Metamathematics of the Global Reflection Principle.

Faculty of Philosophy, University of Warsaw
40éme Journées des Arithmétiques Faibles, October 25, 2021

Introduction

Ways of expressing soundness of an axiomatic theory U

Suppose B is an axiomatic (r.e.) theory in a language extending the language of arithmetic.

Ways of expressing soundness of an axiomatic theory U

Suppose B is an axiomatic (r.e.) theory in a language extending the language of arithmetic. How to express that B is trustworthy? Con Con $_{B}$

Ways of expressing soundness of an axiomatic theory U

Suppose B is an axiomatic (r.e.) theory in a language extending the language of arithmetic. How to express that B is trustworthy?
Con Con $_{B}$
$\operatorname{Rfn}(U) \operatorname{Pr}_{B}(\ulcorner\phi\urcorner) \rightarrow \phi$

Ways of expressing soundness of an axiomatic theory U

Suppose B is an axiomatic (r.e.) theory in a language extending the language of arithmetic. How to express that B is trustworthy?
Con Con $_{B}$
$\operatorname{Rfn}(U) \operatorname{Pr}_{B}(\ulcorner\phi\urcorner) \rightarrow \phi$
$\operatorname{RFN}(U) \forall x\left(\operatorname{Pr}_{B}(\ulcorner\phi(\dot{x})\urcorner) \rightarrow \phi(x)\right)$.

Ways of expressing soundness of an axiomatic theory U

Suppose B is an axiomatic (r.e.) theory in a language extending the language of arithmetic. How to express that B is trustworthy?
Con Con $_{B}$
$\operatorname{Rfn}(U) \operatorname{Pr}_{B}(\ulcorner\phi\urcorner) \rightarrow \phi$
$\operatorname{RFN}(U) \forall x\left(\operatorname{Pr}_{B}(\ulcorner\phi(\dot{x})\urcorner) \rightarrow \phi(x)\right)$.

Ways of expressing soundness of an axiomatic theory U

Suppose B is an axiomatic (r.e.) theory in a language extending the language of arithmetic. How to express that B is trustworthy?
Con Con_{B}
$\operatorname{Rfn}(U) \operatorname{Pr}_{B}(\ulcorner\phi\urcorner) \rightarrow \phi$
$\operatorname{RFN}(U) \forall x\left(\operatorname{Pr}_{B}(\ulcorner\phi(\dot{x})\urcorner) \rightarrow \phi(x)\right)$.
Finally there is the most natural solution: introduce a primitive truth predicate $T(x)$ and say

Ways of expressing soundness of an axiomatic theory U

Suppose B is an axiomatic (r.e.) theory in a language extending the language of arithmetic. How to express that B is trustworthy?
Con Con_{B}
$\operatorname{Rfn}(U) \operatorname{Pr}_{B}(\ulcorner\phi\urcorner) \rightarrow \phi$
$\operatorname{RFN}(U) \forall x\left(\operatorname{Pr}_{B}(\ulcorner\phi(\dot{x})\urcorner) \rightarrow \phi(x)\right)$.
Finally there is the most natural solution: introduce a primitive truth predicate $T(x)$ and say

$$
\begin{equation*}
\forall \phi\left(\operatorname{Pr}_{B}(\phi) \rightarrow T(\phi)\right) \tag{B}
\end{equation*}
$$

Compositional truth

Our "truth package" will consist of the following axioms:

Definition

$\mathrm{CT}^{-}[B]$ extends B with the following axioms for the T predicate.

Compositional truth

Our "truth package" will consist of the following axioms:

Definition

$\mathrm{CT}^{-}[B]$ extends B with the following axioms for the T predicate.

1. $\forall s_{0}, \ldots \forall s_{n}\left(T\left(\dot{R}\left(s_{0}, \ldots, s_{n}\right) \equiv R\left(s_{0}{ }^{\circ}, \ldots, s_{n}{ }^{\circ}\right)\right)\right.$.

Compositional truth

Our "truth package" will consist of the following axioms:

Definition

$\mathrm{CT}^{-}[B]$ extends B with the following axioms for the T predicate.

1. $\forall s_{0}, \ldots \forall s_{n}\left(T\left(\dot{R}\left(s_{0}, \ldots, s_{n}\right) \equiv R\left(s_{0}{ }^{\circ}, \ldots, s_{n}{ }^{\circ}\right)\right)\right.$.
2. $\forall \phi(T(\neg \phi) \equiv \neg T(\phi))$.

Compositional truth

Our "truth package" will consist of the following axioms:

Definition

$\mathrm{CT}^{-}[B]$ extends B with the following axioms for the T predicate.

1. $\forall s_{0}, \ldots \forall s_{n}\left(T\left(\dot{R}\left(s_{0}, \ldots, s_{n}\right) \equiv R\left(s_{0}{ }^{\circ}, \ldots, s_{n}{ }^{\circ}\right)\right)\right.$.
2. $\forall \phi(T(\neg \phi) \equiv \neg T(\phi))$.
3. $\forall \phi, \psi(T(\phi \vee \psi) \equiv T(\phi) \vee T(\psi))$.

Compositional truth

Our "truth package" will consist of the following axioms:

Definition

$\mathrm{CT}^{-}[B]$ extends B with the following axioms for the T predicate.

1. $\forall s_{0}, \ldots \forall s_{n}\left(T\left(\dot{R}\left(s_{0}, \ldots, s_{n}\right) \equiv R\left(s_{0}{ }^{\circ}, \ldots, s_{n}{ }^{\circ}\right)\right)\right.$.
2. $\forall \phi(T(\neg \phi) \equiv \neg T(\phi))$.
3. $\forall \phi, \psi(T(\phi \dot{\vee} \psi) \equiv T(\phi) \vee T(\psi))$.
4. $\forall \phi(v)(T(\exists \dot{v} \phi(v)) \equiv \exists x T(\phi[\underline{x} / v]))$.

Compositional truth

Our "truth package" will consist of the following axioms:

Definition

$\mathrm{CT}^{-}[B]$ extends B with the following axioms for the T predicate.

1. $\forall s_{0}, \ldots \forall s_{n}\left(T\left(\dot{R}\left(s_{0}, \ldots, s_{n}\right) \equiv R\left(s_{0}{ }^{\circ}, \ldots, s_{n}{ }^{\circ}\right)\right)\right.$.
2. $\forall \phi(T(\neg \phi) \equiv \neg T(\phi))$.
3. $\forall \phi, \psi(T(\phi \dot{\vee} \psi) \equiv T(\phi) \vee T(\psi))$.
4. $\forall \phi(v)(T(\exists \dot{v} \phi(v)) \equiv \exists x T(\phi[\underline{x} / v]))$.

Compositional truth

Our "truth package" will consist of the following axioms:

Definition

$\mathrm{CT}^{-}[B]$ extends B with the following axioms for the T predicate.

1. $\forall s_{0}, \ldots \forall s_{n}\left(T\left(\dot{R}\left(s_{0}, \ldots, s_{n}\right) \equiv R\left(s_{0}{ }^{\circ}, \ldots, s_{n}{ }^{\circ}\right)\right)\right.$.
2. $\forall \phi(T(\neg \phi) \equiv \neg T(\phi))$.
3. $\forall \phi, \psi(T(\phi \dot{\vee} \psi) \equiv T(\phi) \vee T(\psi))$.
4. $\forall \phi(v)(T(\exists \dot{\exists} \phi(v)) \equiv \exists x T(\phi[\underline{x} / v]))$.

Our basic B will be the elementary arithmetic EA $\left(I \Delta_{0}+\exp\right.$ is total".)

Compositional truth

Our "truth package" will consist of the following axioms:

Definition

$\mathrm{CT}^{-}[B]$ extends B with the following axioms for the T predicate.

1. $\forall s_{0}, \ldots \forall s_{n}\left(T\left(\dot{R}\left(s_{0}, \ldots, s_{n}\right) \equiv R\left(s_{0}{ }^{\circ}, \ldots, s_{n}{ }^{\circ}\right)\right)\right.$.
2. $\forall \phi(T(\neg \phi) \equiv \neg T(\phi))$.
3. $\forall \phi, \psi(T(\phi \dot{\vee} \psi) \equiv T(\phi) \vee T(\psi))$.
4. $\forall \phi(v)(T(\exists \dot{\exists} \phi(v)) \equiv \exists x T(\phi[\underline{x} / v]))$.

Our basic B will be the elementary arithmetic EA (I $\Delta_{0}+$ "exp is total".) We assume that all B's extends EA and are formulated in the language $\mathcal{L}:=\{\leq,+, \times, 0,1\}$.

Familiarize yourself with CT^{-}[EA]

Theorem (Enayat-Visser, Leigh)
For every $B, \mathrm{CT}^{-}[B]$ is conservative over B.

Familiarize yourself with CT^{-}[EA]

Theorem (Enayat-Visser, Leigh)
For every $B, \mathrm{CT}^{-}[B]$ is conservative over B.

Familiarize yourself with $\mathrm{CT}^{-}[E A]$

Theorem (Enayat-Visser, Leigh)
For every $B, C T^{-}[B]$ is conservative over B.
Denote with INT the following sentence
$\forall \phi(v)[T(\phi(0)) \wedge \forall x(T(\phi(\dot{x})) \rightarrow T(\phi(x \dot{+} 1))) \rightarrow \forall x T(\phi(\dot{x}))]$.
Theorem (Kotlarski-Krajewski-Lachlan)
$\mathrm{CT}^{-}[\mathrm{EA}]+\mathrm{INT} \vdash \mathrm{PA}$ and $\mathrm{CT}^{-}[\mathrm{EA}]+\mathrm{INT}$ is conservative over PA.

Familiarize yourself with $\mathrm{CT}^{-}[E A]$

Theorem (Enayat-Visser, Leigh)
For every $B, C T^{-}[B]$ is conservative over B.
Denote with INT the following sentence $\forall \phi(v)[T(\phi(0)) \wedge \forall x(T(\phi(\dot{x})) \rightarrow T(\phi(x \dot{+} 1))) \rightarrow \forall x T(\phi(\dot{x}))]$.
Theorem (Kotlarski-Krajewski-Lachlan)
$\mathrm{CT}^{-}[\mathrm{EA}]+\mathrm{INT} \vdash \mathrm{PA}$ and $\mathrm{CT}^{-}[\mathrm{EA}]+\mathrm{INT}$ is conservative over PA.
Theorem (Fischer)
$\mathrm{CT}^{-}[\mathrm{PA}]$ is relatively interpretable in PA.

Familiarize yourself with $\mathrm{CT}^{-}[\mathrm{EA}]$

Theorem (Enayat-Visser, Leigh)
For every $B, C T^{-}[B]$ is conservative over B.
Denote with INT the following sentence $\forall \phi(v)[T(\phi(0)) \wedge \forall x(T(\phi(\dot{x})) \rightarrow T(\phi(x \dot{+} 1))) \rightarrow \forall x T(\phi(\dot{x}))]$.
Theorem (Kotlarski-Krajewski-Lachlan)
$\mathrm{CT}^{-}[\mathrm{EA}]+\mathrm{INT} \vdash \mathrm{PA}$ and $\mathrm{CT}^{-}[\mathrm{EA}]+\mathrm{INT}$ is conservative over PA.
Theorem (Fischer)
$\mathrm{CT}^{-}[\mathrm{PA}]$ is relatively interpretable in PA.

Theorem (Enayat-Ł.-Wcisło)

There exists a PTIME function f such that if p is a proof of an arithmetical sentence ϕ in $\mathrm{CT}^{-}[\mathrm{PA}]$, then $f(p)$ is a proof of ϕ in PA.

Disjunctions that are too long for CT^{-}.

For a natural number n and a sentence ϕ let

$$
\left.\bigvee_{i \leq n} \phi:=(\ldots(\phi \vee \phi) \vee \phi) \vee \ldots \vee \phi\right)
$$

Theorem (Kotlarski-Krajewski-Lachlan)

If $\mathcal{M} \models \mathrm{PA}$ is countable and recursively saturated and $a \in M$ is nonstandard, then there is $T \subseteq M$ such that

$$
(\mathcal{M}, T) \models \mathrm{CT}^{-}[\mathrm{PA}]+T\left(\bigvee_{i \leq a} 0=1\right)
$$

Equivalents of GR(PA)

Theorem (Cieśliński-Enayat-Pakhomov-Ł.)
Over $\mathrm{CT}^{-}[\mathrm{EA}]$ the following are equivalent:

Equivalents of GR(PA)

Theorem (Cieśliński-Enayat-Pakhomov-Ł.)

Over $\mathrm{CT}^{-}[\mathrm{EA}]$ the following are equivalent:

- $\forall \phi\left(\operatorname{Pr}_{\mathrm{PA}}(\phi) \rightarrow T(\phi)\right)$.

Equivalents of GR(PA)

Theorem (Cieśliński-Enayat-Pakhomov-Ł.)

Over $\mathrm{CT}^{-}[\mathrm{EA}]$ the following are equivalent:

- $\forall \phi\left(\operatorname{Pr}_{\mathrm{PA}}(\phi) \rightarrow T(\phi)\right)$.
- Δ_{0}-induction for the language with the truth predicate.

Equivalents of GR(PA)

Theorem (Cieśliński-Enayat-Pakhomov-Ł.)

Over $\mathrm{CT}^{-}[\mathrm{EA}]$ the following are equivalent:

- $\forall \phi\left(\operatorname{Pr}_{\mathrm{PA}}(\phi) \rightarrow T(\phi)\right)$.
- Δ_{0}-induction for the language with the truth predicate.
- $\forall \phi\left(\operatorname{Pr}_{\emptyset}(\phi) \rightarrow T(\phi)\right)$

Equivalents of GR(PA)

Theorem (Cieśliński-Enayat-Pakhomov-Ł.)

Over $\mathrm{CT}^{-}[\mathrm{EA}]$ the following are equivalent:

- $\forall \phi\left(\operatorname{Pr}_{\mathrm{PA}}(\phi) \rightarrow T(\phi)\right)$.
- Δ_{0}-induction for the language with the truth predicate.
- $\forall \phi\left(\operatorname{Pr}_{\emptyset}(\phi) \rightarrow T(\phi)\right)$
- $\forall \phi\left(\operatorname{Pr}_{\text {Sent }}^{T}(\phi) \rightarrow T(\phi)\right)$

Equivalents of GR(PA)

Theorem (Cieśliński-Enayat-Pakhomov-Ł.)

Over $\mathrm{CT}^{-}[\mathrm{EA}]$ the following are equivalent:

- $\forall \phi\left(\operatorname{Pr}_{\mathrm{PA}}(\phi) \rightarrow T(\phi)\right)$.
- Δ_{0}-induction for the language with the truth predicate.
- $\forall \phi\left(\operatorname{Pr}_{\emptyset}(\phi) \rightarrow T(\phi)\right)$
- $\forall \phi\left(\operatorname{Pr}_{\text {Sent }}^{T}(\phi) \rightarrow T(\phi)\right)$
- $\forall \bar{\psi}\left[\operatorname{Sent} \operatorname{Seq}(\bar{\psi}) \rightarrow\left(T(\bigvee \bar{\psi}) \equiv \exists i<|\bar{\psi}| T\left(\psi_{i}\right)\right)\right] .(D C)$

Equivalents of GR(PA)

Theorem (Cieśliński-Enayat-Pakhomov-Ł.)

Over $\mathrm{CT}^{-}[\mathrm{EA}]$ the following are equivalent:

- $\forall \phi\left(\operatorname{Pr}_{\mathrm{PA}}(\phi) \rightarrow T(\phi)\right)$.
- Δ_{0}-induction for the language with the truth predicate.
- $\forall \phi\left(\operatorname{Pr}_{\emptyset}(\phi) \rightarrow T(\phi)\right)$
- $\forall \phi\left(\operatorname{Pr}_{\text {Sent }}^{T}(\phi) \rightarrow T(\phi)\right)$
- $\forall \bar{\psi}\left[\operatorname{Sent} \operatorname{Seq}(\bar{\psi}) \rightarrow\left(T(\bigvee \bar{\psi}) \equiv \exists i<|\bar{\psi}| T\left(\psi_{i}\right)\right)\right] .(D C)$

Equivalents of GR(PA)

Theorem (Cieśliński-Enayat-Pakhomov-Ł.)

Over $\mathrm{CT}^{-}[\mathrm{EA}]$ the following are equivalent:

- $\forall \phi\left(\operatorname{Pr}_{\mathrm{PA}}(\phi) \rightarrow T(\phi)\right)$.
- Δ_{0}-induction for the language with the truth predicate.
- $\forall \phi\left(\operatorname{Pr}_{\emptyset}(\phi) \rightarrow T(\phi)\right)$
- $\forall \phi\left(\operatorname{Pr}_{\text {Sent }}^{T}(\phi) \rightarrow T(\phi)\right)$
- $\forall \bar{\psi}\left[\operatorname{Sent} \operatorname{Seq}(\bar{\psi}) \rightarrow\left(T(\bigvee \bar{\psi}) \equiv \exists i<|\bar{\psi}| T\left(\psi_{i}\right)\right)\right] .(D C)$

The above theory is called CT_{0}.

Theorem (Kotlarski-Smoryński)

The arithmetical consequences of CT_{0} coincide with $\mathrm{RFN}{ }^{<\omega}(\mathrm{PA})$.

Main course: disjunctive correctness

For a sequence of sentences $\phi_{0}, \ldots, \phi_{n}, \bigvee_{i \leq n} \phi_{i}$ denotes the disjunction

$$
\left.\left(\ldots\left(\phi_{0} \vee \phi_{1}\right) \vee \phi_{2}\right) \vee \ldots\right) \vee \phi_{n} .
$$

Main course: disjunctive correctness

For a sequence of sentences $\phi_{0}, \ldots, \phi_{n}, \bigvee_{i \leq n} \phi_{i}$ denotes the disjunction

$$
\left.\left(\ldots\left(\phi_{0} \vee \phi_{1}\right) \vee \phi_{2}\right) \vee \ldots\right) \vee \phi_{n} .
$$

DC-out is the following sentence

$$
\forall \bar{\phi}\left[\operatorname{SentSeq}(\bar{\phi}) \rightarrow\left(T(\bigvee \bar{\phi}) \rightarrow \exists i<|\bar{\phi}| T\left(\phi_{i}\right)\right)\right]
$$

Main course: disjunctive correctness

For a sequence of sentences $\phi_{0}, \ldots, \phi_{n}, \bigvee_{i \leq n} \phi_{i}$ denotes the disjunction

$$
\left.\left(\ldots\left(\phi_{0} \vee \phi_{1}\right) \vee \phi_{2}\right) \vee \ldots\right) \vee \phi_{n} .
$$

DC-out is the following sentence

$$
\forall \bar{\phi}\left[\operatorname{SentSeq}(\bar{\phi}) \rightarrow\left(T(\bigvee \bar{\phi}) \rightarrow \exists i<|\bar{\phi}| T\left(\phi_{i}\right)\right)\right]
$$

Theorem (Cieśliński-Wcisło-Ł.)

$C T^{-}[E A]+D C$-out coincides with $C T_{0}$.

Main course: Σ_{1}-reflection over UTB ${ }^{-}$

UTB $^{-}$denote the following collection of \mathcal{L}_{T} sentences (extending PA)

$$
\forall x(T(\ulcorner\phi(\dot{x})\urcorner) \equiv \phi(x)) .
$$

Theorem (Ł.)

$\Sigma_{1}^{\mathcal{L}_{T}}-\mathrm{RFN}\left(\mathrm{UTB}^{-}\right)+\mathrm{CT}^{-}$coincides with CT_{0}.

The main result

[^0]
Easy implications

The following are very easy:
$-\mathrm{CT}^{-}+\Sigma_{1}^{\mathcal{L}_{T}}-\mathrm{RFN}\left(\mathrm{UTB}^{-}\right) \vdash \forall \phi\left(\operatorname{Pr}_{\mathrm{PA}}(\phi) \rightarrow T(\phi)\right)$

Easy implications

The following are very easy:
$-\mathrm{CT}^{-}+\Sigma_{1}^{\mathcal{L}_{T}}-\mathrm{RFN}\left(\mathrm{UTB}^{-}\right) \vdash \forall \phi\left(\operatorname{Pr}_{\mathrm{PA}}(\phi) \rightarrow T(\phi)\right)$

Easy implications

The following are very easy:
$-\mathrm{CT}^{-}+\Sigma_{1}^{\mathcal{L}_{T}}$-RFN $\left(\mathrm{UTB}^{-}\right) \vdash \forall \phi\left(\operatorname{Pr}_{\mathrm{PA}}(\phi) \rightarrow T(\phi)\right)$ This follows since for $\phi \in \mathcal{L}, T(\ulcorner\phi\urcorner) \in \Delta_{0}^{\mathcal{L}_{T}}$ and $\mathrm{PA} \vdash \phi \Rightarrow \mathrm{UTB}^{-} \vdash T(\phi)$.

- $\mathrm{CT}_{0} \vdash \mathrm{DC}$-out.

Easy implications

The following are very easy:
$-\mathrm{CT}^{-}+\Sigma_{1}^{\mathcal{L}_{T}}$-RFN $\left(\mathrm{UTB}^{-}\right) \vdash \forall \phi\left(\operatorname{Pr}_{\mathrm{PA}}(\phi) \rightarrow T(\phi)\right)$ This follows since for $\phi \in \mathcal{L}, T(\ulcorner\phi\urcorner) \in \Delta_{0}^{\mathcal{L}_{T}}$ and $\mathrm{PA} \vdash \phi \Rightarrow \mathrm{UTB}^{-} \vdash T(\phi)$.

- $\mathrm{CT}_{0} \vdash \mathrm{DC}$-out.

Easy implications

The following are very easy:
$-\mathrm{CT}^{-}+\Sigma_{1}^{\mathcal{L}_{T}}$-RFN $\left(\mathrm{UTB}^{-}\right) \vdash \forall \phi\left(\operatorname{Pr}_{\mathrm{PA}}(\phi) \rightarrow T(\phi)\right)$ This follows since for $\phi \in \mathcal{L}, T(\ulcorner\phi\urcorner) \in \Delta_{0}^{\mathcal{L}_{T}}$ and $\mathrm{PA} \vdash \phi \Rightarrow \mathrm{UTB}^{-} \vdash T(\phi)$.

- $\mathrm{CT}_{0} \vdash \mathrm{DC}$-out.

Assume $\forall i<|\bar{\psi}| T\left(\neg \psi_{i}\right)$ and use bounded induction for the formula $\phi(x):=T\left(\neg \bigvee_{i<x} \neg \psi_{i}\right)$.

The main result

DC-out implies CT_{0}

The core argument: DC-out \Rightarrow Sind

Let Sind be the following statement

$$
\left(T\left(s_{0}\right) \wedge \forall j<|s|-1\left(T\left(s_{j}\right) \rightarrow T\left(s_{j+1}\right)\right) \rightarrow \forall j<|s| T\left(s_{j}\right)\right) .
$$

Lemma (Cieśliński)

Over $\mathrm{CT}^{-}[\mathrm{EA}]$ DC-out implies Sind.
Fix a sequence of formulae $\bar{\phi}$ and assume that $T\left(\phi_{0}\right)$ oraz $\forall i<|\bar{\phi}|\left(T\left(\phi_{i}\right) \rightarrow T\left(\phi_{i+1}\right)\right)$.

The core argument: DC-out \Rightarrow Sind

Let Sind be the following statement

$$
\left(T\left(s_{0}\right) \wedge \forall j<|s|-1\left(T\left(s_{j}\right) \rightarrow T\left(s_{j+1}\right)\right) \rightarrow \forall j<|s| T\left(s_{j}\right)\right) .
$$

Lemma (Cieśliński)

Over $\mathrm{CT}^{-}[\mathrm{EA}]$ DC-out implies Sind.
Fix a sequence of formulae $\bar{\phi}$ and assume that $T\left(\phi_{0}\right)$ oraz $\forall i<|\bar{\phi}|\left(T\left(\phi_{i}\right) \rightarrow T\left(\phi_{i+1}\right)\right)$.

The core argument: DC-out \Rightarrow Sind

Let Sind be the following statement

$$
\left(T\left(s_{0}\right) \wedge \forall j<|s|-1\left(T\left(s_{j}\right) \rightarrow T\left(s_{j+1}\right)\right) \rightarrow \forall j<|s| T\left(s_{j}\right)\right)
$$

Lemma (Cieśliński)

Over $\mathrm{CT}^{-}[\mathrm{EA}]$ DC-out implies Sind.
Fix a sequence of formulae $\bar{\phi}$ and assume that $T\left(\phi_{0}\right)$ oraz $\forall i<|\bar{\phi}|\left(T\left(\phi_{i}\right) \rightarrow T\left(\phi_{i+1}\right)\right)$. Consider the following sequence

$$
\begin{aligned}
\psi_{0} & :=\phi_{0} \\
\psi_{i+1} & :=\neg \phi_{i+1} \rightarrow \bigvee_{j \leq i} \neg \psi_{j}
\end{aligned}
$$

The core argument: DC-out \Rightarrow Sind

Let Sind be the following statement

$$
\left(T\left(s_{0}\right) \wedge \forall j<|s|-1\left(T\left(s_{j}\right) \rightarrow T\left(s_{j+1}\right)\right) \rightarrow \forall j<|s| T\left(s_{j}\right)\right)
$$

Lemma (Cieśliński)

Over $\mathrm{CT}^{-}[\mathrm{EA}]$ DC-out implies Sind.
Fix a sequence of formulae $\bar{\phi}$ and assume that $T\left(\phi_{0}\right)$ oraz $\forall i<|\bar{\phi}|\left(T\left(\phi_{i}\right) \rightarrow T\left(\phi_{i+1}\right)\right)$. Consider the following sequence

$$
\begin{aligned}
\psi_{0} & :=\phi_{0} \\
\psi_{i+1} & :=\neg \phi_{i+1} \rightarrow \bigvee_{j \leq i} \neg \psi_{j}
\end{aligned}
$$

Claim For all $i, T\left(\psi_{i}\right)$.

The core argument: DC-out \Rightarrow Sind

Let Sind be the following statement

$$
\left(T\left(s_{0}\right) \wedge \forall j<|s|-1\left(T\left(s_{j}\right) \rightarrow T\left(s_{j+1}\right)\right) \rightarrow \forall j<|s| T\left(s_{j}\right)\right)
$$

Lemma (Cieśliński)

Over $\mathrm{CT}^{-}[\mathrm{EA}]$ DC-out implies Sind.
Fix a sequence of formulae $\bar{\phi}$ and assume that $T\left(\phi_{0}\right)$ oraz $\forall i<|\bar{\phi}|\left(T\left(\phi_{i}\right) \rightarrow T\left(\phi_{i+1}\right)\right)$. Consider the following sequence

$$
\begin{aligned}
\psi_{0} & :=\phi_{0} \\
\psi_{i+1} & :=\neg \phi_{i+1} \rightarrow \bigvee_{j \leq i} \neg \psi_{j}
\end{aligned}
$$

Claim For all $i, T\left(\psi_{i}\right)$. So assume $T\left(\neg \phi_{i}\right)$.

The core argument: DC-out \Rightarrow Sind

Let Sind be the following statement

$$
\left(T\left(s_{0}\right) \wedge \forall j<|s|-1\left(T\left(s_{j}\right) \rightarrow T\left(s_{j+1}\right)\right) \rightarrow \forall j<|s| T\left(s_{j}\right)\right)
$$

Lemma (Cieśliński)

Over $\mathrm{CT}^{-}[\mathrm{EA}]$ DC-out implies Sind.
Fix a sequence of formulae $\bar{\phi}$ and assume that $T\left(\phi_{0}\right)$ oraz $\forall i<|\bar{\phi}|\left(T\left(\phi_{i}\right) \rightarrow T\left(\phi_{i+1}\right)\right)$. Consider the following sequence

$$
\begin{aligned}
\psi_{0} & :=\phi_{0} \\
\psi_{i+1} & :=\neg \phi_{i+1} \rightarrow \bigvee_{j \leq i} \neg \psi_{j}
\end{aligned}
$$

Claim For all $i, T\left(\psi_{i}\right)$.
So assume $T\left(\neg \phi_{i}\right)$. Then $T\left(\bigvee_{j \leq i} \neg \psi_{j}\right)$.

The core argument: DC-out \Rightarrow Sind

Let Sind be the following statement

$$
\left(T\left(s_{0}\right) \wedge \forall j<|s|-1\left(T\left(s_{j}\right) \rightarrow T\left(s_{j+1}\right)\right) \rightarrow \forall j<|s| T\left(s_{j}\right)\right)
$$

Lemma (Cieśliński)

Over $\mathrm{CT}^{-}[\mathrm{EA}]$ DC-out implies Sind.
Fix a sequence of formulae $\bar{\phi}$ and assume that $T\left(\phi_{0}\right)$ oraz $\forall i<|\bar{\phi}|\left(T\left(\phi_{i}\right) \rightarrow T\left(\phi_{i+1}\right)\right)$. Consider the following sequence

$$
\begin{aligned}
\psi_{0} & :=\phi_{0} \\
\psi_{i+1} & :=\neg \phi_{i+1} \rightarrow \bigvee_{j \leq i} \neg \psi_{j}
\end{aligned}
$$

Claim For all $i, T\left(\psi_{i}\right)$.
So assume $T\left(\neg \phi_{i}\right)$. Then $T\left(\bigvee_{j \leq i} \neg \psi_{j}\right)$. By DC-out this contradicts the Claim.

Sind \Rightarrow DC-in

Lemma

Over $\mathrm{CT}^{-}[\mathrm{EA}]$, Sind implies DC-in.

Sind \Rightarrow DC-in

Lemma

Over $\mathrm{CT}^{-}[\mathrm{EA}]$, Sind implies DC-in.

Sind \Rightarrow DC-in

Lemma

Over $\mathrm{CT}^{-}[\mathrm{EA}]$, Sind implies DC-in.
Fix a sequence $\phi_{0}, \ldots, \phi_{a}$ and assume that we have $T\left(\phi_{j}\right)$.

Sind \Rightarrow DC-in

Lemma

Over $\mathrm{CT}^{-}[\mathrm{EA}]$, Sind implies DC-in.
Fix a sequence $\phi_{0}, \ldots, \phi_{a}$ and assume that we have $T\left(\phi_{j}\right)$. Define a sequence s by putting

$$
\begin{aligned}
|s| & :=a-j-1 \\
s_{i} & :=\bigvee_{k \leq j+i} \phi_{k}
\end{aligned}
$$

Sind \Rightarrow DC-in

Lemma

Over $\mathrm{CT}^{-}[\mathrm{EA}]$, Sind implies DC-in.
Fix a sequence $\phi_{0}, \ldots, \phi_{a}$ and assume that we have $T\left(\phi_{j}\right)$. Define a sequence s by putting

$$
\begin{aligned}
|s| & :=a-j-1 \\
s_{i} & :=\bigvee_{k \leq j+i} \phi_{k}
\end{aligned}
$$

By our assumption we have $T\left(s_{0}\right)$.

Sind \Rightarrow DC-in

Lemma

Over $\mathrm{CT}^{-}[\mathrm{EA}]$, Sind implies DC-in.
Fix a sequence $\phi_{0}, \ldots, \phi_{a}$ and assume that we have $T\left(\phi_{j}\right)$. Define a sequence s by putting

$$
\begin{aligned}
|s| & :=a-j-1 \\
s_{i} & :=\bigvee_{k \leq j+i} \phi_{k}
\end{aligned}
$$

By our assumption we have $T\left(s_{0}\right)$. By the compositional axioms for binary disjunctions we have

$$
\forall i<|s|\left(T\left(s_{i}\right) \rightarrow T\left(s_{i+1}\right)\right)
$$

Sind \Rightarrow DC-in

Lemma

Over $\mathrm{CT}^{-}[\mathrm{EA}]$, Sind implies DC-in.
Fix a sequence $\phi_{0}, \ldots, \phi_{a}$ and assume that we have $T\left(\phi_{j}\right)$. Define a sequence s by putting

$$
\begin{aligned}
|s| & :=a-j-1 \\
s_{i} & :=\bigvee_{k \leq j+i} \phi_{k}
\end{aligned}
$$

By our assumption we have $T\left(s_{0}\right)$. By the compositional axioms for binary disjunctions we have

$$
\forall i<|s|\left(T\left(s_{i}\right) \rightarrow T\left(s_{i+1}\right)\right) .
$$

An application of Sind yields the thesis.

$(\mathrm{DC}+\mathrm{Sind}) \Rightarrow \mathrm{CT}_{0}$.

Lemma

$\mathrm{CT}^{-}[\mathrm{EA}]+\mathrm{DC}+$ Sind implies CT_{0}.
Working in $\mathrm{CT}^{-}[\mathrm{EA}]+\mathrm{DC}+$ Sind we show that T is coded, i.e. for every a there is a c such that

$$
\forall x<a(T(x) \equiv x \in c)
$$

Fix a and consider the following sequence:

$$
\psi_{i}=\exists c \bigwedge_{\phi<i}(\phi \equiv \phi \in c)
$$

$(\mathrm{DC}+\mathrm{Sind}) \Rightarrow \mathrm{CT}_{0}$.

Lemma

$\mathrm{CT}^{-}[\mathrm{EA}]+\mathrm{DC}+$ Sind implies CT_{0}.
Working in $\mathrm{CT}^{-}[\mathrm{EA}]+\mathrm{DC}+$ Sind we show that T is coded, i.e. for every a there is a c such that

$$
\forall x<a(T(x) \equiv x \in c)
$$

Fix a and consider the following sequence:

$$
\psi_{i}=\exists c \bigwedge_{\phi<i}(\phi \equiv \phi \in c)
$$

$(\mathrm{DC}+\mathrm{Sind}) \Rightarrow \mathrm{CT}_{0}$.

Lemma

$\mathrm{CT}^{-}[\mathrm{EA}]+\mathrm{DC}+$ Sind implies CT_{0}.
Working in $\mathrm{CT}^{-}[\mathrm{EA}]+\mathrm{DC}+$ Sind we show that T is coded, i.e. for every a there is a c such that

$$
\forall x<a(T(x) \equiv x \in c)
$$

Fix a and consider the following sequence:

$$
\psi_{i}=\exists c \bigwedge_{\phi<i}(\phi \equiv \phi \in c)
$$

We have (using DC) $T\left(\psi_{0}\right)$ and $T\left(\psi_{i}\right) \rightarrow T\left(\psi_{i+1}\right)$.

$(\mathrm{DC}+\mathrm{Sind}) \Rightarrow \mathrm{CT}_{0}$.

Lemma

$\mathrm{CT}^{-}[\mathrm{EA}]+\mathrm{DC}+$ Sind implies CT_{0}.
Working in $\mathrm{CT}^{-}[\mathrm{EA}]+\mathrm{DC}+$ Sind we show that T is coded, i.e. for every a there is a c such that

$$
\forall x<a(T(x) \equiv x \in c)
$$

Fix a and consider the following sequence:

$$
\psi_{i}=\exists c \bigwedge_{\phi<i}(\phi \equiv \phi \in c)
$$

We have (using DC) $T\left(\psi_{0}\right)$ and $T\left(\psi_{i}\right) \rightarrow T\left(\psi_{i+1}\right)$. So $T\left(\psi_{a}\right)$ and DC yields the thesis.

The main result

$C T_{0}$ implies $\Sigma_{1}^{\mathcal{L}_{T}}$-RFN $\left(U T B^{-}\right)$.

Key lemmata

$\operatorname{Pr}_{T h}^{T}(x)$ is the canonical \mathcal{L}_{T} formula expressing "There is a proof of x from the axioms of Th and the true sentences."

Lemma (\triangle_{0}-reflection ${ }^{+}$)

For every $\phi(x) \in \Delta_{0}^{\mathcal{L}_{T}}$,

$$
\mathrm{CT}_{0} \vdash \forall x\left[\operatorname{Pr}_{\cup T B}^{\top}(\phi(\dot{x})) \rightarrow \phi(x)\right] .
$$

Key lemmata

$\operatorname{Pr}_{T h}^{T}(x)$ is the canonical \mathcal{L}_{T} formula expressing "There is a proof of x from the axioms of Th and the true sentences."

Lemma (Δ_{0}-reflection ${ }^{+}$)

For every $\phi(x) \in \Delta_{0}^{\mathcal{L}_{T}}$,

$$
\mathrm{CT}_{0} \vdash \forall x\left[\operatorname{Pr}_{\cup T B}^{\top}(\phi(\dot{x})) \rightarrow \phi(x)\right] .
$$

Lemma (Bounding lemma)

For every $\phi(x) \in \Delta_{0}^{\mathcal{L}_{T}}$,

$$
\mathrm{CT}_{0} \vdash \operatorname{Pr}_{\text {UTB }^{-}}^{T}(\exists v \phi(v)) \rightarrow \exists y \operatorname{Pr}_{\text {UTB }^{-}}^{T}(\exists v<\underline{y} \phi(v)) .
$$

The most useful property of CT_{0}

Suppose $(\mathcal{M}, T) \models C T^{-}[\mathrm{EA}]$ and $d \in M$.

The most useful property of CT_{0}

Suppose $(\mathcal{M}, T) \models \mathrm{CT}^{-}[\mathrm{EA}]$ and $d \in M$. Put

$$
\begin{array}{rl|l}
T \upharpoonright_{d} & :=\{a \in M & \\
T_{d}: & :(a) \wedge a<d\} \\
T_{a} \in M & & T(a) \wedge \operatorname{dp}(a)<d\}
\end{array}
$$

The most useful property of CT_{0}

Suppose $(\mathcal{M}, T) \models \mathrm{CT}^{-}[\mathrm{EA}]$ and $d \in M$. Put

$$
\begin{aligned}
T \upharpoonright_{d} & :=\{a \in M \quad \mid \quad T(a) \wedge a<d\} \\
T_{d}: & :=\{a \in M \quad \mid \quad T(a) \wedge \operatorname{dp}(a)<d\}
\end{aligned}
$$

Obviously if $(\mathcal{M}, T) \models \mathrm{CT}^{-}$, then $\left(\mathcal{M}, T_{d}\right) \models \mathrm{CT}^{-}(d)$.

Theorem (Essentially Wcisło)

Suppose $(\mathcal{M}, T) \models C T_{0}$. Then for every $d,\left(\mathcal{M}, T_{d}\right) \models \operatorname{Ind}\left(\mathcal{L}_{T}\right)$.

Δ_{0}-reflection ${ }^{+}$

Fix $\Delta_{0}^{\mathcal{L}_{T}}$ formula $\phi(x)$.

Δ_{0}-reflection ${ }^{+}$

Fix $\Delta_{0}^{\mathcal{L}_{T}}$ formula $\phi(x)$. Fix $(\mathcal{M}, T) \models \mathrm{CT}_{0}, a \in M$ and assume $\operatorname{Pr}_{\text {UTB }}^{T}(\phi(\dot{x}))$. Since $\phi(x)$ is bounded there exists $b \in M$ such that $(\mathcal{M}, T) \models \phi(a) \Longleftrightarrow \exists\left(\mathcal{N}, T^{\prime}\right) \supseteq_{e}\left(\mathcal{M}, T \upharpoonright_{b}\right) \quad\left(\mathcal{N}, T^{\prime}\right) \models \phi(a)$.

Δ_{0}-reflection ${ }^{+}$

Fix $\Delta_{0}^{\mathcal{L}_{T}}$ formula $\phi(x)$. Fix $(\mathcal{M}, T) \models \mathrm{CT}_{0}, a \in M$ and assume $\operatorname{Pr}_{U T B}^{T}(\phi(\dot{x}))$. Since $\phi(x)$ is bounded there exists $b \in M$ such that

$$
(\mathcal{M}, T) \models \phi(a) \Longleftrightarrow \exists\left(\mathcal{N}, T^{\prime}\right) \supseteq_{e}\left(\mathcal{M}, T \upharpoonright_{b}\right) \quad\left(\mathcal{N}, T^{\prime}\right) \models \phi(a)
$$

Assume that b is greater than the chosen UTB-proof of $\phi(a)$.

Δ_{0}-reflection ${ }^{+}$

Fix $\Delta_{0}^{\mathcal{L}_{T}}$ formula $\phi(x)$. Fix $(\mathcal{M}, T) \models \mathrm{CT}_{0}, a \in M$ and assume $\operatorname{Pr}_{\mathrm{UTB}}^{T}(\phi(\dot{x}))$. Since $\phi(x)$ is bounded there exists $b \in M$ such that

$$
(\mathcal{M}, T) \models \phi(a) \Longleftrightarrow \exists\left(\mathcal{N}, T^{\prime}\right) \supseteq_{e}\left(\mathcal{M}, T \Gamma_{b}\right) \quad\left(\mathcal{N}, T^{\prime}\right) \models \phi(a) .
$$

Assume that b is greater than the chosen UTB-proof of $\phi(a)$. Work in $\left(\mathcal{M}, T_{b}\right) \models \operatorname{Ind}\left(\mathcal{L}_{T}\right)$.

Δ_{0}-reflection ${ }^{+}$

Fix $\Delta_{0}^{\mathcal{L}_{T}}$ formula $\phi(x)$. Fix $(\mathcal{M}, T) \models \mathrm{CT}_{0}, a \in M$ and assume $\operatorname{Pr}_{\text {UTB }}^{T}(\phi(\dot{x}))$. Since $\phi(x)$ is bounded there exists $b \in M$ such that

$$
(\mathcal{M}, T) \models \phi(a) \Longleftrightarrow \exists\left(\mathcal{N}, T^{\prime}\right) \supseteq_{e}\left(\mathcal{M}, T \Gamma_{b}\right) \quad\left(\mathcal{N}, T^{\prime}\right) \models \phi(a) .
$$

Assume that b is greater than the chosen UTB-proof of $\phi(a)$. Work in $\left(\mathcal{M}, T_{b}\right) \models \operatorname{Ind}\left(\mathcal{L}_{T}\right)$. Let $\operatorname{Th}_{b}:=\mathrm{PA} \cup\left\{\phi \in \mathcal{L} \mid T_{b}(\phi)\right\}$.

Δ_{0}-reflection ${ }^{+}$

Fix $\Delta_{0}^{\mathcal{L}_{T}}$ formula $\phi(x)$. Fix $(\mathcal{M}, T) \models \mathrm{CT}_{0}, a \in M$ and assume $\operatorname{Pr}_{U T B}^{T}(\phi(\dot{x}))$. Since $\phi(x)$ is bounded there exists $b \in M$ such that

$$
(\mathcal{M}, T) \models \phi(a) \Longleftrightarrow \exists\left(\mathcal{N}, T^{\prime}\right) \supseteq_{e}\left(\mathcal{M}, T \Gamma_{b}\right) \quad\left(\mathcal{N}, T^{\prime}\right) \models \phi(a) .
$$

Assume that b is greater than the chosen UTB-proof of $\phi(a)$. Work in $\left(\mathcal{M}, T_{b}\right) \models \operatorname{Ind}\left(\mathcal{L}_{T}\right)$. Let $\mathrm{Th}_{b}:=\mathrm{PA} \cup\left\{\phi \in \mathcal{L} \mid \quad T_{b}(\phi)\right\}$. Then we have ConTh ${ }_{\text {b }}$.

Δ_{0}-reflection ${ }^{+}$

Fix $\Delta_{0}^{\mathcal{L}_{T}}$ formula $\phi(x)$. Fix $(\mathcal{M}, T) \models \mathrm{CT}_{0}, a \in M$ and assume $\operatorname{Pr}_{\mathrm{UTB}}^{T}(\phi(\dot{x}))$. Since $\phi(x)$ is bounded there exists $b \in M$ such that

$$
(\mathcal{M}, T) \models \phi(a) \Longleftrightarrow \exists\left(\mathcal{N}, T^{\prime}\right) \supseteq_{e}\left(\mathcal{M}, T \upharpoonright_{b}\right) \quad\left(\mathcal{N}, T^{\prime}\right) \models \phi(a)
$$

Assume that b is greater than the chosen UTB-proof of $\phi(a)$. Work in $\left(\mathcal{M}, T_{b}\right) \models \operatorname{Ind}\left(\mathcal{L}_{T}\right)$. Let $\operatorname{Th}_{b}:=\mathrm{PA} \cup\left\{\phi \in \mathcal{L} \mid T_{b}(\phi)\right\}$. Then we have Con Th_{b}. So, ConUtB+ Th_{b}.

Δ_{0}-reflection ${ }^{+}$

Fix $\Delta_{0}^{\mathcal{L}_{T}}$ formula $\phi(x)$. Fix $(\mathcal{M}, T) \models \mathrm{CT}_{0}, a \in M$ and assume $\operatorname{Pr}_{\mathrm{UTB}}^{T}(\phi(\dot{x}))$. Since $\phi(x)$ is bounded there exists $b \in M$ such that

$$
(\mathcal{M}, T) \models \phi(a) \Longleftrightarrow \exists\left(\mathcal{N}, T^{\prime}\right) \supseteq_{e}\left(\mathcal{M}, T \upharpoonright_{b}\right) \quad\left(\mathcal{N}, T^{\prime}\right) \models \phi(a)
$$

Assume that b is greater than the chosen UTB-proof of $\phi(a)$. Work in $\left(\mathcal{M}, T_{b}\right) \models \operatorname{Ind}\left(\mathcal{L}_{T}\right)$. Let $\operatorname{Th}_{b}:=\mathrm{PA} \cup\left\{\phi \in \mathcal{L} \mid T_{b}(\phi)\right\}$. Then we have ConTh ${ }_{b}$. So, Conutb $+\mathrm{Th}_{b}$. Hence, by the ACT, there exists $\left(\mathcal{N}, T^{\prime}\right) \models \mathrm{UTB}+\mathrm{Th}_{b}$.

Δ_{0}-reflection ${ }^{+}$

Fix $\Delta_{0}^{\mathcal{L}_{T}}$ formula $\phi(x)$. Fix $(\mathcal{M}, T) \models \mathrm{CT}_{0}, a \in M$ and assume $\operatorname{Pr}_{\mathrm{UTB}}^{T}(\phi(\dot{x}))$. Since $\phi(x)$ is bounded there exists $b \in M$ such that

$$
(\mathcal{M}, T) \models \phi(a) \Longleftrightarrow \exists\left(\mathcal{N}, T^{\prime}\right) \supseteq_{e}\left(\mathcal{M}, T \upharpoonright_{b}\right) \quad\left(\mathcal{N}, T^{\prime}\right) \models \phi(a)
$$

Assume that b is greater than the chosen UTB-proof of $\phi(a)$. Work in $\left(\mathcal{M}, T_{b}\right) \models \operatorname{Ind}\left(\mathcal{L}_{T}\right)$. Let $\operatorname{Th}_{b}:=\mathrm{PA} \cup\left\{\phi \in \mathcal{L} \mid T_{b}(\phi)\right\}$. Then we have Con Th_{b}. So, Conutb $+\mathrm{Th}_{b}$. Hence, by the ACT, there exists $\left(\mathcal{N}, T^{\prime}\right) \models$ UTB $+\operatorname{Th}_{b}$. So $\left(\mathcal{N}, T^{\prime}\right) \models \phi(a)$.

Δ_{0}-reflection ${ }^{+}$

Fix $\Delta_{0}^{\mathcal{L}_{T}}$ formula $\phi(x)$. Fix $(\mathcal{M}, T) \models \mathrm{CT}_{0}, a \in M$ and assume $\operatorname{Pr}_{U T B}^{T}(\phi(\dot{x}))$. Since $\phi(x)$ is bounded there exists $b \in M$ such that

$$
(\mathcal{M}, T) \models \phi(a) \Longleftrightarrow \exists\left(\mathcal{N}, T^{\prime}\right) \supseteq_{e}\left(\mathcal{M}, T \upharpoonright_{b}\right) \quad\left(\mathcal{N}, T^{\prime}\right) \models \phi(a) .
$$

Assume that b is greater than the chosen UTB-proof of $\phi(a)$. Work in $\left(\mathcal{M}, T_{b}\right) \models \operatorname{Ind}\left(\mathcal{L}_{T}\right)$. Let $\operatorname{Th}_{b}:=\mathrm{PA} \cup\left\{\phi \in \mathcal{L} \mid T_{b}(\phi)\right\}$. Then we have Con Th_{b}. So, Con ${ }^{\text {UTB }}+\mathrm{Th}_{b}$. Hence, by the ACT, there exists $\left(\mathcal{N}, T^{\prime}\right) \models$ UTB $+\operatorname{Th}_{b}$. So $\left(\mathcal{N}, T^{\prime}\right) \models \phi(a)$. Moreover $\left(\mathcal{M}, T \upharpoonright_{b}\right) \subseteq\left(\mathcal{N}, T^{\prime}\right)$.

Bounding

Fix $\phi(x)$ and $(\mathcal{M}, T) \models \mathrm{CT}_{0}$.

Bounding

Fix $\phi(x)$ and $(\mathcal{M}, T) \models \mathrm{CT}_{0}$. Assume that $\neg \operatorname{Pr}_{\mathrm{UTB}}^{T}(\exists v<\dot{y} \phi(v))$.

Bounding

Fix $\phi(x)$ and $(\mathcal{M}, T) \models C T_{0}$. Assume that $\neg \operatorname{Pr}_{U T B}^{T}(\exists v<\dot{y} \phi(v))$.
Fix $F:=T_{c} \cup \mathrm{CT}^{-}(c)$ - a finite portion of $T \cup \mathrm{UTB}^{-}$.

Bounding

Fix $\phi(x)$ and $(\mathcal{M}, T) \models \mathrm{CT}_{0}$. Assume that $\neg \operatorname{Pr}_{\text {UTB }}^{T}(\exists v<\dot{y} \phi(v))$. Fix $F:=T_{c} \cup \mathrm{CT}^{-}(c)$ - a finite portion of $T \cup \mathrm{UTB}^{-}$. By the assumption the following theory is consistent

$$
\text { Th }:=F \cup\{\forall v<\underline{a} \neg \phi(v) \mid a \in M\} .
$$

Let $\left(\mathcal{N}, T^{\prime}\right) \models$ Th be a model of Th (which exists by ACT).

Bounding

Fix $\phi(x)$ and $(\mathcal{M}, T) \models \mathrm{CT}_{0}$. Assume that $\neg \operatorname{Pr}_{\text {UTB }}^{T}(\exists v<\dot{y} \phi(v))$. Fix $F:=T_{c} \cup \mathrm{CT}^{-}(c)$ - a finite portion of $T \cup \mathrm{UTB}^{-}$. By the assumption the following theory is consistent

$$
\text { Th }:=F \cup\{\forall v<\underline{a} \neg \phi(v) \mid a \in M\} .
$$

Let $\left(\mathcal{N}, T^{\prime}\right) \models$ Th be a model of Th (which exists by ACT). Consider ($\left.\mathcal{M}, T^{\prime} \upharpoonright M\right)$.

Bounding

Fix $\phi(x)$ and $(\mathcal{M}, T) \models C T_{0}$. Assume that $\neg \operatorname{Pr}_{U T B}^{T}(\exists v<\dot{y} \phi(v))$. Fix $F:=T_{c} \cup \mathrm{CT}^{-}(c)$ - a finite portion of $T \cup \mathrm{UTB}^{-}$. By the assumption the following theory is consistent

$$
\text { Th }:=F \cup\{\forall v<\underline{a} \neg \phi(v) \mid a \in M\} .
$$

Let $\left(\mathcal{N}, T^{\prime}\right) \models$ Th be a model of $T h$ (which exists by ACT). Consider $\left(\mathcal{M}, T^{\prime} \upharpoonright_{M}\right)$. Then

$$
\text { 1. }\left(\mathcal{M}, T^{\prime}\lceil M) \models \forall y \neg \phi(y)\right. \text {. }
$$

Bounding

Fix $\phi(x)$ and $(\mathcal{M}, T) \models C T_{0}$. Assume that $\neg \operatorname{Pr}_{U T B}^{T}(\exists v<\dot{y} \phi(v))$. Fix $F:=T_{c} \cup \mathrm{CT}^{-}(c)$ - a finite portion of $T \cup \mathrm{UTB}^{-}$. By the assumption the following theory is consistent

$$
\text { Th }:=F \cup\{\forall v<\underline{a} \neg \phi(v) \mid a \in M\} .
$$

Let $\left(\mathcal{N}, T^{\prime}\right) \models$ Th be a model of $T h$ (which exists by ACT). Consider $\left(\mathcal{M}, T^{\prime} \upharpoonright_{M}\right)$. Then

1. $\left(\mathcal{M}, T^{\prime}\lceil M) \models \forall y \neg \phi(y)\right.$.
2. $\left(\mathcal{M}, T^{\prime} \upharpoonright M\right) \models \operatorname{lnd}\left(\mathcal{L}_{T}\right)$.

Bounding

Fix $\phi(x)$ and $(\mathcal{M}, T) \models C T_{0}$. Assume that $\neg \operatorname{Pr}_{U T B}^{T}(\exists v<\dot{y} \phi(v))$. Fix $F:=T_{c} \cup \mathrm{CT}^{-}(c)$ - a finite portion of $T \cup \mathrm{UTB}^{-}$. By the assumption the following theory is consistent

$$
\text { Th }:=F \cup\{\forall v<\underline{a} \neg \phi(v) \mid a \in M\} .
$$

Let $\left(\mathcal{N}, T^{\prime}\right) \models$ Th be a model of Th (which exists by ACT). Consider $\left(\mathcal{M}, T^{\prime} \upharpoonright_{M}\right)$. Then

$$
\begin{aligned}
& \text { 1. }\left(\mathcal{M}, T^{\prime} \upharpoonright_{M}\right) \models \forall y \neg \phi(y) . \\
& \text { 2. }\left(\mathcal{M}, T^{\prime} \upharpoonright_{M}\right) \models \operatorname{lnd}\left(\mathcal{L}_{T}\right) . \\
& \text { 3. }\left(\mathcal{M}, T^{\prime} \upharpoonright_{M}\right) \models \mathrm{CT}^{-}(c) .
\end{aligned}
$$

Bounding

Fix $\phi(x)$ and $(\mathcal{M}, T) \models C T_{0}$. Assume that $\neg \operatorname{Pr}_{U T B}^{T}(\exists v<\dot{y} \phi(v))$. Fix $F:=T_{c} \cup \mathrm{CT}^{-}(c)$ - a finite portion of $T \cup \mathrm{UTB}^{-}$. By the assumption the following theory is consistent

$$
\text { Th }:=F \cup\{\forall v<\underline{a} \neg \phi(v) \mid a \in M\} .
$$

Let $\left(\mathcal{N}, T^{\prime}\right) \models$ Th be a model of Th (which exists by ACT). Consider $\left(\mathcal{M}, T^{\prime} \upharpoonright_{M}\right)$. Then

$$
\begin{aligned}
& \text { 1. }\left(\mathcal{M}, T^{\prime} \upharpoonright_{M}\right) \models \forall y \neg \phi(y) . \\
& \text { 2. }\left(\mathcal{M}, T^{\prime} \upharpoonright_{M}\right) \models \operatorname{lnd}\left(\mathcal{L}_{T}\right) . \\
& \text { 3. }\left(\mathcal{M}, T^{\prime} \upharpoonright_{M}\right) \models \mathrm{CT}^{-}(c) .
\end{aligned}
$$

Bounding

Fix $\phi(x)$ and $(\mathcal{M}, T) \models \mathrm{CT}_{0}$. Assume that $\neg \operatorname{Pr}_{U T B}^{T}(\exists v<\dot{y} \phi(v))$. Fix $F:=T_{c} \cup \mathrm{CT}^{-}(c)$ - a finite portion of $T \cup \mathrm{UTB}^{-}$. By the assumption the following theory is consistent

$$
\text { Th }:=F \cup\{\forall v<\underline{a} \neg \phi(v) \mid a \in M\} .
$$

Let $\left(\mathcal{N}, T^{\prime}\right) \models$ Th be a model of $T h$ (which exists by ACT). Consider $\left(\mathcal{M}, T^{\prime} \upharpoonright_{M}\right)$. Then

$$
\begin{aligned}
& \text { 1. }\left(\mathcal{M}, T^{\prime} \upharpoonright M\right) \models \forall y \neg \phi(y) . \\
& \text { 2. }\left(\mathcal{M}, T^{\prime}\lceil M) \models \operatorname{lnd}\left(\mathcal{L}_{T}\right) .\right. \\
& \text { 3. }\left(\mathcal{M}, T^{\prime}\lceil M) \models C^{-}(c) .\right.
\end{aligned}
$$

So by induction, $\left(\mathcal{M}, T^{\prime} \upharpoonright M\right) \models \operatorname{Con}_{F \cup \forall y \neg \phi(y)}$.

Bounding

Fix $\phi(x)$ and $(\mathcal{M}, T) \models C T_{0}$. Assume that $\neg \operatorname{Pr}_{U T B}^{T}(\exists v<\dot{y} \phi(v))$. Fix $F:=T_{c} \cup \mathrm{CT}^{-}(c)$ - a finite portion of $T \cup \mathrm{UTB}^{-}$. By the assumption the following theory is consistent

$$
\text { Th }:=F \cup\{\forall v<\underline{a} \neg \phi(v) \mid a \in M\} .
$$

Let $\left(\mathcal{N}, T^{\prime}\right) \models$ Th be a model of Th (which exists by ACT). Consider $\left(\mathcal{M}, T^{\prime} \upharpoonright_{M}\right)$. Then

$$
\begin{aligned}
& \text { 1. }\left(\mathcal{M}, T^{\prime} \upharpoonright_{M}\right) \models \forall y \neg \phi(y) . \\
& \text { 2. }\left(\mathcal{M}, T^{\prime} \upharpoonright_{M}\right) \models \operatorname{lnd}\left(\mathcal{L}_{T}\right) . \\
& \text { 3. }\left(\mathcal{M}, T^{\prime}\lceil M) \models \mathrm{CT}^{-}(c) .\right.
\end{aligned}
$$

So by induction, $\left(\mathcal{M}, T^{\prime}\lceil M) \models \operatorname{Con}_{F \cup \forall y \neg \phi(y)}\right.$. Since F was arbitrary, we conclude that $\neg \operatorname{Pr}_{\text {UTB }^{-}}^{\top}(\exists y \phi(y))$.

Some bibliography

DC-out Cieśliński, $Ł$. ., Wcisło, "The two halves of disjunctive correctness", submitted. https:
//www.researchgate.net/publication/354269317_The_ two_halves_of_disjunctive_correctness

Some bibliography

DC-out Cieśliński, Ł., Wcisło, "The two halves of disjunctive correctness", submitted. https:
//www.researchgate.net/publication/354269317_The_ two_halves_of_disjunctive_correctness
N(UTB ${ }^{-}$) Ł., "Model theory and proof theory of the Global Reflection Principle", submitted. https://www.researchgate.net/ publication/355126453_Model_Theory_and_Proof_ Theory_of_the_Global_Reflection_Principle

Thank you for your attention.

[^0]:

