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A non-analytic induction proof
Define f : N→ N such that f (n) is the sum of the first n odd
natural numbers:

f (0) := 0,
f (n + 1) := f (n) + 2n + 1.

That is, we have

f (0) = 0,
f (1) = 1,
f (2) = 1 + 3,
f (3) = 1 + 3 + 5,
f (4) = 1 + 3 + 5 + 7,

...
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A non-analytic induction proof

Fact
f (n) is a perfect square for all n: For all natural numbers n
there is a natural number m such that f (n) = m2.

Let us try to prove this by “straightforward induction”; that is,
let us try to prove the following.

Base case: f (0) is a perfect square.
Induction step: For all natural numbers n, if f (n) is a
perfect square then f (n + 1) is a perfect square.
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A non-analytic induction proof

Proof attempt of the induction step.
Let n be any natural number.

Induction hypothesis: There is a natural number k such
that f (n) = k2.
We want to prove that f (n + 1) = m2 for some natural
number m.
We have

f (n + 1) = f (n) + 2n + 1 (by definition)
= k2 + 2n + 1 (by induction hypothesis)

but k2 + 2n + 1 is not a perfect square for arbitrary
natural numbers k and n so how do we proceed from
here?
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A non-analytic induction proof

Let us try a different approach. Our fact follows immediately
from the following stronger fact.

Fact
f (n) = n2 for all natural numbers n.

(This fact is stronger in the sense that it logically implies the
previous fact, while the previous fact does not logically imply
this fact.)

Let us try to prove this fact by “straightforward induction”;
that is, let us try to prove the following.

Base case: f (0) = 02.
Induction step: For all natural numbers n, if f (n) = n2

then f (n + 1) = (n + 1)2.
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Terminology
Proofs like these are commonly called something like
“proof by a strengthening of the induction hypothesis”.

The typical form of a “straightforward induction proof”:
...

ϕ(0)

...
∀x : ϕ(x)→ ϕ(x + 1)
∀x . ϕ(x) .

The typical form of a “proof by a strengthening of the
induction hypothesis”:

...
ψ(0)

...
∀x : ψ(x)→ ψ(x + 1)
∀x . ψ(x)

...
∀x . ϕ(x) .
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Terminology

There need not always be any precise sense in which ψ(x) is
stronger than ϕ(x). Thus, following Hetzl and Wong, we use
the more general terminology “non-analytic induction proofs”.1

1Stefan Hetzl and Tin Lok Wong (2018): “Some observations on the
logical foundations of inductive theorem proving”.
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The problem

Question: Take a non-analytic induction proof (for
example, the proof we just saw). Is the non-analyticity of
this proof necessary?

It is not immediately obvious how to make precise sense of
this question. For example, if we would use the previously
given forms to distinguish analytic induction proofs from
non-analytic induction proofs, then any proof of ∀x . ϕ(x)
could be turned into an analytic induction proof:

...
∀x . ϕ(x)
ϕ(0)

...
∀x . ϕ(x)

...
∀x : ϕ(x)→ ϕ(x + 1)
∀x . ϕ(x) .
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The problem

Hetzl and Wong have made precise nontrivial sense of the
notion of “necessarily non-analytic induction proof”.

Our main result so far: Using Hetzl’s and Wong’s
formulation, there is a precise sense in which we must use
non-analytic induction to prove “the sum of any initial
segment of the odd natural numbers is a perfect square”.
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Definitions

Definition
The minimal (first-order) language of arithmetic, notation
Lmin, is the first-order language with signature 〈0, 1,+〉.

A first-order language is a (first-order) language of
arithmetic if and only if it is an Lmin-expansion.

Definition
Let L be a language of arithmetic and let ϕ(x) be an
L-formula in the free variable x . The induction instance for
ϕ(x) is the L-sentence

IND(ϕ) :≡ ϕ(0) ∧ ∀x(ϕ(x)→ ϕ(x + 1))→ ∀x . ϕ(x).
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Definitions

Definition
Let L be a language of arithmetic. Let T be an L-theory. Let
ϕ(x) be an L-formula in the free variable x . T proves
∀x . ϕ(x) by necessarily non-analytic induction if and only if
there is an L-formula ψ(x) in the free variable x such that

T , IND(ϕ) 6` ∀x . ϕ(x),(1)
T ` ϕ(0),(2)
T ` ψ(0),(3)
T ` ∀x : ψ(x)→ ψ(x + 1),(4)
T ` ∀x . ψ(x)→ ∀x . ϕ(x).(5)

Under conditions (1)–(5), we also say that ψ(x) witnesses that
T proves ∀x . ϕ(x) by necessarily non-analytic induction.
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Definitions
Let LOR be the language of ordered rings—signature
〈0, 1,+, ·, <〉. We find it very reasonable that working
mathematicians take the axioms of the LOR-theory PA−—the
theory of the non-negative parts of nontrivial discretely ordered
commutative rings2—for granted when doing arithmetic.

The axioms of PA− are:
associativity of addition: (x + y) + z = x + (y + z),
associativity of multiplication: (x · y) · z = x · (y · z),
commutativity of addition: x + y = y + x ,
commutativity of multiplication: x · y = y · x ,
distributivity of multiplication over addition:
x · (y + z) = x · y + x · z ,

2As introduced in for example Richard Kaye’s Models of Peano
Arithmetic (1991).
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Definitions
The axioms of PA−, continued:

0 is an additive identity: x + 0 = 0,

0 is a multiplicative zero: x · 0 = 0,
1 is a multiplicative identity: x · 1 = x ,
the order is irreflexive: x 6< x ,
the order is transitive: x < y ∧ y < z → x < z ,
the order is total: x < y ∨ x = y ∨ y < x ,
addition respects the order: x < y → x + z < y + z ,
multiplication respects the order:
0 < z ∧ x < y → x · z < y · z ,
smaller elements can be subtracted from larger elements:
x < y → ∃z . x + z = y ,
0 < 1,
the order is discrete: 0 < x → x = 1 ∨ 1 < x ,
0 is the least element: x = 0 ∨ 0 < x .
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Our result
Expand LOR to a language L of arithmetic by adding a
function symbol f .

Expand PA− to a theory T by adding defining equations
for f :
T := PA− ∪ {f (0) = 0, ∀x . f (x + 1) = f (x) + 2x + 1}.

Define L-formulas ϕ(x) and ψ(x) corresponding to the
analytic and non-analytic induction hypotheses,
respectively:

ϕ(x) :≡ ∃y . f (x) = y 2,

ψ(x) :≡ f (x) = x 2.

Fact
ψ(x) witnesses that T proves ∀x . ϕ(x) by necessarily
non-analytic induction.

anderslundstedt.com 15 / 31



Our result
Expand LOR to a language L of arithmetic by adding a
function symbol f .
Expand PA− to a theory T by adding defining equations
for f :
T := PA− ∪ {f (0) = 0, ∀x . f (x + 1) = f (x) + 2x + 1}.

Define L-formulas ϕ(x) and ψ(x) corresponding to the
analytic and non-analytic induction hypotheses,
respectively:

ϕ(x) :≡ ∃y . f (x) = y 2,

ψ(x) :≡ f (x) = x 2.

Fact
ψ(x) witnesses that T proves ∀x . ϕ(x) by necessarily
non-analytic induction.

anderslundstedt.com 15 / 31



Our result
Expand LOR to a language L of arithmetic by adding a
function symbol f .
Expand PA− to a theory T by adding defining equations
for f :
T := PA− ∪ {f (0) = 0, ∀x . f (x + 1) = f (x) + 2x + 1}.

Define L-formulas ϕ(x) and ψ(x) corresponding to the
analytic and non-analytic induction hypotheses,
respectively:

ϕ(x) :≡ ∃y . f (x) = y 2,

ψ(x) :≡ f (x) = x 2.

Fact
ψ(x) witnesses that T proves ∀x . ϕ(x) by necessarily
non-analytic induction.

anderslundstedt.com 15 / 31



Our result
Expand LOR to a language L of arithmetic by adding a
function symbol f .
Expand PA− to a theory T by adding defining equations
for f :
T := PA− ∪ {f (0) = 0, ∀x . f (x + 1) = f (x) + 2x + 1}.

Define L-formulas ϕ(x) and ψ(x) corresponding to the
analytic and non-analytic induction hypotheses,
respectively:

ϕ(x) :≡ ∃y . f (x) = y 2,

ψ(x) :≡ f (x) = x 2.

Fact
ψ(x) witnesses that T proves ∀x . ϕ(x) by necessarily
non-analytic induction.

anderslundstedt.com 15 / 31



Proof of our result

Conditions (2)–(5) are easy to show.

To show condition (1),

T , IND(ϕ) 6` ∀x . ϕ(x),

we exhibit a non-standard L-model M � T with a
non-standard number c such that

M � ϕ(c),
M 6� ϕ(c + 1).
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Proof of our result

Z[X ] := 〈Z[X ], 0, 1,+, ·, <〉 is the ordered ring of
polynomials in the indeterminate X with coefficients in Z.

Elements of Z[X ] are polynomials

znX n + · · ·+ z1X 1 + z0

with z0, . . . , zn in Z and if n 6= 0 then zn 6= 0. zn is the
leading coefficient of the polynomial. n is the degree of
the polynomial.
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Proof of our result

Addition, multiplication and subtraction in Z[X ] are as
expected.

The order can be thought of as taking X to be infinitely
large and taking X n+1 to be infinitely larger than X n for
each natural number n. Making this precise, we may
define the order by the clauses

znX n + · · ·+ z1X 1 + z0 > 0 if and only if zn > 0,
p > q if and only if p − q > 0.
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Proof of our result

The polynomials in Z[X ] can be divided into the constant
polynomials

z (z in Z)

and the non-constant polynomials

pX + z (p in Z[X ], p 6= 0, z in Z).

Every polynomial in Z[X ] can be uniquely written on one
of the above forms.
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Proof of our result

Let Z[X ]+ be the non-negative part of Z[X ]; that is,
Z[X ]+ is the substructure of Z[X ] that consists of
polynomials of the form

znX n + · · ·+ z1X 1 + z0

with zn ≥ 0 (and zn = 0 only if n = 0).

anderslundstedt.com 20 / 31



Proof of our result

Fact
An LOR-model M is a model of PA− if and only if M is the
non-negative part of a nontrivial discretely ordered
commutative ring.

Proof.
See for example Kaye’s Models of Peano Arithmetic.

Corollary
Z[X ]+ � PA−.

Proof.
Z[X ]+ is the non-negative part of the nontrivial discretely
ordered commutative ring Z[X ].
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Proof of our result
We want to expand Z[X ]+ to an L-model M � T such
that M � ϕ(p) and M 6� ϕ(p + 1) for some polynomial p
in Z[X ]+.

To expand Z[X ]+ to an L-model M we need to provide
an interpretation f M : Z[X ]+ → Z[X ]+ of f .
Recall that

T = PA− ∪ {f (0) = 0, ∀x . f (x + 1) = f (x) + 2x + 1}.

and that
ϕ(x) :≡ ∃y . f (x) = y 2.

Thus f M needs to satisfy the defining equations for f and
be such that for some polynomial p in Z[X ]+ we have
that f M(p) is a perfect square in Z[X ]+ while f M(p + 1)
is not.

anderslundstedt.com 22 / 31



Proof of our result
We want to expand Z[X ]+ to an L-model M � T such
that M � ϕ(p) and M 6� ϕ(p + 1) for some polynomial p
in Z[X ]+.
To expand Z[X ]+ to an L-model M we need to provide
an interpretation f M : Z[X ]+ → Z[X ]+ of f .

Recall that

T = PA− ∪ {f (0) = 0, ∀x . f (x + 1) = f (x) + 2x + 1}.

and that
ϕ(x) :≡ ∃y . f (x) = y 2.

Thus f M needs to satisfy the defining equations for f and
be such that for some polynomial p in Z[X ]+ we have
that f M(p) is a perfect square in Z[X ]+ while f M(p + 1)
is not.

anderslundstedt.com 22 / 31



Proof of our result
We want to expand Z[X ]+ to an L-model M � T such
that M � ϕ(p) and M 6� ϕ(p + 1) for some polynomial p
in Z[X ]+.
To expand Z[X ]+ to an L-model M we need to provide
an interpretation f M : Z[X ]+ → Z[X ]+ of f .
Recall that

T = PA− ∪ {f (0) = 0, ∀x . f (x + 1) = f (x) + 2x + 1}.

and that
ϕ(x) :≡ ∃y . f (x) = y 2.

Thus f M needs to satisfy the defining equations for f and
be such that for some polynomial p in Z[X ]+ we have
that f M(p) is a perfect square in Z[X ]+ while f M(p + 1)
is not.

anderslundstedt.com 22 / 31



Proof of our result
We want to expand Z[X ]+ to an L-model M � T such
that M � ϕ(p) and M 6� ϕ(p + 1) for some polynomial p
in Z[X ]+.
To expand Z[X ]+ to an L-model M we need to provide
an interpretation f M : Z[X ]+ → Z[X ]+ of f .
Recall that

T = PA− ∪ {f (0) = 0, ∀x . f (x + 1) = f (x) + 2x + 1}.

and that
ϕ(x) :≡ ∃y . f (x) = y 2.

Thus f M needs to satisfy the defining equations for f and
be such that for some polynomial p in Z[X ]+ we have
that f M(p) is a perfect square in Z[X ]+ while f M(p + 1)
is not.

anderslundstedt.com 22 / 31



Proof of our result

Since M must model (the universal closure of) the
recursive defining equation,

f (x + 1) = f (x) + 2x + 1,

we get that f M must satisfy

f M(p) = f M((p − 1) + 1)
= f M(p − 1) + 2(p − 1) + 1.
= f M(p − 1) + 2p − 1.

Thus f M must satisfy

f M(p − 1) = f M(p)− 2p + 1.
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Proof of our result
f M must thus satisfy the equations

f M(0) = 0,
f M(p + 1) = f M(p) + 2p + 1,
f M(p − 1) = f M(p)− 2p + 1.

The first two equations fixes f M on the constant
polynomials.
Let pX + z be a non-constant polynomial in Z[X ]+ and
let q be any polynomial in Z[X ]+. By the last two
equations, setting f M(pX + z) = q fixes f M on all
polynomials of the form pX + z ′ (z ′ in Z); that is, it fixes
f M on pX + z and on the polynomials

pX + z + 1, pX + z + 2, . . .
pX + z − 1, pX + z − 2, . . .
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Proof of our result

Thus what we need to do is: For each p > 0 in Z[X ]+,
define f M(pX + z) for some z in Z;

In doing so, making sure that
f M(p) is in Z[X ]+ for all (non-constant) p in Z[X ]+,
for some (non-constant) p in Z[X ]+, f M(p) is a perfect
square while f M(p + 1) is not.

For each p > 0 in Z [X ]+, define

f M(pX − 1) := pX 2.
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Proof of our result
f M(p) is in Z[X ]+ for all (non-constant) p in Z[X ]+: We
need to worry about the equation

f M(p − 1) = f M(p)− 2p + 1.

By construction, f M(p) is always positive and of greater
degree than p for non-constant polynomials p. Thus the
right hand side will never be negative.

We have
f M(X − 1) = X 2

and

f M(X ) = f (X − 1) + 2(X − 1) + 1
= X 2 + 2X − 1.

Thus f M(X − 1) is a perfect square in Z[X ]+ while
f M(X ) is not. This completes the proof.
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Summary of our result

Let

T := PA− ∪ {f (0) = 0, ∀x . f (x + 1) = f (x) + 2x + 1}.

and let

ϕ(x) :≡ ∃y . f (x) = y 2,

ψ(x) :≡ f (x) = x 2.

Fact
ψ(x) witnesses that T proves ∀x . ϕ(x) by necessarily
non-analytic induction.
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Summary of our result

Proof.
Conditions (2)–(5) are easy.

To show condition (1),

T , IND(ϕ) 6` ∀x . ϕ(x),

we exhibit a non-standard L-model M � T with a
non-standard natural number c such that M � ϕ(c) and
M 6� ϕ(c + 1).
Z[X ]+ is a model of PA−. We expand Z[X ]+ to an
L-model M by interpreting f on Z[X ]+.
We define our interpretation f M such that it satisfies the
defining equations for f and such that f M(X − 1) is a
perfect square in Z[X ]+ while f M(X ) is not.
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Ideas for future work

Our proof breaks down if we add any sentence to T that is
false in Z[X ]+. A natural such sentence that is true in the
standard model is “all numbers are even or odd”, that is

σ :≡ ∀x∃y . x = y + y ∨ x = y + y + 1.

Conjecture
ψ(x) witnesses that T ∪ {σ} proves ∀x . ϕ(x) by necessarily
non-analytic induction.
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Ideas for future work

Develop more general methods to settle conjectures about
necessary non-analyticity (as opposed to the method of
hand-crafting countermodels for each particular case).

Consider other settings than arithmetic. For example, in
computer science, many basic facts of functions on
inductive structures seem to require non-analytic
induction proofs.
Consider the problem of non-analytic induction proofs
from the more proof-theoretical side. Dag Prawitz’s
recent “The concepts of proof and ground” might be
useful.3

3Dag Prawitz (2018): “The concepts of proof and ground”, preprint.
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Thanks!

Thanks for listening!
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