Hilbert's Tenth Problem for the Rational Numbers and their Subrings

Russell Miller

Queens College \& CUNY Graduate Center

Journées sur les Arithmétiques Faibles

CUNY Graduate Center 29 May 2019

HTP: Hilbert's Tenth Problem

Definition

For a ring R, Hilbert's Tenth Problem for R is the set

$$
\operatorname{HTP}(R)=\left\{f \in R\left[X_{0}, X_{1}, \ldots\right]:\left(\exists \vec{a} \in R^{<\omega}\right) f\left(a_{0}, \ldots, a_{n}\right)=0\right\}
$$

of all polynomials (in several variables) with solutions in R.
So $H T P(R)$ is computably enumerable (c.e.) relative to the atomic diagram of R.

Hilbert's original formulation in 1900 demanded a decision procedure for $\operatorname{HTP}(\mathbb{Z})$.

Theorem (DPRM, 1970)
$H T P(\mathbb{Z})$ is undecidable: indeed, $\operatorname{HTP}(\mathbb{Z}) \equiv_{1} \emptyset^{\prime}$.
The most obvious open question is the Turing degree of $\operatorname{HTP}(\mathbb{Q})$.

News flash

News flash

Problem: find integers solving the following equations:
$X^{3}+Y^{3}+Z^{3}=29$.
$X=1, Y=1, Z=3$. Easy. (Also $X=4, Y=-3, Z=-2$.)
$X^{3}+Y^{3}+Z^{3}=30$.
$X=-283,059,965, Y=-2,218,888,517, Z=2,220,422,932$.
$X^{3}+Y^{3}+Z^{3}=31$.
No solutions.
$X^{3}+Y^{3}+Z^{3}=32$.
No solutions.
$X^{3}+Y^{3}+Z^{3}=33$.
Open problem!

News flash

Problem: find integers solving the following equations:
$X^{3}+Y^{3}+Z^{3}=29$.
$X=1, Y=1, Z=3$. Easy. (Also $X=4, Y=-3, Z=-2$.)
$X^{3}+Y^{3}+Z^{3}=30$.
$X=-283,059,965, Y=-2,218,888,517, Z=2,220,422,932$.
$X^{3}+Y^{3}+Z^{3}=31$.
No solutions.
$X^{3}+Y^{3}+Z^{3}=32$.
No solutions.
$X^{3}+Y^{3}+Z^{3}=33$.
Open problem! NOW CLOSED PROBLEM (Booker, March 2019): $(8,866,128,975,287,528)^{3}+(-8,778,405,442,862,239)^{3}+$ $(-2,736,111,468,807,040)^{3}=33$.

Comparing \mathbb{Z} to other subrings

Theorem (Matiyasevich-Davis-Putnam-Robinson, 1970)
Every computably enumerable set $S \subseteq \mathbb{N}$ is diophantine in the ring \mathbb{Z}, i.e., defined there by a polynomial $f \in \mathbb{Z}\left[X, Y_{1}, \ldots, Y_{n}\right]$ as

$$
S=\left\{x \in \mathbb{N}:\left(\exists y_{1}, \ldots, y_{n} \in \mathbb{Z}\right) f\left(x, y_{1}, \ldots, y_{n}\right)=0\right\}
$$

But...

Comparing \mathbb{Z} to other subrings

Theorem (Matiyasevich-Davis-Putnam-Robinson, 1970)
Every computably enumerable set $S \subseteq \mathbb{N}$ is diophantine in the ring \mathbb{Z}, i.e., defined there by a polynomial $f \in \mathbb{Z}\left[X, Y_{1}, \ldots, Y_{n}\right]$ as

$$
S=\left\{x \in \mathbb{N}:\left(\exists y_{1}, \ldots, y_{n} \in \mathbb{Z}\right) f\left(x, y_{1}, \ldots, y_{n}\right)=0\right\} .
$$

But...

Theorem

For almost every subring R of \mathbb{Q}, there exists a set C that is computably enumerable relative to R, but is not diophantine in R.

Comparing \mathbb{Z} to other subrings

Theorem (Matiyasevich-Davis-Putnam-Robinson, 1970)
Every computably enumerable set $S \subseteq \mathbb{N}$ is diophantine in the ring \mathbb{Z}, i.e., defined there by a polynomial $f \in \mathbb{Z}\left[X, Y_{1}, \ldots, Y_{n}\right]$ as

$$
S=\left\{x \in \mathbb{N}:\left(\exists y_{1}, \ldots, y_{n} \in \mathbb{Z}\right) f\left(x, y_{1}, \ldots, y_{n}\right)=0\right\} .
$$

But...

Theorem

For almost every subring R of \mathbb{Q}, there exists a set C that is computably enumerable relative to R, but is not diophantine in R.

Questions:

- "Computably enumerable relative to R "??

Comparing \mathbb{Z} to other subrings

Theorem (Matiyasevich-Davis-Putnam-Robinson, 1970)
Every computably enumerable set $S \subseteq \mathbb{N}$ is diophantine in the ring \mathbb{Z}, i.e., defined there by a polynomial $f \in \mathbb{Z}\left[X, Y_{1}, \ldots, Y_{n}\right]$ as

$$
S=\left\{x \in \mathbb{N}:\left(\exists y_{1}, \ldots, y_{n} \in \mathbb{Z}\right) f\left(x, y_{1}, \ldots, y_{n}\right)=0\right\} .
$$

But...

Theorem

For almost every subring R of \mathbb{Q}, there exists a set C that is computably enumerable relative to R, but is not diophantine in R.

Questions:

- "Computably enumerable relative to R "??
- How does one show diophantine undefinability of a set?

Comparing \mathbb{Z} to other subrings

Theorem (Matiyasevich-Davis-Putnam-Robinson, 1970)

Every computably enumerable set $S \subseteq \mathbb{N}$ is diophantine in the ring \mathbb{Z}, i.e., defined there by a polynomial $f \in \mathbb{Z}\left[X, Y_{1}, \ldots, Y_{n}\right]$ as

$$
S=\left\{x \in \mathbb{N}:\left(\exists y_{1}, \ldots, y_{n} \in \mathbb{Z}\right) f\left(x, y_{1}, \ldots, y_{n}\right)=0\right\} .
$$

But...

Theorem

For almost every subring R of \mathbb{Q}, there exists a set C that is computably enumerable relative to R, but is not diophantine in R.

Questions:

- "Computably enumerable relative to R "??
- How does one show diophantine undefinability of a set?
- Whadaya mean, "almost every" subring of \mathbb{Q} ?

Computably enumerable relative to R

For a subring $R \subseteq \mathbb{Q}$, let

$$
D=\{x \in R:(x Y-1) \in H T P(R)\}=\{x \in R:(\exists y \in R) x y=1\} .
$$

If $R=\mathbb{Z}\left[W^{-1}\right]$ for a reasonably complex set W of primes, then $D \cap \mathbb{N}$ is D-computable, but may not be computably enumerable. So D may fail to be computably enumerable too - yet is diophantine in R.

In general, sets D diophantine in R need not be c.e., but will always be R-computably enumerable: given an "oracle" for R (or equivalently W), we can list out all elements of R and search through them for a solution to any given polynomial, thus listing out all elements of D.

So the R-computably enumerable sets are the natural candidates to be diophantine in R. When $R=\mathbb{Z}$, they are all diophantine in \mathbb{Z} - but the theorem says that this is a rare situation.

Picture of the subrings of \mathbb{Q}

Half of all subrings contain $\frac{1}{2}$; half do not. A quarter contain $\frac{1}{2}$ and $\frac{1}{3}$; another quarter contain $\frac{1}{2}$ but not $\frac{1}{3}$; and so on. This yields Lebesgue measure on the space of all subrings of \mathbb{Q}. Baire category also applies.

Theorem, re-stated

For measure-1-many and comeager-many subrings R of \mathbb{Q}, there exists a set C that is c.e. relative to R, but is not diophantine in R.

Background from computability theory

Recall: the Halting Problem \emptyset^{\prime} is the universal computably enumerable set. Every other c.e. set can be computed from \emptyset^{\prime}. Knowing that \emptyset^{\prime} is diophantine in \mathbb{Z}, we know that every c.e. set is diophantine there.

For an arbitrary subring $R=\mathbb{Z}\left[W^{-1}\right]$ of \mathbb{Q}, we have something similar. First make a computable list of the W-computable functions:

$$
\Phi_{0}^{W}, \Phi_{1}^{W}, \Phi_{2}^{W}, \ldots
$$

The jump W^{\prime} is the universal W-computably enumerable set:

$$
W^{\prime}=\left\{\langle e, x\rangle \in \mathbb{N}^{2}: \Phi_{e}^{W} \text { halts on input } x\right\} .
$$

Every other W-c.e. set can be computed from W^{\prime}. If W^{\prime} is diophantine in $\mathbb{Z}\left[W^{-1}\right]$, then every c.e. set is diophantine there. So the theorem is equivalent to:
For almost all sets W of primes, W^{\prime} is not diophantine in $\mathbb{Z}\left[W^{-1}\right]$.

Reducibilities: $(1) \Longrightarrow(2) \Longrightarrow(3)$

(1) W^{\prime} is diophantine in $\mathbb{Z}\left[W^{-1}\right]$ iff, for some $f \in \mathbb{Z}\left[X, Y_{1}, Y_{2}, \ldots\right]$,

$$
(\forall x \in \mathbb{N})\left[\begin{array}{rl}
x \in W^{\prime} & \Longleftrightarrow \exists \vec{y} \in \mathbb{Z}\left[W^{-1}\right] f(x, \vec{y})=0 \\
& \Longleftrightarrow f(x, \vec{Y}) \in \operatorname{HTP}\left(\mathbb{Z}\left[W^{-1}\right]\right)
\end{array}\right] .
$$

Reducibilities: $(1) \Longrightarrow(2) \Longrightarrow(3)$

(1) W^{\prime} is diophantine in $\mathbb{Z}\left[W^{-1}\right]$ iff, for some $f \in \mathbb{Z}\left[X, Y_{1}, Y_{2}, \ldots\right]$,

$$
(\forall x \in \mathbb{N})\left[\begin{array}{rl}
x \in W^{\prime} & \Longleftrightarrow \exists \vec{y} \in \mathbb{Z}\left[W^{-1}\right] f(x, \vec{y})=0 \\
& \Longleftrightarrow f(x, \vec{Y}) \in H T P\left(\mathbb{Z}\left[W^{-1}\right]\right)
\end{array}\right] .
$$

(2) $W^{\prime} \leq_{1} H \operatorname{TP}\left(\mathbb{Z}\left[W^{-1}\right]\right): W^{\prime}$ is 1 -reducible to $\operatorname{HTP}\left(\mathbb{Z}\left[W^{-1}\right]\right)$ if, for some 1-1 computable function H,

$$
(\forall x \in \mathbb{N})\left[x \in W^{\prime} \Longleftrightarrow H(x) \in H T P\left(\mathbb{Z}\left[W^{-1}\right]\right)\right] .
$$

Reducibilities: $(1) \Longrightarrow(2) \Longrightarrow(3)$

(1) W^{\prime} is diophantine in $\mathbb{Z}\left[W^{-1}\right]$ iff, for some $f \in \mathbb{Z}\left[X, Y_{1}, Y_{2}, \ldots\right]$,

$$
(\forall x \in \mathbb{N})\left[\begin{array}{cc}
x \in W^{\prime} & \Longleftrightarrow \exists \vec{y} \in \mathbb{Z}\left[W^{-1}\right] f(x, \vec{y})=0 \\
& \Longleftrightarrow f(x, \vec{Y}) \in H T P\left(\mathbb{Z}\left[W^{-1}\right]\right)
\end{array}\right] .
$$

(2) $W^{\prime} \leq_{1} H \operatorname{TP}\left(\mathbb{Z}\left[W^{-1}\right]\right): W^{\prime}$ is 1 -reducible to $\operatorname{HTP}\left(\mathbb{Z}\left[W^{-1}\right]\right)$ if, for some 1-1 computable function H,

$$
(\forall x \in \mathbb{N})\left[x \in W^{\prime} \Longleftrightarrow H(x) \in H T P\left(\mathbb{Z}\left[W^{-1}\right]\right)\right] .
$$

(3) $W^{\prime} \leq_{T} H \operatorname{TP}\left(\mathbb{Z}\left[W^{-1}\right]\right): W^{\prime}$ is Turing-reducible to $H T P\left(\mathbb{Z}\left[W^{-1}\right]\right)$ if, for some Turing program Φ,
Φ with oracle $\operatorname{HTP}\left(\mathbb{Z}\left[W^{-1}\right]\right)$ computes the char. function χw^{\prime}.
The theorem says that almost all W have $W^{\prime} \mathbb{Z}_{1} H T P\left(\mathbb{Z}\left[W^{-1}\right]\right)$.

Proof of the theorem

A set W is relatively c.e. if there is some other set V that can enumerate W (so $W \leq_{1} V^{\prime}$) but cannot compute W (so $W \not \Sigma_{T} V$).

With $W \not \leq_{T} V$, the Jump Theorem shows that $W^{\prime} \not \mathbb{1}_{1} V^{\prime}$.
But since V can enumerate W, it can also enumerate $\operatorname{HTP}\left(\mathbb{Z}\left[W^{-1}\right]\right)$, so $\operatorname{HTP}\left(\mathbb{Z}\left[W^{-1}\right]\right) \leq_{1} V^{\prime}$.

Together these show that $W^{\prime} \not \mathbb{1}_{1} H T P\left(\mathbb{Z}\left[W^{-1}\right]\right)$. Finally we apply:

Theorem (Jockusch 1981; Kurtz 1981)

The relatively c.e. sets are co-meager and have measure 1 in Cantor space.

We call $W H T P$-complete if $W^{\prime} \leq_{1} H T P\left(\mathbb{Z}\left[W^{-1}\right]\right)$. So our theorem says that HTP-completeness is rare.

Intuition for the proof: enumeration operators

Enumerating W^{\prime} requires you to be able to compute W. Enumerating $\operatorname{HTP}\left(\mathbb{Z}\left[W^{-1}\right]\right)$ only requires you to be able to enumerate W. In almost all cases there is a set V that can do the latter but not the former, and in all those cases, W^{\prime} is more complex, in terms of \leq_{1}, than $\operatorname{HTP}\left(\mathbb{Z}\left[W^{-1}\right]\right)$.

Intuition for the proof: enumeration operators

Enumerating W^{\prime} requires you to be able to compute W. Enumerating $\operatorname{HTP}\left(\mathbb{Z}\left[W^{-1}\right]\right)$ only requires you to be able to enumerate W. In almost all cases there is a set V that can do the latter but not the former, and in all those cases, W^{\prime} is more complex, in terms of \leq_{1}, than $H T P\left(\mathbb{Z}\left[W^{-1}\right]\right)$.

In order to enumerate W^{\prime}, V must be able to compute W (that is, $W \leq_{T} V$). For instance, consider the oracle program Φ_{e} which halts iff its oracle set W does not contain the number 19. Thus

$$
e \in W^{\prime} \Longleftrightarrow 19 \notin W .
$$

A set V that can only enumerate W can never be sure whether this program Φ_{e}^{W}, with W as its oracle, will halt. So V can never enumerate e into W^{\prime} with certainty, even if in fact $e \in W^{\prime}$.

Summary: HTP is an enumeration operator, the jump is not.

What about Turing reducibility?

We know that $W^{\prime} \not \mathbb{Z}_{1} H T P\left(\mathbb{Z}\left[W^{-1}\right]\right)$ almost everywhere.
If $W^{\prime} \not \mathbb{Z}_{T} H T P\left(\mathbb{Z}\left[W^{-1}\right]\right)$ on a comeager set, then we would apply

Theorem (M, 2016)

For any set $C \subseteq \mathbb{N}$ (such as \emptyset^{\prime}), the following are equivalent:
(1) $\operatorname{HTP}(\mathbb{Q}) \geq_{T} C$.
(2) $\operatorname{HTP}(R) \geq_{T} C$ for all subrings R of \mathbb{Q}.
(3) $\operatorname{HTP}(R) \geq_{T} C$ for a non-meager set of subrings R.
to show that $H T P(\mathbb{Q}) \nsupseteq T \emptyset^{\prime}$. This would be remarkable.
Conversely, if $W^{\prime} \leq_{T} H T P\left(\mathbb{Z}\left[W^{-1}\right]\right)$ on a comeager set, then $\operatorname{HTP}(\mathbb{Q}) \geq_{T} \emptyset^{\prime}$. This too would be remarkable.
(It is open whether a similar equivalence holds for Lebesgue measure.)

What about Turing reducibility?

We know that $W^{\prime} \not \mathbb{Z}_{1} H T P\left(\mathbb{Z}\left[W^{-1}\right]\right)$ almost everywhere. If $W^{\prime} \not \mathbb{Z}_{T} H T P\left(\mathbb{Z}\left[W^{-1}\right]\right)$ on a comeager set, then we would apply

Theorem (M, 2016)

For any set $C \subseteq \mathbb{N}$ (such as \emptyset^{\prime}), the following are equivalent:
(1) $\operatorname{HTP}(\mathbb{Q}) \geq_{T} C$.
(2) $\operatorname{HTP}(R) \geq_{T} C$ for all subrings R of \mathbb{Q}.
(3) $\operatorname{HTP}(R) \geq_{T} C$ for a non-meager set of subrings R.
to show that $H T P(\mathbb{Q}) \not ¥_{T} \emptyset^{\prime}$. This would be remarkable.
Conversely, if $W^{\prime} \leq_{T} H T P\left(\mathbb{Z}\left[W^{-1}\right]\right)$ on a comeager set, then $\operatorname{HTP}(\mathbb{Q}) \geq_{T} \emptyset^{\prime}$. This too would be remarkable.
(It is open whether a similar equivalence holds for Lebesgue measure.)
So, what about it? When does $W^{\prime} \leq_{T} H T P\left(\mathbb{Z}\left[W^{-1}\right]\right)$?

Example of Turing reducibility

For many subrings $\mathbb{Z}\left[W^{-1}\right]$, we have $H T P\left(\mathbb{Z}\left[W^{-1}\right]\right) \leq_{T} H T P(\mathbb{Q}) \oplus W$.
To decide whether f lies in $\operatorname{HTP}\left(\mathbb{Z}\left[W^{-1}\right]\right)$:

- Use the W-oracle to list out the elements of the ring and search through them for a solution to $f=0$.
- For each finite set S_{0} disjoint from W, use the $\operatorname{HTP}(\mathbb{Q})$-oracle to decide whether $f=0$ has a solution in the subring $\mathbb{Z}\left[{\overline{S_{0}}}^{-1}\right]$. If not, conclude that it has no solution in $\mathbb{Z}\left[W^{-1}\right]$ either.
For many subrings of \mathbb{Q}, this process will always terminate (for every f). Such subrings $\mathbb{Z}\left[W^{-1}\right]$ are called $H T P$-generic, and for them, $\operatorname{HTP}\left(\mathbb{Z}\left[W^{-1}\right]\right)$ is Turing-equivalent to $\operatorname{HTP}(\mathbb{Q}) \oplus W$.

Soon we will also see subrings where this process fails to terminate.

When does $W^{\prime} \leq_{T} H T P\left(\mathbb{Z}\left[W^{-1}\right]\right)$?

There are sets W for which $W^{\prime} \not_{T} H T P\left(\mathbb{Z}\left[W^{-1}\right]\right)$. For instance, this holds whenever W itself is the jump of another set. However, the sets for which we know $W^{\prime} \not_{T} H T P\left(\mathbb{Z}\left[W^{-1}\right]\right)$ form a class of measure 0 . So $W^{\prime} \leq_{T} H T P\left(\mathbb{Z}\left[W^{-1}\right]\right)$ might yet hold on a class of measure 1 .

When does $W^{\prime} \leq_{T} H T P\left(\mathbb{Z}\left[W^{-1}\right]\right)$?

There are sets W for which $W^{\prime} \not_{T} H T P\left(\mathbb{Z}\left[W^{-1}\right]\right)$. For instance, this holds whenever W itself is the jump of another set. However, the sets for which we know $W^{\prime} \not_{T} H T P\left(\mathbb{Z}\left[W^{-1}\right]\right)$ form a class of measure 0 . So $W^{\prime} \leq_{T} H T P\left(\mathbb{Z}\left[W^{-1}\right]\right)$ might yet hold on a class of measure 1 . However, it cannot be uniform:

Theorem

For each Turing functional Ψ, the set

$$
\left\{W \subseteq \mathbb{P}: W^{\prime} \neq \Psi^{H T P\left(\mathbb{Z}\left[W^{-1}\right]\right)}\right\}
$$

has positive measure. Thus it is impossible for any single program to compute W^{\prime} from $\operatorname{HTP}\left(\mathbb{Z}\left[W^{-1}\right]\right)$ uniformly on a set of measure 1 .

More generally, this theorem holds of all enumeration operators, such as $W \mapsto H T P\left(\mathbb{Z}\left[W^{-1}\right]\right)$. It (obviously) does not hold of the jump operator $W \mapsto W^{\prime}$ itself, which is not an enumeration operator.

A different enumeration operator

From an enumeration of W, we can easily enumerate $E(W)=\emptyset^{\prime} \oplus W$. Consider the analogy between HTP and this enumeration operator E.

Baire category:

- $W^{\prime} \equiv{ }_{T} \emptyset^{\prime} \oplus W$ for comeager-many W.
- $\operatorname{HTP}\left(\mathbb{Z}\left[W^{-1}\right]\right) \equiv_{T} H T P(\mathbb{Q}) \oplus W$ for comeager-many W.

Essentially the same procedure works in both cases.

A different enumeration operator

From an enumeration of W, we can easily enumerate $E(W)=\emptyset^{\prime} \oplus W$. Consider the analogy between HTP and this enumeration operator E.

Baire category:

- $W^{\prime} \equiv{ }_{T} \emptyset^{\prime} \oplus W$ for comeager-many W.
- $\operatorname{HTP}\left(\mathbb{Z}\left[W^{-1}\right]\right) \equiv_{T} H T P(\mathbb{Q}) \oplus W$ for comeager-many W.

Essentially the same procedure works in both cases.

Lebesgue measure:

- $W^{\prime} \equiv \emptyset^{\prime} \oplus W$ for measure-1-many W, but no single procedure succeeds for measure-1-many.
- $\operatorname{HTP}\left(\mathbb{Z}\left[W^{-1}\right]\right) \equiv_{T} H T P(\mathbb{Q}) \oplus W$ for all W except the set \mathcal{B} of boundary rings $\mathbb{Z}\left[W^{-1}\right]$, i.e., those that are not HTP-generic.
We do not know the measure of \mathcal{B}. If $\mu(\mathcal{B})=0$, then a single procedure succeeds on a set of measure 1 . If not, all is open.

Boundary rings

A simple polynomial: $f(X, Y)=(15 X-1)^{2}+((2 Y-1)(7 Y-1))^{2}$. We use green and red to indicate subrings that do and do not have solutions to f.

By the level of $\frac{1}{7}$, all nodes are either red or green. There are no boundary rings for this polynomial.

$$
g(X, Y, \ldots)=\left(X^{2}+Y^{2}-1\right)^{2}+(X>0)^{2}+(Y>0)^{2}
$$

This g has solutions in those rings that invert some $p \equiv 1 \bmod 4$.

$$
g(X, Y, \ldots)=\left(X^{2}+Y^{2}-1\right)^{2}+(X>0)^{2}+(Y>0)^{2}
$$

This g has solutions in those rings that invert some $p \equiv 1 \bmod 4$.

$$
g(X, Y, \ldots)=\left(X^{2}+Y^{2}-1\right)^{2}+(X>0)^{2}+(Y>0)^{2}
$$

This g has solutions in those rings that invert some $p \equiv 1 \bmod 4$.

Now there are no red lights at all! However, no level is all-green either. So there exist rings whose paths are forever-blank. These are the boundary rings for this g : they form the topological boundary of the (open) set of rings with solutions to $g=0$.

Same thing for E

For any fixed n, we can do the same analysis of E (or of the jump operator). For a string σ, a green light means that $n \in E(W)$ whenever $\sigma \sqsubseteq W$, and a red light means that $n \notin E(W)$ whenever $\sigma \sqsubseteq W$.

Again, there can exist forever-blank paths, and they are the boundary points for the open set of eventually-green paths.

The comparison

- For all enumeration operators (including HTP and E), the set of green lights is computably enumerable.
- For E, the set of red lights is $\leq_{1} \overline{\emptyset^{\prime}}$. The set of red lights for ALL n is $\equiv_{1} \overline{\emptyset^{\prime}}$.
- For HTP, the set of red lights is $\leq_{1} \overline{H T P(\mathbb{Q})}$. The set of red lights for ALL polynomials is $\equiv_{1} \overline{H T P(\mathbb{Q})}$.
- For E, the set of W that (for at least one n) lie in the boundary set is a meager set, but has measure 1.
- For HTP, the set of W that (for at least one polynomial) lie in the boundary set is a meager set. Its measure is unknown, and could equal 0.

Open questions

- Is there a polynomial for which the tree has infinitely many minimal red lights?
(For E and the jump, the corresponding answer is positive.)

Open questions

- Is there a polynomial for which the tree has infinitely many minimal red lights?
(For E and the jump, the corresponding answer is positive.)
- Is there a polynomial for which the boundary set has positive measure?

Open questions

- Is there a polynomial for which the tree has infinitely many minimal red lights?
(For E and the jump, the corresponding answer is positive.)
- Is there a polynomial for which the boundary set has positive measure?
(Theorem (M.): If not, then there is no existential definition of \mathbb{Z} inside \mathbb{Q}.)

Open questions

- Is there a polynomial for which the tree has infinitely many minimal red lights?
(For E and the jump, the corresponding answer is positive.)
- Is there a polynomial for which the boundary set has positive measure?
(Theorem (M.): If not, then there is no existential definition of \mathbb{Z} inside \mathbb{Q}.)
- If boundary sets for polynomials can have measure $m>0$, what is the possible complexity of (the left Dedekind cut of) m ?
The maximum possible complexity is Π_{2}^{0}, but can this be achieved?
It would be natural to ask such questions first about elliptic curves.

Boundary sets

To see that the boundary set for E has measure $>1-\frac{1}{2^{k}}$ (for any k), we can find an n for which the set of green lights has total measure $\frac{1}{2^{k}}$, but every node has a green light somewhere above it. Thus this tree has no red lights, and the open set of eventually-green nodes has measure only $\frac{1}{2^{k}}$.

For HTP, we know countably many polynomials that have nonempty boundary sets (like the g above). However, as with g, each of those boundary sets has measure 0. In work with Ken Kramer, we have used these polynomials to derive some positive results about the difficulty of deciding $\operatorname{HTP}(R)$ for subrings R of \mathbb{Q}.

Theorem (from a lemma of Kramer)

For every set $C \subseteq \mathbb{N}$, there exists an HTP-complete set W of primes with $W \equiv{ }_{T} C$. (Recall: this means $\left.\operatorname{HTP}\left(\mathbb{Z}\left[W^{-1}\right]\right) \equiv{ }_{1} W^{\prime} \equiv{ }_{1} C^{\prime}.\right)$

Example of the theorem

Setting $C=\emptyset$ gives a straightforward proof that a decidable subring $R \subseteq \mathbb{Q}$ can have $H T P(R) \equiv!\emptyset^{\prime}$.
We need an entire sequence of polynomials with properties like the $g(X, Y)$ above. Here it is:

Lemma (Kramer)

For an odd prime q, let $f_{q}(X, Y)=X^{2}+q Y^{2}-1$ (modified to make $Y>0)$. Then in every solution $\left(\frac{a}{c}, \frac{b}{c}\right) \in \mathbb{Q}^{2}$ to $f_{q}=0$, all prime factors p of c satisfy $\left(\frac{-q}{p}\right)=1$, i.e., $-q$ is a square $\bmod p$.

Example of the theorem

Setting $C=\emptyset$ gives a straightforward proof that a decidable subring $R \subseteq \mathbb{Q}$ can have $H T P(R) \equiv!\emptyset^{\prime}$.
We need an entire sequence of polynomials with properties like the $g(X, Y)$ above. Here it is:

Lemma (Kramer)

For an odd prime q, let $f_{q}(X, Y)=X^{2}+q Y^{2}-1$ (modified to make $Y>0)$. Then in every solution $\left(\frac{a}{c}, \frac{b}{c}\right) \in \mathbb{Q}^{2}$ to $f_{q}=0$, all prime factors p of c satisfy $\left(\frac{-q}{p}\right)=1$, i.e., $-q$ is a square $\bmod p$.
Conversely, for any such $p, \mathbb{Z}\left[\frac{1}{p}\right]$ contains a nontrivial solution to $f_{q}=0$.
So the q-appropriate primes p are those for which $\left(\frac{-q}{p}\right)=1$.

Coding the Halting Problem into $\operatorname{HTP}\left(\mathbb{Z}\left[V^{-1}\right]\right)$

We have a computable list of the elements: $\emptyset^{\prime}=\left\{e_{0}, e_{1}, e_{2}, \ldots\right\} \subseteq \mathbb{N}$.
We build $V \subseteq \mathbb{P}$ in stages. At stage s, to code that $e_{s} \in \emptyset^{\prime}$, we wish to make the polynomial $f_{q_{e_{s}}}$ lie in $\operatorname{HTP}\left(\mathbb{Z}\left[V^{-1}\right]\right)$, which requires putting a $q_{e_{s}}$-appropriate prime p into V :

- p should not be any of the first s prime numbers; and
- for every $j \leq s$ with $j \neq e_{s}, p$ should NOT be q_{j}-appropriate. The first condition makes V decidable. To decide (e.g.) whether $13 \in V$, just run the first 5 stages of this construction. $13=q_{5}$ is the fifth odd prime, so if it has not entered V by then, it never will.

The second condition tries to ensure, for those $j \notin \emptyset^{\prime}$, that no q_{j}-appropriate prime ever enters V. From stage j onwards, it succeeds. But what if some q_{j}-appropriate prime had already entered V before that?

Why does this work?

Here are the necessary lemmas for the construction to succeed.

Lemma (J. Robinson, 1949)

For each finite set $S_{0} \subseteq \mathbb{P}$, the semilocal subring $\mathbb{Z}\left[{\overline{S_{0}}}^{-1}\right]$ is diophantine in \mathbb{Q}, and its definition is uniform in S_{0}.

This allows us to ask $\operatorname{HTP}\left(\mathbb{Z}\left[V^{-1}\right]\right)$ whether $\mathbb{Z}\left[V^{-1}\right]$ contains a solution to $f_{q_{j}}$ that does NOT require inverting any of the primes that had already entered V by stage j.

Lemma

For every finite set $S_{0} \subseteq \mathbb{P}$ and every prime $q \notin S_{0}$, there exist infinitely many primes that are q-appropriate but (for all $q^{\prime} \in S_{0}$) not q^{\prime}-appropriate.

Thus we can always find a prime satisfying the two conditions. Recall: p is q-appropriate iff $-q$ is a square modulo p.

