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HTP: Hilbert’s Tenth Problem

Definition
For a ring R, Hilbert’s Tenth Problem for R is the set

HTP(R) = {f ∈ R[X0,X1, . . .] : (∃~a ∈ R<ω) f (a0, . . . ,an) = 0}

of all polynomials (in several variables) with solutions in R.

So HTP(R) is computably enumerable (c.e.) relative to the atomic
diagram of R.

Hilbert’s original formulation in 1900 demanded a decision procedure
for HTP(Z).

Theorem (DPRM, 1970)

HTP(Z) is undecidable: indeed, HTP(Z) ≡1 ∅′.

The most obvious open question is the Turing degree of HTP(Q).

Russell Miller (CUNY) HTP for Subrings of Q JAF May 2019 2 / 23



News flash

Problem: find integers solving the following equations:
X 3 + Y 3 + Z 3 = 29.

X = 1, Y = 1, Z = 3. Easy. (Also X = 4, Y = −3, Z = −2.)

X 3 + Y 3 + Z 3 = 30.
X = −283,059,965, Y = −2,218,888,517, Z = 2,220,422,932.

X 3 + Y 3 + Z 3 = 31.
No solutions.

X 3 + Y 3 + Z 3 = 32.
No solutions.

X 3 + Y 3 + Z 3 = 33.
Open problem! NOW CLOSED PROBLEM (Booker, March 2019):

(8,866,128,975,287,528)3 + (−8,778,405,442,862,239)3 +
(−2,736,111,468,807,040)3 = 33.
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Comparing Z to other subrings

Theorem (Matiyasevich-Davis-Putnam-Robinson, 1970)
Every computably enumerable set S ⊆ N is diophantine in the ring Z,
i.e., defined there by a polynomial f ∈ Z[X ,Y1, . . . ,Yn] as

S = {x ∈ N : (∃y1, . . . , yn ∈ Z) f (x , y1, . . . , yn) = 0}.

But...

Theorem
For almost every subring R of Q, there exists a set C that is
computably enumerable relative to R, but is not diophantine in R.

Questions:
“Computably enumerable relative to R”??
How does one show diophantine undefinability of a set?
Whadaya mean, “almost every” subring of Q?
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Computably enumerable relative to R

For a subring R ⊆ Q, let

D = {x ∈ R : (xY − 1) ∈ HTP(R)} = {x ∈ R : (∃y ∈ R) xy = 1}.

If R = Z[W−1] for a reasonably complex set W of primes, then D ∩N is
D-computable, but may not be computably enumerable. So D may fail
to be computably enumerable too – yet is diophantine in R.

In general, sets D diophantine in R need not be c.e., but will always be
R-computably enumerable: given an “oracle” for R (or equivalently W ),
we can list out all elements of R and search through them for a
solution to any given polynomial, thus listing out all elements of D.

So the R-computably enumerable sets are the natural candidates to be
diophantine in R. When R = Z, they are all diophantine in Z – but the
theorem says that this is a rare situation.
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Picture of the subrings of Q
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Half of all subrings contain 1
2 ; half do not. A quarter contain 1

2 and 1
3 ;

another quarter contain 1
2 but not 1

3 ; and so on. This yields Lebesgue
measure on the space of all subrings of Q. Baire category also applies.

Theorem, re-stated
For measure-1-many and comeager-many subrings R of Q, there
exists a set C that is c.e. relative to R, but is not diophantine in R.
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Background from computability theory
Recall: the Halting Problem ∅′ is the universal computably enumerable
set. Every other c.e. set can be computed from ∅′. Knowing that ∅′ is
diophantine in Z, we know that every c.e. set is diophantine there.

For an arbitrary subring R = Z[W−1] of Q, we have something similar.
First make a computable list of the W -computable functions:

ΦW
0 , ΦW

1 , ΦW
2 , . . .

The jump W ′ is the universal W -computably enumerable set:

W ′ = {〈e, x〉 ∈ N2 : ΦW
e halts on input x}.

Every other W -c.e. set can be computed from W ′. If W ′ is diophantine
in Z[W−1], then every c.e. set is diophantine there. So the theorem is
equivalent to:
For almost all sets W of primes, W ′ is not diophantine in Z[W−1].
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Reducibilities: (1) =⇒ (2) =⇒ (3)
1 W ′ is diophantine in Z[W−1] iff, for some f ∈ Z[X ,Y1,Y2, . . .],

(∀x ∈ N)

[
x ∈W ′ ⇐⇒ ∃~y ∈ Z[W−1] f (x , ~y) = 0

⇐⇒ f (x , ~Y ) ∈ HTP(Z[W−1])

]
.

2 W ′ ≤1 HTP(Z[W−1]): W ′ is 1-reducible to HTP(Z[W−1]) if, for
some 1-1 computable function H,

(∀x ∈ N) [ x ∈W ′ ⇐⇒ H(x) ∈ HTP(Z[W−1]) ].

3 W ′ ≤T HTP(Z[W−1]): W ′ is Turing-reducible to HTP(Z[W−1]) if,
for some Turing program Φ,

Φ with oracle HTP(Z[W−1]) computes the char. function χW ′ .

The theorem says that almost all W have W ′ 6≤1 HTP(Z[W−1]).
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Proof of the theorem

A set W is relatively c.e. if there is some other set V that can
enumerate W (so W ≤1 V ′) but cannot compute W (so W 6≤T V ).

With W 6≤T V , the Jump Theorem shows that W ′ 6≤1 V ′.

But since V can enumerate W , it can also enumerate HTP(Z[W−1]),
so HTP(Z[W−1]) ≤1 V ′.

Together these show that W ′ 6≤1 HTP(Z[W−1]). Finally we apply:

Theorem (Jockusch 1981; Kurtz 1981)
The relatively c.e. sets are co-meager and have measure 1 in Cantor
space.

We call W HTP-complete if W ′ ≤1 HTP(Z[W−1]). So our theorem
says that HTP-completeness is rare.
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Intuition for the proof: enumeration operators
Enumerating W ′ requires you to be able to compute W . Enumerating
HTP(Z[W−1]) only requires you to be able to enumerate W . In almost
all cases there is a set V that can do the latter but not the former, and
in all those cases, W ′ is more complex, in terms of ≤1, than
HTP(Z[W−1]).

In order to enumerate W ′, V must be able to compute W (that is,
W ≤T V ). For instance, consider the oracle program Φe which halts iff
its oracle set W does not contain the number 19. Thus

e ∈W ′ ⇐⇒ 19 /∈W .

A set V that can only enumerate W can never be sure whether this
program ΦW

e , with W as its oracle, will halt. So V can never enumerate
e into W ′ with certainty, even if in fact e ∈W ′.

Summary: HTP is an enumeration operator; the jump is not.
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What about Turing reducibility?
We know that W ′ 6≤1 HTP(Z[W−1]) almost everywhere.
If W ′ 6≤T HTP(Z[W−1]) on a comeager set, then we would apply

Theorem (M, 2016)

For any set C ⊆ N (such as ∅′), the following are equivalent:
1 HTP(Q) ≥T C.
2 HTP(R) ≥T C for all subrings R of Q.
3 HTP(R) ≥T C for a non-meager set of subrings R.

to show that HTP(Q) 6≥T ∅′. This would be remarkable.

Conversely, if W ′ ≤T HTP(Z[W−1]) on a comeager set, then
HTP(Q) ≥T ∅′. This too would be remarkable.
(It is open whether a similar equivalence holds for Lebesgue measure.)

So, what about it? When does W ′ ≤T HTP(Z[W−1])?
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Example of Turing reducibility

For many subrings Z[W−1], we have HTP(Z[W−1]) ≤T HTP(Q)⊕W .

To decide whether f lies in HTP(Z[W−1]):
Use the W -oracle to list out the elements of the ring and search
through them for a solution to f = 0.
For each finite set S0 disjoint from W , use the HTP(Q)-oracle to
decide whether f = 0 has a solution in the subring Z[S0

−1
]. If not,

conclude that it has no solution in Z[W−1] either.
For many subrings of Q, this process will always terminate (for every
f ). Such subrings Z[W−1] are called HTP-generic, and for them,
HTP(Z[W−1]) is Turing-equivalent to HTP(Q)⊕W .

Soon we will also see subrings where this process fails to terminate.
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When does W ′ ≤T HTP(Z[W−1])?
There are sets W for which W ′ 6≤T HTP(Z[W−1]). For instance, this
holds whenever W itself is the jump of another set. However, the sets
for which we know W ′ 6≤T HTP(Z[W−1]) form a class of measure 0.
So W ′ ≤T HTP(Z[W−1]) might yet hold on a class of measure 1.

However, it cannot be uniform:

Theorem
For each Turing functional Ψ, the set

{W ⊆ P : W ′ 6= ΨHTP(Z[W−1])}

has positive measure. Thus it is impossible for any single program to
compute W ′ from HTP(Z[W−1]) uniformly on a set of measure 1.

More generally, this theorem holds of all enumeration operators, such
as W 7→ HTP(Z[W−1]). It (obviously) does not hold of the jump
operator W 7→W ′ itself, which is not an enumeration operator.
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A different enumeration operator
From an enumeration of W , we can easily enumerate E(W ) = ∅′ ⊕W .
Consider the analogy between HTP and this enumeration operator E .

Baire category:
W ′ ≡T ∅′ ⊕W for comeager-many W .
HTP(Z[W−1]) ≡T HTP(Q)⊕W for comeager-many W .

Essentially the same procedure works in both cases.

Lebesgue measure:
W ′ ≡ ∅′ ⊕W for measure-1-many W , but no single procedure
succeeds for measure-1-many.
HTP(Z[W−1]) ≡T HTP(Q)⊕W for all W except the set B of
boundary rings Z[W−1], i.e., those that are not HTP-generic.

We do not know the measure of B. If µ(B) = 0, then a single
procedure succeeds on a set of measure 1. If not, all is open.
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Boundary rings
A simple polynomial: f (X ,Y ) = (15X − 1)2 + ((2Y − 1)(7Y − 1))2.
We use green and red to indicate subrings that do and do not have
solutions to f .
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By the level of 1
7 , all nodes are either red or green. There are no

boundary rings for this polynomial.
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g(X ,Y , . . .) = (X 2 + Y 2 − 1)2 + (X > 0)2 + (Y > 0)2

This g has solutions in those rings that invert some p ≡ 1 mod 4.
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Now there are no red lights at all! However, no level is all-green either.
So there exist rings whose paths are forever-blank. These are the
boundary rings for this g: they form the topological boundary of the
(open) set of rings with solutions to g = 0.
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Now there are no red lights at all! However, no level is all-green either.
So there exist rings whose paths are forever-blank. These are the
boundary rings for this g: they form the topological boundary of the
(open) set of rings with solutions to g = 0.
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g(X ,Y , . . .) = (X 2 + Y 2 − 1)2 + (X > 0)2 + (Y > 0)2

This g has solutions in those rings that invert some p ≡ 1 mod 4.
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Same thing for E
For any fixed n, we can do the same analysis of E (or of the jump
operator). For a string σ, a green light means that n ∈ E(W ) whenever
σ vW , and a red light means that n /∈ E(W ) whenever σ vW .
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Again, there can exist forever-blank paths, and they are the boundary
points for the open set of eventually-green paths.
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The comparison

For all enumeration operators (including HTP and E), the set of
green lights is computably enumerable.

For E , the set of red lights is ≤1 ∅′. The set of red lights for ALL n
is ≡1 ∅′.
For HTP, the set of red lights is ≤1 HTP(Q). The set of red lights
for ALL polynomials is ≡1 HTP(Q).

For E , the set of W that (for at least one n) lie in the boundary set
is a meager set, but has measure 1.
For HTP, the set of W that (for at least one polynomial) lie in the
boundary set is a meager set. Its measure is unknown, and could
equal 0.
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Open questions

Is there a polynomial for which the tree has infinitely many minimal
red lights?
(For E and the jump, the corresponding answer is positive.)

Is there a polynomial for which the boundary set has positive
measure?
(Theorem (M.): If not, then there is no existential definition of Z
inside Q.)

If boundary sets for polynomials can have measure m > 0, what is
the possible complexity of (the left Dedekind cut of) m?
The maximum possible complexity is Π0

2, but can this be achieved?

It would be natural to ask such questions first about elliptic curves.
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Boundary sets

To see that the boundary set for E has measure > 1− 1
2k (for any k ),

we can find an n for which the set of green lights has total measure 1
2k ,

but every node has a green light somewhere above it. Thus this tree
has no red lights, and the open set of eventually-green nodes has
measure only 1

2k .

For HTP, we know countably many polynomials that have nonempty
boundary sets (like the g above). However, as with g, each of those
boundary sets has measure 0. In work with Ken Kramer, we have used
these polynomials to derive some positive results about the difficulty of
deciding HTP(R) for subrings R of Q.

Theorem (from a lemma of Kramer)
For every set C ⊆ N, there exists an HTP-complete set W of primes
with W ≡T C. (Recall: this means HTP(Z[W−1]) ≡1 W ′ ≡1 C′.)
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Example of the theorem

Setting C = ∅ gives a straightforward proof that a decidable subring
R ⊆ Q can have HTP(R) ≡! ∅′.
We need an entire sequence of polynomials with properties like the
g(X ,Y ) above. Here it is:

Lemma (Kramer)

For an odd prime q, let fq(X ,Y ) = X 2 + qY 2 − 1 (modified to make
Y > 0). Then in every solution (a

c ,
b
c ) ∈ Q2 to fq = 0, all prime factors p

of c satisfy (−q
p ) = 1, i.e., −q is a square mod p.

Conversely, for any such p, Z[ 1
p ] contains a nontrivial solution to fq = 0.

So the q-appropriate primes p are those for which (−q
p ) = 1.
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Coding the Halting Problem into HTP(Z[V−1])

We have a computable list of the elements: ∅′ = {e0,e1,e2, . . .} ⊆ N.

We build V ⊆ P in stages. At stage s, to code that es ∈ ∅′, we wish to
make the polynomial fqes

lie in HTP(Z[V−1]), which requires putting a
qes -appropriate prime p into V :

p should not be any of the first s prime numbers; and
for every j ≤ s with j 6= es, p should NOT be qj -appropriate.

The first condition makes V decidable. To decide (e.g.) whether
13 ∈ V , just run the first 5 stages of this construction. 13 = q5 is the
fifth odd prime, so if it has not entered V by then, it never will.

The second condition tries to ensure, for those j /∈ ∅′, that no
qj -appropriate prime ever enters V . From stage j onwards, it
succeeds. But what if some qj -appropriate prime had already entered
V before that?
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Why does this work?
Here are the necessary lemmas for the construction to succeed.

Lemma (J. Robinson, 1949)

For each finite set S0 ⊆ P, the semilocal subring Z[S0
−1

] is diophantine
in Q, and its definition is uniform in S0.

This allows us to ask HTP(Z[V−1]) whether Z[V−1] contains a solution
to fqj that does NOT require inverting any of the primes that had
already entered V by stage j .

Lemma
For every finite set S0 ⊆ P and every prime q /∈ S0, there exist infinitely
many primes that are q-appropriate but (for all q′ ∈ S0) not
q′-appropriate.

Thus we can always find a prime satisfying the two conditions.
Recall: p is q-appropriate iff −q is a square modulo p.
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