and its coefficients are
polynomials that were not in the ideal (Ea).
But since q = 0, its coefficients all have to be 0, so they must be put into
the ideal.
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Proof of the Injury Lemma

By the remarks above, we have that every time we apply the Release
Protocol, we have a new ideal:

J := (Ea ∪ {p1, . . . , pn}).

We check if
Z[ci0 , . . . , cika−1 , c̃]/J |= As(x).

1 If no, it means Ta(c) + ∃xψka(x) ` ∀x¬As(x).
Then, since c̃ is a new constant, it actually follows that we have to
put ∀x¬ψka(x) into Ta.

2 If yes, we proceed (as in the Release Protocol) - but we can do so only
finitely often. Why?
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Proof of the Injury Lemma

Hilbert’s Nullensatz
Suppose p1, . . . , pn, . . . are polynomials in a given ring. Then for an ideal gen-
erated by them, i.e. I = ((pn)n∈ω) there exists a natural number n such that
I = (p1, . . . , pn).

Therefore the injury of the strategy for ϕka cannot happen infinitely often:

Summary of the Injury Lemma.

Every stage t that we discover an inconsistency at, there is a new equality of the
form τ(ci0 , . . . , cika−1 , x) = 0 provable from Ta + At and τ 6∈ It in
Z[ci1 , . . . , cika−1 ], and we put τ into this ideal, i.e. the ideal generated at stage t
by polynomials in the ring Z[ci1 , . . . , cika−1 ].
If this happened ∞-often, we would get back ∞-often to the ring
Z[ci1 , . . . , cika−1 ][x ] and we would have (in this ring) an infinite sequence:

It−1 ( It ( . . . ( It+k−1 ( It+k ( . . . ( . . .

which would contradict Hilbert’s Basis Theorem (that every ring is Noetherian).
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Remarks and Question

1 We can begin with any finite set of sentences unprovable in PA as we
wish (as long as they guarantee nonstandardness of the resulting
model): we can construct infinitely many unequivalent models.

2 Open problem: is it possible to construct infinitely many equivalent,
but nonisomorphic such models?

3 Our models have to be Σ1-unsound for general reasons.
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