
Overview and Context Introduction to the ACL2 System Logical Foundations for ACL2 Conclusion

Logical Foundations for the
ACL2 Theorem Prover

Matt Kaufmann
The University of Texas at Austin

Dept. of Computer Science

Joint work with Bob Boyer, J Moore,
and the ACL2 community

Presented at JAF 2019

1/41

https://jaf2019nyc.com

Overview and Context Introduction to the ACL2 System Logical Foundations for ACL2 Conclusion

It’s a bit odd to be giving a talk about a software system to
mathematical logicians.

Once upon a time I was one of you . . .
but I’ve gone to the dark side.

Now I work on software, ACL2, that proves theorems.

QUESTION: What can I say today that might interest you?

MY ANSWERS:

1. Introduce ACL2 as a practical application of logic.
2. Discuss foundational issues for ACL2.

2/41

Overview and Context Introduction to the ACL2 System Logical Foundations for ACL2 Conclusion

OUTLINE

Overview and Context

Introduction to the ACL2 System

Logical Foundations for ACL2

Conclusion

3/41

Overview and Context Introduction to the ACL2 System Logical Foundations for ACL2 Conclusion

OUTLINE

Overview and Context

Introduction to the ACL2 System

Logical Foundations for ACL2

Conclusion

4/41

Overview and Context Introduction to the ACL2 System Logical Foundations for ACL2 Conclusion

OVERVIEW AND CONTEXT

The ACL2 home page begins with the following summary.

ACL2 is a logic and programming language in which you
can model computer systems, together with a tool to help
you prove properties of those models. “ACL2” denotes "A
Computational Logic for Applicative Common Lisp".

But before we talk about ACL2, let’s put it in context.

5/41

http://www.cs.utexas.edu/users/moore/acl2/

Overview and Context Introduction to the ACL2 System Logical Foundations for ACL2 Conclusion

FORMAL VERIFICATION

Formal verification (FV) of hardware and software systems is the
use of tools to check their correctness using mathematical
methods, notably proof.

FV tools include equivalence checkers, model checkers, various
static checkers, and (occasionally) interactive theorem provers
(ITPs) such as Coq, Isabelle, HOL4, PVS, Agda — and ACL2.

6/41

Overview and Context Introduction to the ACL2 System Logical Foundations for ACL2 Conclusion

INTERACTIVE THEOREM PROVING

I Yearly ITP conference
I ITP is typically more scalable than fully automatic tools,

but it requires human assistance.
I In ACL2, one proves lemmas that may be used

automatically to simplify terms in later proofs.

Some strengths of ACL2 among ITPs:

I Proof automation and debugging
I Fast execution of programs
I Documentation in hypertext format (120,000 lines for

system; many more for libraries)
I Scalability (see next slide)

7/41

https://itp19.cecs.pdx.edu
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____DEBUGGING
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html

Overview and Context Introduction to the ACL2 System Logical Foundations for ACL2 Conclusion

ON ACL2 APPLICATIONS
ACL2 has been used not only at universities and the U.S.
Government, but also at several companies [4]:

I AMD, ARM, ArterisIP, Battelle, Centaur, GE, IBM, Intel,
NXP, Kestrel, Oracle, Rockwell Collins

People are actually paid to prove theorems with ACL2.

“Microprocessor design goes daily through numerous
optimizations that affect thousands of lines of code. These
optimizations must be proved correct.”

— Anna Slobodova, verification manager, Centaur Technology

A recent example of an ACL2 formalization at UT Austin:
An efficient checker for Boolean satisfiability (SAT) proofs

I Used in recent international SAT competitions
I Has checked 2-petabyte SAT proof of longstanding open

problem (Schur number 5) [3]; ∼16 CPU years
8/41

Overview and Context Introduction to the ACL2 System Logical Foundations for ACL2 Conclusion

PARTIAL TIMELINE

Boyer and Moore meet

insertion sort

binary adder

expression compiler

prime factorization

BDX930 abandoned

RSA

unsolvability of halting problem

FM8501

Gödel

FM8502

KIT OS kernel

Piton

micro Gypsy compiler

Unity
Gauss

FM9001

Byzantine Generals

clock sync

biphase mark

Motorola 68020

Nqthm compiler

DEC alpha
Motorola CAP

Paris-Harrington Ramsey

AMD K5 floating-point division
µcode

real-time model

Rockwell JEM1

initial ACL2 workshop

Logic formalization (Spain),
ongoing

IBM floating point algorithms

Kalman filters

FM9801

UCLID integration prototype
AAMP7G MIL cert.

Y86

Dijkstra shortest path

sixth ACL2 workshop

Rockwell Greenhills OS

Galois/Rockwell SHADE
AMD floating-point rtl, ongoing

ACM Software System Award

Buyer/seller

x86 ring model/proof

fast consensus analysis

Y86 with STOBJ
X86 ISA

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

9/41

Overview and Context Introduction to the ACL2 System Logical Foundations for ACL2 Conclusion

OUTLINE

Overview and Context

Introduction to the ACL2 System

Logical Foundations for ACL2

Conclusion

10/41

Overview and Context Introduction to the ACL2 System Logical Foundations for ACL2 Conclusion

OUTLINE

Overview and Context

Introduction to the ACL2 System

Logical Foundations for ACL2

Conclusion

11/41

Overview and Context Introduction to the ACL2 System Logical Foundations for ACL2 Conclusion

INTRODUCTION TO THE ACL2 SYSTEM

I ACL2 is freely available with libraries of certifiable books.
I Available from the ACL2 home page and Github
I Libraries provide more than 500,000 events (theorems,

definitions, other).

I ACL2 is written mostly in itself (!).
I About 11 MB of source files

I ACL2 community holds workshops: #15 held Nov. 2018
I History of the ACL2 system

I Bob Boyer and J Moore started ACL2 in 1989. I joined in
1993; Bob stopped in 1995. J and I continue the work.

I Boyer-Moore Theorem Provers go back to their collaboration
starting in 1971. [10]

I The ACL2 community contributes with feature requests
and (on occasion) prototype implementations.

12/41

http://www.cs.utexas.edu/users/moore/acl2/
https://github.com/acl2/acl2
http://www.cs.utexas.edu/users/moore/acl2/workshops.html
http://www.cs.utexas.edu/users/moore/acl2/workshop-2018

Overview and Context Introduction to the ACL2 System Logical Foundations for ACL2 Conclusion

USING ACL2
Let’s get familiar with ACL2 (and its syntax):
first demo programming, then theorem proving.

I ACL2 programming and evaluation
[DEMO]: file demo-1.lsp
(log demo-1-log.txt)

I ACL2 as an automated theorem prover
[DEMO]: file demo-2.lsp
(log demo-2-log.txt)

I ACL2 provides automation for induction, linear arithmetic,
Boolean reasoning, rule application, . . .

I During a proof, each goal is replaced by a list of subgoals
(possible empty) such that if they are all theorems, then
that goal is a theorem.

13/41

http://www.cs.utexas.edu/users/kaufmann/talks/acl2-jaf-2019-nyc/demo-1.lsp
http://www.cs.utexas.edu/users/kaufmann/talks/acl2-jaf-2019-nyc/demo-1-log.txt
http://www.cs.utexas.edu/users/kaufmann/talks/acl2-jaf-2019-nyc/demo-2.lsp
http://www.cs.utexas.edu/users/kaufmann/talks/acl2-jaf-2019-nyc/demo-2-log.txt

Overview and Context Introduction to the ACL2 System Logical Foundations for ACL2 Conclusion

OUTLINE

Overview and Context

Introduction to the ACL2 System

Logical Foundations for ACL2

Conclusion

14/41

Overview and Context Introduction to the ACL2 System Logical Foundations for ACL2 Conclusion

OUTLINE

Overview and Context

Introduction to the ACL2 System

Logical Foundations for ACL2

Conclusion

15/41

Overview and Context Introduction to the ACL2 System Logical Foundations for ACL2 Conclusion

LOGICAL FOUNDATIONS (1)

The ACL2 logic is a first-order logic with ε0-induction.

Probably weaker induction would usually suffice in practice;
maybe only ωω;
maybe only each of ω, ωω, ωωω

, etc., iterated through only
standard natural numbers . . .

I . . . but it hasn’t been a priority to consider this, let alone to
consider effects on the implementation.

(Anyhow, it’s nice to have Ken Kunen’s Nqthm proof of the
Paris-Harrington theorem. [9])

16/41

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____ORDINALS

Overview and Context Introduction to the ACL2 System Logical Foundations for ACL2 Conclusion

LOGICAL FOUNDATIONS (2)
Restriction: ACL2 theories extend the ground-zero theory:
essentially PA with ε0-induction, extended with data types.

I numbers (complex rationals);
I characters;
I strings;
I symbols; and
I closure under an ordered pair operation, cons.

Cons provides lists, with the symbol nil for the empty list.

ACL2 !>(cons 3 nil)
(3)
ACL2 !>(cons 2 (cons 3 nil))
(2 3)
ACL2 !>(cons 1 (cons 2 (cons 3 nil)))
(1 2 3)
ACL2 !>

17/41

Overview and Context Introduction to the ACL2 System Logical Foundations for ACL2 Conclusion

LOGICAL FOUNDATIONS (3)

Theory extensions made with ACL2 are conservative (no new
theorems in the existing language).

I . . . This holds even for recursive definitions, since
“termination” must be provable.

I We will see the importance of introducing new concepts
locally: justified by conservativity.

I Theories evolve by introducing new function symbols using
the extension principles. [6]

18/41

Overview and Context Introduction to the ACL2 System Logical Foundations for ACL2 Conclusion

EXTENSION PRINCIPLE: DEFINITIONS
A definition extends the current theory with the axiom equating
the call with the body. Example (from first demo):

(defun fact (n) ; factorial
(if (posp n) ; n is a positive integer

(* n (fact (- n 1)))
1))

This adds the following axiom (and of course induction
axioms):

(fact n) =
(if (posp n) ; n is a positive integer

(* n (fact (- n 1)))
1)

A definition may be recursive if some measure into ε0 is proved
to decrease on each recursive call.

19/41

Overview and Context Introduction to the ACL2 System Logical Foundations for ACL2 Conclusion

EXTENSION PRINCIPLE: CHOICE (AND ∃)
Quantification is implemented using a choice operator. When
asked to define
P(~x) = ∃~yA(~x,~y)
then ACL2 generates the following.
Conservatively introduce a Skolem (witness) function w(~x)
and a predicate P(~x):
w(~x) = ε~yA(~x,~y) [If any ~y satisfies A(~x,~y), then w(~x) does.]
P(~x) = A(~x,w(~x))

(defun-sk fermat-counterex (n)
(exists (i j k)
(and (posp i) (posp j) (posp k)

(equal (+ (expt i n) (expt j n))
(expt k n))))

(defthm fermat
(implies (and (integerp n) (< 2 n))

(not (fermat-counterex n))))

20/41

Overview and Context Introduction to the ACL2 System Logical Foundations for ACL2 Conclusion

EXTENSION PRINCIPLE: CHOICE (AND ∃) (2)

This sort of thing is clearly conservative (we have countable
theories, so we don’t even need Choice). . .

. . . IF we ignore induction!

Conservativity with induction follows from a model-theoretic
forcing argument.

21/41

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____CONSERVATIVITY-OF-DEFCHOOSE
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____CONSERVATIVITY-OF-DEFCHOOSE

Overview and Context Introduction to the ACL2 System Logical Foundations for ACL2 Conclusion

EXTENSION PRINCIPLE: CONSTRAINTS

It is also legal to introduce constrained functions, using axioms
that are proved about local witnesses.
Example:

(encapsulate ((fn (x y) t))
(local (defun fn (x y)

(+ x y)))
(defthm fn-commutative
(equal (fn x y) (fn y x))))

A derived inference rule, functional instantiation [2], is often
useful with constrained functions.
Example:

22/41

Overview and Context Introduction to the ACL2 System Logical Foundations for ACL2 Conclusion

(defun map2-fn (lst1 lst2)
(if (consp lst1)

(cons (fn (first lst1) (first lst2))
(map2-fn (rest lst1) (rest lst2)))

nil))
(defthm map2-fn-commutative

(implies (equal (len lst1) (len lst2)) ; same length
(equal (map2-fn lst2 lst1)

(map2-fn lst1 lst2))))
(defun map2-* (lst1 lst2)

(if (consp lst1)
(cons (* (first lst1) (first lst2))

(map2-* (rest lst1) (rest lst2)))
nil))

(defthm map2-*-commutative
(implies (equal (len lst1) (len lst2))

(equal (map2-* lst2 lst1)
(map2-* lst1 lst2)))

:hints (("Goal" :by (:functional-instance
map2-fn-commutative
(fn *) (map2-fn map2-*)))))

23/41

Overview and Context Introduction to the ACL2 System Logical Foundations for ACL2 Conclusion

CONSERVATIVITY AND LOCAL
Fun example in ACL2(r), a variant of ACL2 that supports the
real numbers, due to Ruben Gamboa:
The Overspill Principle of non-standard analysis.
Informally:
If internal predicate P(n, x) holds for all standard natural
numbers n, then P(n, x) holds for some non-standard natural
number n.

I overspill.lisp: Relatively concise formalization
(which I’ll flash on the next slide)
25 lines

I overspill-proof.lisp: Ugly proof (shows need for
human assistance), but LOCAL to the main proof, by
conservativity
256 lines

Using LOCAL can dramatically speed up book inclusion!
24/41

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=COMMON-LISP____REAL
https://raw.githubusercontent.com/acl2/acl2/master/books/nonstd/nsa/overspill.lisp
https://raw.githubusercontent.com/acl2/acl2/master/books/nonstd/nsa/overspill-proof.lisp

Overview and Context Introduction to the ACL2 System Logical Foundations for ACL2 Conclusion

(local ; Hence skipped when including this top-level book!
(include-book "overspill-proof"))

(defstub overspill-p (n x) t)

(defun overspill-p* (n x)
(if (zp n)

(overspill-p 0 x)
(and (overspill-p n x)

(overspill-p* (1- n) x))))

(defchoose overspill-p-witness (n) (x)
(or (and (natp n) (standardp n)

(not (overspill-p n x)))
(and (natp n) (i-large n)

(overspill-p* n x))))

(defthm overspill-p-overspill
(let ((n (overspill-p-witness x)))
(or (and (natp n) (standardp n)

(not (overspill-p n x)))
(and (natp n) (i-large n)

(implies (and (natp m)
(<= m n))

(overspill-p m x)))))
:rule-classes nil)

25/41

Overview and Context Introduction to the ACL2 System Logical Foundations for ACL2 Conclusion

META-THEORETIC REASONING (1)

In ACL2, you can [1, 5]:

I code a simplifier,
I prove that it is sound, and
I direct its use during later proofs.

Efficient execution can be important for meta-theoretic
reasoning!

A comment in the ACL2 sources, the “Essay on Correctness of
Meta Reasoning”, works out the correctness argument.

26/41

Overview and Context Introduction to the ACL2 System Logical Foundations for ACL2 Conclusion

ITERATION
Useful for programming, with reasoning support. Examples:

ACL2 !>(loop$ for i in '(3 5 7) sum (* i i))
83
ACL2 !>

ACL2 gives the following semantics to the second of these.

(sum$ '(lambda (i) (* i i))
'(3 5 7))

where sum$ is defined essentially as follows.

(defun sum$ (fn lst)
(if (endp lst) ; lst is empty

0
(+ (apply$ fn (list (first lst)))

(sum$ fn (rest lst)))))

27/41

Overview and Context Introduction to the ACL2 System Logical Foundations for ACL2 Conclusion

“HIGHER-ORDER” Apply$ (1)
We cannot employ the usual two-sorted, weak second-order
approach. Example: Not a theorem without the defun!
(local (defun f (x) x))
(thm (equal (apply$ 'f (list x)) x))

Example successful use of apply$:

(include-book "projects/apply/top" :dir :system)
(defun$ norm^2 (x y) (+ (* x x) (* y y)))
(assert-event (equal (norm^2 3 4) 25))
(thm (equal (norm^2 3 4) 25))
(assert-event (equal (apply$ 'norm^2 (list 3 4))

25))

But the following fails, as it should:
apply$ is a constrained function with trivial constraints.

(thm (equal (apply$ 'norm^2 (list 3 4))
25))

28/41

Overview and Context Introduction to the ACL2 System Logical Foundations for ACL2 Conclusion

“HIGHER-ORDER” Apply$ (2)

However, the proof succeeds for the thm below, where the
warrant hypothesis, (warrant norm^2), asserts:
(∀ x y) (equal (apply$ 'norm^2 (list x y))

(norm^2 x y)).

(thm (implies (warrant norm^2)
(equal (apply$ 'norm^2 (list 3 4))

25)))

Warrant hypotheses are not vacuous!
There is a natural evaluation theory where every warrant is
attached to the constant “true” function. [8]

29/41

Overview and Context Introduction to the ACL2 System Logical Foundations for ACL2 Conclusion

DEFATTACH (1)
Defattach provides a way to evaluate constrained functions
by giving them new definitions. But it allows extensions that
are not conservative. Example:

I Constraint for a “specification” function, spec:
x ∈ Z =⇒ spec(x) ∈ Z

I Define function f: f(x, y) = spec(x + y)
I Define an “implementation” function, impl:
impl(x) = 10 ∗ x

I Attach impl to spec: (defattach spec impl)
Meaning: (∀x)(spec(x) = impl(x))

Result not provable from axioms for f and spec:

ACL2 !>(f 3 4) ; = spec(7) = impl(7)
70
ACL2 !>

30/41

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____DEFATTACH

Overview and Context Introduction to the ACL2 System Logical Foundations for ACL2 Conclusion

DEFATTACH (2)
Issues to consider:

I Is (local (defattach ...)) supported?
YES, local is supported.

I Then how do we deal with conservativity?
Two theories: The current theory for reasoning and a
stronger evaluation theory, extended using defattach:

(∀x)(spec(x) = impl(x))

I Ah, but what about this?

(thm (equal (f 3 4) 70))

The proof fails! (Good!)
I Is the evaluation theory consistent?

Yes, where the attachment relation must be acyclic.

Details: see Essay on Defattach comment in the ACL2 sources.
31/41

Overview and Context Introduction to the ACL2 System Logical Foundations for ACL2 Conclusion

SOME MORE LOGICAL CHALLENGES

Practical considerations create some more logical challenges.

I Packages are a programming convenience but introduce
axioms such as the following: not conservative!
symbol-package-name('PKG1::F) = "PKG1"
Hence packages must be recorded.

I One can specify a measure in order to admit a recursive
definition. But what if the measure is defined in terms of a
function whose definition is LOCAL?

I Congruence-based reasoning allows replacing one subterm
by another that is equivalent but not necessarily equal. [7]

32/41

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____HIDDEN-DEFPKG

Overview and Context Introduction to the ACL2 System Logical Foundations for ACL2 Conclusion

OUTLINE

Overview and Context

Introduction to the ACL2 System

Logical Foundations for ACL2

Conclusion

33/41

Overview and Context Introduction to the ACL2 System Logical Foundations for ACL2 Conclusion

OUTLINE

Overview and Context

Introduction to the ACL2 System

Logical Foundations for ACL2

Conclusion

34/41

Overview and Context Introduction to the ACL2 System Logical Foundations for ACL2 Conclusion

CONCLUSION

I ACL2 has a 29 (or 48) year history and is used in industry.
I As an ITP system, it relies on user guidance for large

problems but enjoys scalability.
I Logic provides critical foundational support for practical

theorem proving software.
I For more information, see the ACL2 home page, in

particular links to The Tours and Publications, which links
to introductory material.

35/41

http://www.cs.utexas.edu/users/moore/acl2/
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____The_02Tours
http://www.cs.utexas.edu/users/moore/publications/acl2-papers.html
http://www.cs.utexas.edu/users/moore/publications/how-to-prove-thms/index.html

Overview and Context Introduction to the ACL2 System Logical Foundations for ACL2 Conclusion

R. S. Boyer and J S. Moore. Metafunctions: Proving them correct and using them efficiently as new proof
procedures. In The Correctness Problem in Computer Science. Academic Press, London, 1981.

Robert S. Boyer, David M. Goldschlag, Matt Kaufmann, and J. Strother Moore. Functional Instantiation in
First-Order Logic. In Vladimir Lifschitz, editor, Artificial and Mathematical Theory of Computation, pages 7 – 26.
Academic Press, 1991.
http://www.sciencedirect.com/science/article/pii/B9780124500105500074.

Marijn J. H. Heule. Schur Number Five. In AAAI-18, pages 6598–6606, 2018.
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16952.

Warren A. Hunt, Matt Kaufmann, J Strother Moore, and Anna Slobodova. Industrial Hardware and Software
Verification with ACL2. Philosophical Transactions of the Royal Society Annn, 375(2104):20150399, 2017.
https://royalsocietypublishing.org/doi/abs/10.1098/rsta.2015.0399.

W. A. Hunt, Jr., M. Kaufmann, R. B. Krug, J S. Moore, and E. W. Smith. Meta reasoning in ACL2. In J. Hurd
and T. Melham, editors, 18th International Conference on Theorem Proving in Higher Order Logics: TPHOLs 2005,
volume 3603 of Lecture Notes in Computer Science, pages 163–178. Springer, 2005.

Matt Kaufmann and J. Strother Moore. Structured Theory Development for a Mechanized Logic. J. Autom.
Reason., 26(2):161–203, February 2001. https://doi.org/10.1023/A:1026517200045.

Matt Kaufmann and J Strother Moore. Rough Diamond: An Extension of Equivalence-Based Rewriting. In
ITP 2014, pages 537–542, 2014. https://doi.org/10.1007/978-3-319-08970-6_35.

Matt Kaufmann and J Strother Moore. Limited Second-Order Functionality in a First-Order Setting. J.
Automated Reasoning, 12 2018. http://www.cs.utexas.edu/~kaufmann/papers/apply/.

Kenneth Kunen. A Ramsey Theorem in Boyer-Moore Logic. Journal of Automated Reasoning, 15:217–235, 1995.
https://link.springer.com/article/10.1007/BF00881917.

J Strother Moore. Milestones from The Pure Lisp Theorem Prover to ACL2. Submitted; see
http://www.cs.utexas.edu/users/moore/publications/milestones.pdf.

36/41

http://www.sciencedirect.com/science/article/pii/B9780124500105500074
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16952
https://royalsocietypublishing.org/doi/abs/10.1098/rsta.2015.0399
https://doi.org/10.1023/A:1026517200045
https://doi.org/10.1007/978-3-319-08970-6_35
http://www.cs.utexas.edu/~kaufmann/papers/apply/
https://link.springer.com/article/10.1007/BF00881917
http://www.cs.utexas.edu/users/moore/publications/milestones.pdf

Overview and Context Introduction to the ACL2 System Logical Foundations for ACL2 Conclusion

Matt Kaufmann
matthew.j.kaufmann@gmail.com

Slides for this talk are available via links from my home page:
http://www.cs.utexas.edu/users/kaufmann

THANK YOU!

37/41

mailto:matthew.j.kaufmann@gmail.com
http://www.cs.utexas.edu/users/kaufmann

Overview and Context Introduction to the ACL2 System Logical Foundations for ACL2 Conclusion

EXTRA SLIDES

We can go on, time permitting....

38/41

Overview and Context Introduction to the ACL2 System Logical Foundations for ACL2 Conclusion

Some ACL2 features not discussed further today:

I Prover algorithms
I Waterfall, linear arithmetic, Boolean reasoning, . . .
I Rewriting: Conditional, congruence-based, rewrite cache,

syntaxp, bind-free, . . .

I Using the prover effectively
I The-method and introduction-to-the-theorem-prover
I Theories, hints, rule-classes, . . .
I Accumulated-persistence, brr, proof-checker, dmr, . . .

I Programming support, including (just a few):
I Guards
I Hash-cons and function memoization
I Packages
I Mutable State, stobjs, arrays, applicative hash tables, . . .

I System-level: Emacs support, books and certification,
abbreviated printing, parallelism (ACL2(p)), . . .

39/41

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____HINTS-AND-THE-WATERFALL
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____LINEAR-ARITHMETIC
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____BOOLEAN-REASONING
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____REWRITE
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____CONGRUENCE
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____SET-RW-CACHE-STATE
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____SYNTAXP
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____BIND-FREE
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____THE-METHOD
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____INTRODUCTION-TO-THE-THEOREM-PROVER
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____THEORIES
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____HINTS
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____RULE-CLASSES
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____ACCUMULATED-PERSISTENCE
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____BRR
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____PROOF-CHECKER
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____DMR
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____GUARD
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____HONS-AND-MEMOIZATION
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____PACKAGES
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____STATE
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____STOBJ
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____ARRAYS
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____FAST-ALISTS
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____EMACS
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____BOOKS
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____CERTIFY-BOOK
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____SET-EVISC-TUPLE
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____PARALLELISM

Overview and Context Introduction to the ACL2 System Logical Foundations for ACL2 Conclusion

META-THEORETIC REASONING (2)
ACL2 supports a notion of “evaluation”, together with this sort
of meta theorem, directing the use of fn to transform terms that
are calls of nth or of foo.
(defthm fn-correct-1
(equal (evl x a)

(evl (fn x) a))
:rule-classes ((:meta :trigger-fns (nth foo))))

More complex forms are supported, including:
I extended-metafunctions that take STATE and contextual

inputs;
I transformations at the goal level; and
I hypotheses that extract known information from the

logical world.
For details, including issues pertaining to evaluation, see the
Essay on Correctness of Meta Reasoning comment in the ACL2
sources. Attachments provide a challenge.

40/41

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____META
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____EXTENDED-METAFUNCTIONS
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____CLAUSE-PROCESSOR
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____META-EXTRACT
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____WORLD

Overview and Context Introduction to the ACL2 System Logical Foundations for ACL2 Conclusion

ON EFFICIENT EXECUTION

Efficient execution is a key design goal.

I ACL2 definitions are actually programs in the Common
Lisp programming language.

I Guards specify intended domains of functions and support
sound, efficient Common Lisp evaluation.

I Several features support efficient computation by reusing
storage, yet with a first-order logic foundation.

I Single-threaded objects including state
I Arrays
I Function memoization (reuse of saved results)
I Fast alists (applicative hash tables)

41/41

	Overview and Context
	Introduction to the ACL2 System
	Logical Foundations for ACL2
	Conclusion

