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Indiscernibles and Recursive Saturation

Definition

Let M be an L-structure. Let I ⊆ M be linearly ordered by <. I is called
a indiscernible sequence[n-indiscernible sequence] if for all n < ω, all
increasing n-tuples 〈a0, . . . , an−1〉, 〈b0, . . . , bn−1〉 in [X ]n, and all formulas
[with n-free variables],

M � φ(a0, . . . , an−1)↔ φ(b0, . . . , bn−1).

If T is a theory with built-in Skolem functions and M � T , then we call
the structure N ≺ M generated by I an Ehrenfeucht-Mostowski model.

Question:

Is there a recursively saturated model of PA generated by
indiscernibles?
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Indiscernibles and Recursive Saturation

Theorem (Ramsey’s Theorem)

If k , n < ω, then ℵ0 → (ℵ0)nk .

Theorem (Ehrenfeucht-Mostowski)

Let T be an L-theory with infinite models. For any infinite linear order
(I , <), there is M � T containing an indiscernible sequence (ci : i ∈ I ).
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Indiscernibles and Recursive Saturation

Definition (expandability)

Let L be a recursive language and A an L-structure. Let R be a new
relation symbol.

A is resplendent(chronically resplendent) if
ā ∈ A and Th(A, ā) + ϕ(ā,R)) is consistent ⇒ ∃RA ((A,RA) � ϕ(ā,RA)).

A is chronically resplendent if
ā ∈ A and Th(A, ā) + ϕ(ā,R)) is consistent ⇒ ∃RA ((A,RA) � ϕ(ā,RA)
and (A,R) is resplendent).

A is totally resplendent if ∃R0,R1,R2, . . . on A such that each expansion
(A,R0, . . . ,Rn−1) is resplendent and if (A,R0,R1, . . .) � ∃Rϕ(ā,R), then
there exists RA parametrically definable in (A,R0,R1, . . .) such that
(A,R0,R1, . . . ,R

A) � ϕ(ā,RA).
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Recursive saturation and Resplendency

Fact

For countable recursively saturated structures over a recursive language L,

Recursive saturation ⇒ Resplendency
⇒ Chronic resplendency
⇒ Total resplendency

Theorem

Let L be a recursive language and M be a countable recursively saturated
L-structure, and ā ∈ M. Let L′ be a recursive extension of L ∪ {ā} and T
a recursively axiomatized L′-theory. Then, if Th(M, ā) + T is consistent,
there is an expansion of (M, ā) to L′ satisfying T that is recursively
saturated as an L′-structure.
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Recursive saturation and Indiscernibles

Question (D. Marker, S. Smith)

Is there a recursively saturated model of PA which is generated by a set of
indiscernibles?

Theorem (F. Abramson, J. Knight, 1981)

Every consistent extension of PA has a countable recursively saturated
model generated by a set of indiscernibles. [Knight,Julia,personal letter to
A.Macintyre,1981]
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Proof by R. Kossak

Lemma

If M ≺ N � PA and K = sup(M) in N , then M≺cof K ≺end N .

Lemma

Let M≺end N be nonstandard models of PA, and suppose for some
a ∈ N , M = sup{(a)n : n < ω}, and Scl((a)i ) < (a)i+1 for all i < ω. If
ϕ(x , ȳ) is a formula and b̄ ∈ M with b̄ < (a)m for some m < ω, then
M � ∃xϕ(x , b̄) iff N � ∃x < (a)m+1ϕ(x , b̄), and
M � ∀xϕ(x , b̄) iff N � ∀x < (a)m+1ϕ(x , b̄).

Lemma

Let M≺end N be nonstandard models of PA, and suppose for some
a ∈ N , M = sup{(a)n : n < ω}, and Scl((a)i ) < (a)i+1 for all i < ω.
Then, M is recursively saturated.
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Proof by R. Kossak

Let L = LPA ∪ {c} and T be the L-theory consisting of PA and the
following:

{ϕ((c)m1 , (c)m2 , . . . , (c)mk
)↔ ϕ((c)n1 , (c)n2 , . . . , (c)nk ) :

〈m̄〉, 〈n̄〉 ∈ [ω]≥0, ϕ is an LPA-formula}
∪{(c)n < (c)n+1 : n < ω}
∪{(c)n < ((c)n+1)0 : n < ω}
∪{t(((c)n)i ) < ((c)n)i+1 : n, i < ω, t is an LPA-term}

Let N � T , M = Scl((c)n : n < ω). Let Mn = sup(Scl(((c)n)i : i < ω))
for each n < ω. Then, Mn’s are recursively saturated. And,
M =

⋃
n<ωMn is recursively saturated.

Also, M is generated by the indiscernibles 〈(c)n : n < ω〉.

Whan Ki Lee, Queensborough Community College (JAF 38)Resplendent models generated by indiscernibles May, 30, 2019 8 / 19



Schmerl’s Answers

Definition

Let Σ be a complete set of L-formulas. Let I be a countable linearly
ordered set. If T = {ϕ(ī) : n ∈ N, ϕ(x̄) ∈ Σ, 〈ī〉 ∈ [I ]n} is consistent, then
we say Σ is an indiscernible type.

Definition

Let A be an L-structure and I ⊆ A. If every element of A is generated as
t(ī) for some β-term t and ī ∈ I n for some n ∈ N. Then, we say A is
β-generated by I .

Let L = (β, . . .) be a finite language with a binary function symbol β. Let
CFF be the set of sentences

∀x0, . . . , xn−1∀y0, . . . , yn−1∃x

 ∧
i<j<n

xi 6= xj →
∧
i<n

β(xi , x) = yi
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Schmerl’s Answers

Theorem (J. Schmerl (1985))

Every countable recursively saturated model of CFF is generated by a set
of indiscernibles.

Theorem (J. Schmerl, 1989)

Let A be a countable recursively saturated model of CFF. Then there is
an indiscernible type Σ in the language L such that if I is a linearly
ordered set with no last element and B is generated by I having
indiscernible type Σ, then B is β-generated by I , totally resplendent, and
B ≡∞,ω A as L-structures.
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Schmerl’s Theorem

Theorem (J. Schmerl, 1989)

Let A be a countable recursively saturated model of CFF. Then there is
an indiscernible type Σ in the language L such that if I is a linearly
ordered set with no last element and T = {ϕ(ī) : n ∈ N, ϕ(x̄) ∈ Σ, 〈ī〉
∈ [I ]n}, then every model C of T has the elementary substructure B
which is β-generated by I and totally resplendent, and such that
B ≡∞,ω A as L-structures.
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Proof of Schmerl’s theorem

Using the recursive saturation of A, we assume that

A has a pairing function(a bijection between A2 and A).

A has a linear order < and satisfies

∀x0, . . . , xn−1∀y0, . . . , yn−1∀z∃x > z

 ∧
i<j<n

xi 6= xj →
∧
i<n

β(xi , x) = yi


for n < ω.

A has distinct elements a0, a1, a2, · · · such that β(an, a0) = an+1 for
n > 0.
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Combinatorics

Definition

Let L be a finite language consisting only of relation symbols among
which is the binary relation symbol < for ordering. Let A = (A, <, . . .) is a
finite ordered L-structure and f is a function on [A]<ω. We say that f is
homogeneous on A if whenever X ,Y ⊆ A and A � X ∼= A � Y , then
f (X ) = f (Y ).

Theorem (AH/NR Theorem)

Suppose A = (A, <, ...) is a finite ordered L-structure. Then there is a
finite ordered L-structure B = (B, <, ...) such that whenever
f : [B]<ω → {0, 1}, then there is A′ ⊆ B such that A′ ∼= A and f is
homogeneous on A′.
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Combinatorics

Definition ((G , r)-free)

Let (A, <) be an infinite linearly ordered set. Let
G = 〈gn : [A]n → A 〉1<n<ω be a sequence of functions. Let Y be a finite
subset of A, a ∈ A, r < ω, and f : [Y ]≥r → A, we say f is coded by a via
G if for all s ≥ r and for all 〈b0, . . . , bs−1〉 ∈ [Y ]s ,

gs+1(b0, b1, . . . , bs−1, a) = f (b0, b1, . . . , bs−1).

We also say that a subset I ⊆ A is (G , r)-free if it satisfies the following: if
Y is a finite subset Y of I and f : [Y ]≥r → A is a function, then for each
a ∈ I there is b ∈ I with b > a that codes f via G .

Lemma

Let r < ω, G = {gn : [ω]n → ω : 1 < n < ω} and I ⊆ ω be (G , r)-free.
Let F : [I ]r → {0, 1}. Then there is a (G , r)-free subset J of I such that F
is constant on [J]r .
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Proof of Schmerl’s theorem

Fix some notations:

For n ≥ 2, set β(x0, x1, . . . , xn) = β(β(x0, x1, . . . , xn−1), xn).

Define β(an+1,−) : [A]n+1 → A for 0 < n < ω.

G = {β(an+1,−) : 0 < n < ω}.
d0, d1, d2, . . . is an enumeration of A.

L0 = L and for each n < ω, Ln+1 = Ln ∪ {In,Rn, dn} where In and
Rn are new unary relation symbols. Lω =

⋃
n<ω Ln.

Let 〈ϕn(x0, . . . , xn−1, y) : 0 < n < ω〉 be a list of Lω-formulas such
that ϕn is an (n + 1)-ary Ln-formula and each Lω-formula with free
variables among y , x0, x1, x2, . . . is equivalent to one in the list.

Let 〈ψn(R) : n < ω〉 be a list of the (Lω ∪ {R})-sentences with R
being a new unary relation symbol such that ψn(R) is an
Ln ∪ {R}-formula.
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Proof of Schmerl’s theorem

Construct a sequence of expansions An of A, where A0 = A and
An+1 = (An, In,Rn, dn) such that

(1.1) An+1 = (An, dn, In,Rn) is recursively saturated,

(1.2) I0 ⊆ A and if n > 0, In ⊆ In−1,

(1.3) for all 〈b0, b1〉 ∈ [In]2, β(b0, b1) = a0 and β(a0, b0) = a1.

(1.4) In is an n-indiscernible sequence in An,

(1.5) If n > 1, 〈b0, . . . , bn−1〉 ∈ [In]n, and
An � ∃yϕn−1(b0, b1, . . . , bn−2, y), then

An � ϕn−1(b0, b1, . . . , bn−2, β(an, b0, b1, . . . , bn−2, bn−1)), and

(1.6) If An � ∃Rψn(R), then An � ψn(Rn).

(1.7) In is (G , n)-free.
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Proof of Schmerl’s theorem

Suppose we have constructed the sequence A0,A1,A2, . . ..
Let Σω be the set of all Lω-formulas ϕ(x0, x1, . . . , xn−1) such that for all
sufficiently large r , whenever 〈b0, b1, . . . , bn−1〉 ∈ [Ir ]n, then Aω � ϕ(b̄).
Then, Σω is an indiscernible type.
Let I be a linearly ordered set with no last element and let
Tω = {ϕ(i0, . . . , in−1) : n < ω, 〈i0, · · · , in−1〉 ∈ [I ]n, ϕ(x̄) ∈ Σω}.
Let Σ = Σω � L and T = {ϕ(ī) : n < ω, 〈ī〉 ∈ [I ]n, ϕ(x̄) ∈ Σ}.
Let Cω be a model of Tω and Bω be the β-closure of I in Cω.
Let C be a model of T and B be the β-closure of I in C.

Theorem

Let M and N be recursively saturated structures. If M ≡ N and they
realize the same types, then M ≡ ∞,ωN .
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Proof of Schmerl’s theorem

Lemma

Bω(B) is an elementary substructure of Cω(C), and so it is a model of
Tω(T ) β-generated by I having indiscernible type Σω(Σ).

Lemma

Then, A and B realize the same L-types.

Lemma

B is totally resplendent.
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Questions

Is there a simpler proof of Schmerl’s theorem?

Further characterization of models generated by indiscernibles;

If a countable model of CFF can be generated by two different
sequences of different types, is it recursively saturated?
Or, what conditions make the converse of Schmerl’ theorem hold ?
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