Resplendent models generated by indiscernibles

Whan Ki Lee, Queensborough Community College

JAF 38

May, 30, 2019

Whan Ki Lee, Queensborough Community CcResplendent models generated by indiscernible

Definition

Let \mathcal{M} be an \mathcal{L} -structure. Let $I \subseteq M$ be linearly ordered by $\langle . I$ is called a *indiscernible sequence*[*n*-*indiscernible sequence*] if for all $n < \omega$, all increasing *n*-tuples $\langle a_0, \ldots, a_{n-1} \rangle, \langle b_0, \ldots, b_{n-1} \rangle$ in $[X]^n$, and all formulas [with *n*-free variables],

$$\mathcal{M} \vDash \phi(a_0, \ldots, a_{n-1}) \leftrightarrow \phi(b_0, \ldots, b_{n-1}).$$

If T is a theory with built-in Skolem functions and $\mathcal{M} \vDash T$, then we call the structure $\mathcal{N} \prec \mathcal{M}$ generated by I an *Ehrenfeucht-Mostowski* model.

Question:

• Is there a recursively saturated model of PA generated by indiscernibles?

Theorem (Ramsey's Theorem)

If $k, n < \omega$, then $\aleph_0 \to (\aleph_0)_k^n$.

Theorem (Ehrenfeucht-Mostowski)

Let T be an \mathcal{L} -theory with infinite models. For any infinite linear order (I, <), there is $\mathcal{M} \models T$ containing an indiscernible sequence $(c_i : i \in I)$.

Definition (expandability)

Let \mathcal{L} be a recursive language and \mathfrak{A} an \mathcal{L} -structure. Let R be a new relation symbol.

 \mathfrak{A} is resplendent(chronically resplendent) if $\bar{a} \in A$ and $\operatorname{Th}(\mathfrak{A}, \bar{a}) + \varphi(\bar{a}, R)$) is consistent $\Rightarrow \exists R^{\mathfrak{A}} ((\mathfrak{A}, R^{\mathfrak{A}}) \vDash \varphi(\bar{a}, R^{\mathfrak{A}})).$

 \mathfrak{A} is chronically resplendent if $\overline{a} \in A$ and $\operatorname{Th}(\mathfrak{A}, \overline{a}) + \varphi(\overline{a}, R)$ is consistent $\Rightarrow \exists R^{\mathfrak{A}} ((\mathfrak{A}, R^{\mathfrak{A}}) \vDash \varphi(\overline{a}, R^{\mathfrak{A}}))$ and (\mathfrak{A}, R) is resplendent).

 \mathfrak{A} is totally resplendent if $\exists R_0, R_1, R_2, \ldots$ on A such that each expansion $(\mathfrak{A}, R_0, \ldots, R_{n-1})$ is resplendent and if $(\mathfrak{A}, R_0, R_1, \ldots) \vDash \exists R \varphi(\bar{a}, R)$, then there exists $R^{\mathfrak{A}}$ parametrically definable in $(\mathfrak{A}, R_0, R_1, \ldots)$ such that $(\mathfrak{A}, R_0, R_1, \ldots, R^{\mathfrak{A}}) \vDash \varphi(\bar{a}, R^{\mathfrak{A}}).$

Fact

For countable recursively saturated structures over a recursive language L,

Recursive saturation	\Rightarrow Resplendency
	\Rightarrow Chronic resplendency
	\Rightarrow Total resplendency

Theorem

Let \mathcal{L} be a recursive language and \mathcal{M} be a countable recursively saturated \mathcal{L} -structure, and $\bar{a} \in \mathcal{M}$. Let \mathcal{L}' be a recursive extension of $\mathcal{L} \cup \{\bar{a}\}$ and T a recursively axiomatized \mathcal{L}' -theory. Then, if $\operatorname{Th}(\mathcal{M}, \bar{a}) + T$ is consistent, there is an expansion of (\mathcal{M}, \bar{a}) to \mathcal{L}' satisfying T that is recursively saturated as an \mathcal{L}' -structure.

Question (D. Marker, S. Smith)

Is there a recursively saturated model of PA which is generated by a set of indiscernibles?

Theorem (F. Abramson, J. Knight, 1981)

Every consistent extension of PA has a countable recursively saturated model generated by a set of indiscernibles. [Knight,Julia,personal letter to A.Macintyre,1981]

Proof by R. Kossak

Lemma

If
$$\mathcal{M} \prec \mathcal{N} \vDash \operatorname{PA}$$
 and $\mathcal{K} = \sup(\mathcal{M})$ in \mathcal{N} , then $\mathcal{M} \prec_{\operatorname{cof}} \mathcal{K} \prec_{\operatorname{end}} \mathcal{N}$.

Lemma

Let $\mathcal{M} \prec_{\text{end}} \mathcal{N}$ be nonstandard models of PA, and suppose for some $a \in \mathcal{N}, \ \mathcal{M} = \sup\{(a)_n : n < \omega\}$, and $\operatorname{Scl}((a)_i) < (a)_{i+1}$ for all $i < \omega$. If $\varphi(x, \bar{y})$ is a formula and $\bar{b} \in \mathcal{M}$ with $\bar{b} < (a)_m$ for some $m < \omega$, then $\mathcal{M} \models \exists x \varphi(x, \bar{b})$ iff $\mathcal{N} \models \exists x < (a)_{m+1}\varphi(x, \bar{b})$, and $\mathcal{M} \models \forall x \varphi(x, \bar{b})$ iff $\mathcal{N} \models \forall x < (a)_{m+1}\varphi(x, \bar{b})$.

Lemma

Let $\mathcal{M} \prec_{\text{end}} \mathcal{N}$ be nonstandard models of PA, and suppose for some $a \in \mathcal{N}$, $\mathcal{M} = \sup\{(a)_n : n < \omega\}$, and $\operatorname{Scl}((a)_i) < (a)_{i+1}$ for all $i < \omega$. Then, \mathcal{M} is recursively saturated.

Whan Ki Lee, Queensborough Community CcResplendent models generated by indiscernible

Let $\mathcal{L} = \mathcal{L}_{PA} \cup \{c\}$ and T be the \mathcal{L} -theory consisting of PA and the following:

$$\begin{aligned} \{\varphi((c)_{m_1}, (c)_{m_2}, \dots, (c)_{m_k}) \leftrightarrow \varphi((c)_{n_1}, (c)_{n_2}, \dots, (c)_{n_k}) : \\ \langle \bar{m} \rangle, \langle \bar{n} \rangle \in [\omega]^{\geq 0}, \varphi \text{ is an } \mathcal{L}_{\text{PA}}\text{-formula} \\ \cup \{(c)_n < (c)_{n+1} : n < \omega \} \\ \cup \{(c)_n < ((c)_{n+1})_0 : n < \omega \} \\ \cup \{t(((c)_n)_i) < ((c)_n)_{i+1} : n, i < \omega, t \text{ is an } \mathcal{L}_{\text{PA}}\text{-term} \end{aligned}$$

Let $\mathcal{N} \vDash \mathcal{T}$, $\mathcal{M} = \operatorname{Scl}((c)_n : n < \omega)$. Let $\mathcal{M}_n = \sup(\operatorname{Scl}(((c)_n)_i : i < \omega))$ for each $n < \omega$. Then, \mathcal{M}_n 's are recursively saturated. And, $\mathcal{M} = \bigcup_{n < \omega} \mathcal{M}_n$ is recursively saturated. Also, \mathcal{M} is generated by the indiscernibles $\langle (c)_n : n < \omega \rangle$.

Schmerl's Answers

Definition

Let Σ be a complete set of \mathcal{L} -formulas. Let I be a countable linearly ordered set. If $T = \{\varphi(\overline{i}) : n \in \mathbb{N}, \varphi(\overline{x}) \in \Sigma, \langle \overline{i} \rangle \in [I]^n\}$ is consistent, then we say Σ is an *indiscernible type*.

Definition

Let \mathfrak{A} be an \mathcal{L} -structure and $I \subseteq A$. If every element of \mathfrak{A} is generated as $t(\overline{i})$ for some β -term t and $\overline{i} \in I^n$ for some $n \in \mathbb{N}$. Then, we say \mathfrak{A} is β -generated by I.

Let $\mathcal{L} = (\beta, ...)$ be a finite language with a binary function symbol β . Let **CFF** be the set of sentences

$$\forall x_0, \dots, x_{n-1} \forall y_0, \dots, y_{n-1} \exists x \left[\bigwedge_{i < j < n} x_i \neq x_j \rightarrow \bigwedge_{i < n} \beta(x_i, x) = y_i \right]$$

Theorem (J. Schmerl (1985))

Every countable recursively saturated model of **CFF** is generated by a set of indiscernibles.

Theorem (J. Schmerl, 1989)

Let \mathfrak{A} be a countable recursively saturated model of **CFF**. Then there is an indiscernible type Σ in the language \mathcal{L} such that if I is a linearly ordered set with no last element and \mathfrak{B} is generated by I having indiscernible type Σ , then \mathfrak{B} is β -generated by I, totally resplendent, and $\mathfrak{B} \equiv_{\infty,\omega} \mathfrak{A}$ as \mathcal{L} -structures.

Theorem (J. Schmerl, 1989)

Let \mathfrak{A} be a countable recursively saturated model of **CFF**. Then there is an indiscernible type Σ in the language \mathcal{L} such that if I is a linearly ordered set with no last element and $T = \{\varphi(\overline{i}) : n \in \mathbb{N}, \varphi(\overline{x}) \in \Sigma, \langle \overline{i} \rangle \in [I]^n\}$, then every model \mathcal{C} of T has the elementary substructure \mathfrak{B} which is β -generated by I and totally resplendent, and such that $\mathfrak{B} \equiv_{\infty,\omega} \mathfrak{A}$ as \mathcal{L} -structures. Using the recursive saturation of ${\mathfrak A},$ we assume that

- \mathfrak{A} has a pairing function(a bijection between A^2 and A).
- $\bullet \ \mathfrak{A}$ has a linear order < and satisfies

$$\forall x_0, \ldots, x_{n-1} \forall y_0, \ldots, y_{n-1} \forall z \exists x > z \left[\bigwedge_{i < j < n} x_i \neq x_j \rightarrow \bigwedge_{i < n} \beta(x_i, x) = y_i \right]$$

for $n < \omega$.

• \mathfrak{A} has distinct elements a_0, a_1, a_2, \cdots such that $\beta(a_n, a_0) = a_{n+1}$ for n > 0.

Definition

Let \mathcal{L} be a finite language consisting only of relation symbols among which is the binary relation symbol < for ordering. Let $\mathfrak{A} = (A, <, ...)$ is a finite ordered \mathcal{L} -structure and f is a function on $[A]^{<\omega}$. We say that f is *homogeneous* on \mathfrak{A} if whenever $X, Y \subseteq A$ and $\mathfrak{A} \upharpoonright X \cong \mathfrak{A} \upharpoonright Y$, then f(X) = f(Y).

Theorem (AH/NR Theorem)

Suppose $\mathfrak{A} = (A, <, ...)$ is a finite ordered \mathcal{L} -structure. Then there is a finite ordered \mathcal{L} -structure $\mathfrak{B} = (B, <, ...)$ such that whenever $f : [B]^{<\omega} \to \{0,1\}$, then there is $\mathfrak{A}' \subseteq \mathfrak{B}$ such that $\mathfrak{A}' \cong \mathfrak{A}$ and f is homogeneous on \mathfrak{A}' .

- 4 回 ト 4 ヨ ト 4 ヨ ト

Combinatorics

Definition ((G, r)-free)

Let (A, <) be an infinite linearly ordered set. Let $G = \langle g_n : [A]^n \to A \rangle_{1 < n < \omega}$ be a sequence of functions. Let Y be a finite subset of A, $a \in A$, $r < \omega$, and $f : [Y]^{\geq r} \to A$, we say f is coded by a via G if for all $s \geq r$ and for all $\langle b_0, \ldots, b_{s-1} \rangle \in [Y]^s$,

$$g_{s+1}(b_0, b_1, \dots, b_{s-1}, a) = f(b_0, b_1, \dots, b_{s-1}).$$

We also say that a subset $I \subseteq A$ is (G, r)-free if it satisfies the following: if Y is a finite subset Y of I and $f : [Y]^{\geq r} \to A$ is a function, then for each $a \in I$ there is $b \in I$ with b > a that codes f via G.

Lemma

Let $r < \omega$, $G = \{g_n : [\omega]^n \to \omega : 1 < n < \omega\}$ and $I \subseteq \omega$ be (G, r)-free. Let $F : [I]^r \to \{0, 1\}$. Then there is a (G, r)-free subset J of I such that F is constant on $[J]^r$. Fix some notations:

- For $n \ge 2$, set $\beta(x_0, x_1, ..., x_n) = \beta(\beta(x_0, x_1, ..., x_{n-1}), x_n)$.
- Define $\beta(a_{n+1}, -) : [A]^{n+1} \to A$ for $0 < n < \omega$.
- $G = \{\beta(a_{n+1}, -) : 0 < n < \omega\}.$
- d_0, d_1, d_2, \ldots is an enumeration of A.
- $\mathcal{L}_0 = \mathcal{L}$ and for each $n < \omega$, $\mathcal{L}_{n+1} = \mathcal{L}_n \cup \{I_n, R_n, d_n\}$ where I_n and R_n are new unary relation symbols. $\mathcal{L}_\omega = \bigcup_{n < \omega} \mathcal{L}_n$.
- Let $\langle \varphi_n(x_0, \ldots, x_{n-1}, y) : 0 < n < \omega \rangle$ be a list of \mathcal{L}_{ω} -formulas such that φ_n is an (n + 1)-ary \mathcal{L}_n -formula and each \mathcal{L}_{ω} -formula with free variables among y, x_0, x_1, x_2, \ldots is equivalent to one in the list.
- Let ⟨ψ_n(R) : n < ω⟩ be a list of the (L_ω ∪ {R})-sentences with R being a new unary relation symbol such that ψ_n(R) is an L_n ∪ {R}-formula.

Construct a sequence of expansions \mathfrak{A}_n of \mathfrak{A} , where $\mathfrak{A}_0 = \mathfrak{A}$ and $\mathfrak{A}_{n+1} = (\mathfrak{A}_n, I_n, R_n, d_n)$ such that (1.1) $\mathfrak{A}_{n+1} = (\mathfrak{A}_n, d_n, I_n, R_n)$ is recursively saturated, (1.2) $I_0 \subset A$ and if n > 0, $I_n \subset I_{n-1}$, (1.3) for all $\langle b_0, b_1 \rangle \in [I_n]^2$, $\beta(b_0, b_1) = a_0$ and $\beta(a_0, b_0) = a_1$. (1.4) I_n is an *n*-indiscernible sequence in \mathfrak{A}_n , (1.5) If n > 1, $(b_0, \ldots, b_{n-1}) \in [I_n]^n$, and $\mathfrak{A}_n \models \exists y \varphi_{n-1}(b_0, b_1, \dots, b_{n-2}, y)$, then $\mathfrak{A}_n \models \varphi_{n-1}(b_0, b_1, \dots, b_{n-2}, \beta(a_n, b_0, b_1, \dots, b_{n-2}, b_{n-1})), \text{ and }$ (1.6) If $\mathfrak{A}_n \models \exists R \psi_n(R)$, then $\mathfrak{A}_n \models \psi_n(R_n)$. (1.7) I_n is (G, n)-free.

Suppose we have constructed the sequence $\mathfrak{A}_0, \mathfrak{A}_1, \mathfrak{A}_2, \ldots$

Let Σ_{ω} be the set of all \mathcal{L}_{ω} -formulas $\varphi(x_0, x_1, \ldots, x_{n-1})$ such that for all sufficiently large r, whenever $\langle b_0, b_1, \ldots, b_{n-1} \rangle \in [I_r]^n$, then $\mathfrak{A}_{\omega} \vDash \varphi(\overline{b})$. Then, Σ_{ω} is an indiscernible type.

Let I be a linearly ordered set with no last element and let

$$T_{\omega} = \{\varphi(i_0, \ldots, i_{n-1}) : n < \omega, \langle i_0, \cdots, i_{n-1} \rangle \in [I]^n, \varphi(\bar{x}) \in \Sigma_{\omega} \}.$$

Let $\Sigma = \Sigma_{\omega} \upharpoonright_{\mathcal{L}}$ and $T = \{\varphi(\bar{i}) : n < \omega, \langle \bar{i} \rangle \in [I]^n, \varphi(\bar{x}) \in \Sigma \}.$
Let \mathcal{C}_{ω} be a model of T_{ω} and \mathfrak{B}_{ω} be the β -closure of I in \mathcal{C}_{ω} .
Let \mathcal{C} be a model of T and \mathfrak{B} be the β -closure of I in \mathcal{C} .

Theorem

Let \mathcal{M} and \mathcal{N} be recursively saturated structures. If $\mathcal{M} \equiv \mathcal{N}$ and they realize the same types, then $\mathcal{M} \equiv {}_{\infty,\omega}\mathcal{N}$.

Lemma

 $B_{\omega}(B)$ is an elementary substructure of $C_{\omega}(C)$, and so it is a model of $T_{\omega}(T)$ β -generated by I having indiscernible type $\Sigma_{\omega}(\Sigma)$.

Lemma

Then, \mathfrak{A} and \mathfrak{B} realize the same \mathcal{L} -types.

Lemma

 \mathfrak{B} is totally resplendent.

- Is there a simpler proof of Schmerl's theorem?
- Further characterization of models generated by indiscernibles;
 - If a countable model of **CFF** can be generated by two different sequences of different types, is it recursively saturated?
 - Or, what conditions make the converse of Schmerl' theorem hold ?