Metamathematics of the Global Reflection Principle.

Mateusz Łełyk

Faculty of Philosophy, University of Warsaw

40éme Journées des Arithmétiques Faibles, October 25, 2021

(日) (월) (분) (분)

æ

Introduction

Suppose B is an axiomatic (r.e.) theory in a language extending the language of arithmetic.

Suppose *B* is an axiomatic (r.e.) theory in a language extending the language of arithmetic. How to express that *B* is *trustworthy*? Con Con_B

Suppose *B* is an axiomatic (r.e.) theory in a language extending the language of arithmetic. How to express that *B* is *trustworthy*? Con Con_{*B*} $Rfn(U) Pr_B(\ulcorner \phi \urcorner) \rightarrow \phi$

(日)

Suppose *B* is an axiomatic (r.e.) theory in a language extending the language of arithmetic. How to express that *B* is *trustworthy*? Con Con_{*B*} Rfn(*U*) $\Pr_B(\ulcorner \phi \urcorner) \rightarrow \phi$ RFN(*U*) $\forall x (\Pr_B(\ulcorner \phi(\dot{x}) \urcorner) \rightarrow \phi(x)).$

Suppose *B* is an axiomatic (r.e.) theory in a language extending the language of arithmetic. How to express that *B* is *trustworthy*? Con Con_{*B*} Rfn(*U*) $\Pr_B(\ulcorner \phi \urcorner) \rightarrow \phi$ RFN(*U*) $\forall x (\Pr_B(\ulcorner \phi(\dot{x}) \urcorner) \rightarrow \phi(x)).$

Suppose *B* is an axiomatic (r.e.) theory in a language extending the language of arithmetic. How to express that *B* is *trustworthy*? Con Con_B Rfn(*U*) $\Pr_B(\ulcorner \phi \urcorner) \rightarrow \phi$ RFN(*U*) $\forall x (\Pr_B(\ulcorner \phi(\dot{x}) \urcorner) \rightarrow \phi(x)).$

Finally there is the most natural solution: introduce a primitive truth predicate T(x) and say

◆日 > < 同 > < 国 > < 国 >

Suppose *B* is an axiomatic (r.e.) theory in a language extending the language of arithmetic. How to express that *B* is *trustworthy*? Con Con_B Rfn(*U*) $\Pr_B(\ulcorner \phi \urcorner) \rightarrow \phi$ RFN(*U*) $\forall x (\Pr_B(\ulcorner \phi(\dot{x}) \urcorner) \rightarrow \phi(x)).$

Finally there is the most natural solution: introduce a primitive truth predicate T(x) and say

$$\forall \phi(\Pr_B(\phi) \to T(\phi))$$
 (GR(B))

◆日 > < 同 > < 国 > < 国 >

Our "truth package" will consist of the following axioms:

Definition

 $CT^{-}[B]$ extends B with the following axioms for the T predicate.

Our "truth package" will consist of the following axioms:

Definition

 $\begin{aligned} \mathsf{CT}^{-}[B] \text{ extends } B \text{ with the following axioms for the } T \text{ predicate.} \\ 1. \quad \forall s_0, \ldots \forall s_n (T(\dot{R}(s_0, \ldots, s_n) \equiv R(s_0^{\circ}, \ldots, s_n^{\circ})). \end{aligned}$

Our "truth package" will consist of the following axioms:

Definition

 $CT^{-}[B] \text{ extends } B \text{ with the following axioms for the } T \text{ predicate.}$ 1. $\forall s_0, \dots \forall s_n (T(\dot{R}(s_0, \dots, s_n) \equiv R(s_0^{\circ}, \dots, s_n^{\circ})).$ 2. $\forall \phi (T(\dot{\neg}\phi) \equiv \neg T(\phi)).$

Our "truth package" will consist of the following axioms:

Definition

 $CT^{-}[B]$ extends B with the following axioms for the T predicate.

- 1. $\forall s_0, \ldots \forall s_n (T(\dot{R}(s_0, \ldots, s_n) \equiv R(s_0^{\circ}, \ldots, s_n^{\circ})).$
- 2. $\forall \phi (T(\dot{\neg} \phi) \equiv \neg T(\phi)).$
- 3. $\forall \phi, \psi (T(\phi \dot{\lor} \psi) \equiv T(\phi) \lor T(\psi)).$

Our "truth package" will consist of the following axioms:

Definition

 $CT^{-}[B]$ extends B with the following axioms for the T predicate.

・ロト ・ 同ト ・ ヨト ・ ヨト

1. $\forall s_0, \ldots \forall s_n (T(\dot{R}(s_0, \ldots, s_n) \equiv R(s_0^\circ, \ldots, s_n^\circ)).$

2.
$$\forall \phi(T(\dot{\neg}\phi) \equiv \neg T(\phi)).$$

- 3. $\forall \phi, \psi (T(\phi \dot{\lor} \psi) \equiv T(\phi) \lor T(\psi)).$
- 4. $\forall \phi(\mathbf{v})(T(\exists \mathbf{v}\phi(\mathbf{v})) \equiv \exists x T(\phi[\underline{x}/\mathbf{v}])).$

Our "truth package" will consist of the following axioms:

Definition

 $CT^{-}[B]$ extends B with the following axioms for the T predicate.

・ロト ・ 同ト ・ ヨト ・ ヨト

1. $\forall s_0, \ldots \forall s_n (T(\dot{R}(s_0, \ldots, s_n) \equiv R(s_0^{\circ}, \ldots, s_n^{\circ})).$

2.
$$\forall \phi(T(\dot{\neg}\phi) \equiv \neg T(\phi)).$$

- 3. $\forall \phi, \psi (T(\phi \dot{\lor} \psi) \equiv T(\phi) \lor T(\psi)).$
- 4. $\forall \phi(\mathbf{v})(T(\exists \mathbf{v}\phi(\mathbf{v})) \equiv \exists x T(\phi[\underline{x}/\mathbf{v}])).$

Our "truth package" will consist of the following axioms:

Definition

 $CT^{-}[B]$ extends B with the following axioms for the T predicate.

1. $\forall s_0, \ldots \forall s_n (T(\dot{R}(s_0, \ldots, s_n) \equiv R(s_0^{\circ}, \ldots, s_n^{\circ})).$

2.
$$\forall \phi(T(\neg \phi) \equiv \neg T(\phi)).$$

- 3. $\forall \phi, \psi(T(\phi \dot{\lor} \psi) \equiv T(\phi) \lor T(\psi)).$
- 4. $\forall \phi(\mathbf{v})(T(\exists \mathbf{v}\phi(\mathbf{v})) \equiv \exists \mathbf{x}T(\phi[\mathbf{x}/\mathbf{v}])).$

Our basic B will be the elementary arithmetic EA (I Δ_0 + "exp is total".)

・ロト ・ 『 ト ・ ヨ ト ・ ヨ ト

Our "truth package" will consist of the following axioms:

Definition

 $CT^{-}[B]$ extends B with the following axioms for the T predicate.

1. $\forall s_0, \ldots \forall s_n (T(\dot{R}(s_0, \ldots, s_n) \equiv R(s_0^{\circ}, \ldots, s_n^{\circ})).$

2.
$$\forall \phi(T(\dot{\neg}\phi) \equiv \neg T(\phi)).$$

- 3. $\forall \phi, \psi(T(\phi \dot{\lor} \psi) \equiv T(\phi) \lor T(\psi)).$
- 4. $\forall \phi(v) (T(\exists v \phi(v)) \equiv \exists x T(\phi[\underline{x}/v])).$

Our basic B will be the elementary arithmetic EA (I Δ_0 + "exp is total".) We assume that all B's extends EA and are formulated in the language $\mathcal{L} := \{\leq, +, \times, 0, 1\}.$

Theorem (Enayat-Visser, Leigh)

For every B, $CT^{-}[B]$ is conservative over B.

Theorem (Enayat-Visser, Leigh)

For every B, $CT^{-}[B]$ is conservative over B.

Theorem (Enayat-Visser, Leigh)

For every B, $CT^{-}[B]$ is conservative over B.

Denote with INT the following sentence $\forall \phi(v) [T(\phi(0)) \land \forall x (T(\phi(\dot{x})) \rightarrow T(\phi(\dot{x}+1))) \rightarrow \forall x T(\phi(\dot{x}))].$

Theorem (Kotlarski-Krajewski-Lachlan)

 $CT^{-}[EA] + INT \vdash PA$ and $CT^{-}[EA] + INT$ is conservative over PA.

Theorem (Enayat-Visser, Leigh)

For every B, $CT^{-}[B]$ is conservative over B.

Denote with INT the following sentence $\forall \phi(v) [T(\phi(0)) \land \forall x (T(\phi(\dot{x})) \rightarrow T(\phi(\dot{x}+1))) \rightarrow \forall x T(\phi(\dot{x}))].$

Theorem (Kotlarski-Krajewski-Lachlan)

 $CT^{-}[EA] + INT \vdash PA$ and $CT^{-}[EA] + INT$ is conservative over PA.

Theorem (Fischer)

CT⁻[PA] is relatively interpretable in PA.

Theorem (Enayat-Visser, Leigh)

For every B, $CT^{-}[B]$ is conservative over B.

Denote with INT the following sentence $\forall \phi(v) [T(\phi(0)) \land \forall x (T(\phi(\dot{x})) \rightarrow T(\phi(\dot{x}+1))) \rightarrow \forall x T(\phi(\dot{x}))].$

Theorem (Kotlarski-Krajewski-Lachlan)

 $\mathsf{CT}^-[\mathsf{EA}] + \mathsf{INT} \vdash \mathsf{PA} \text{ and } \mathsf{CT}^-[\mathsf{EA}] + \mathsf{INT} \text{ is conservative over } \mathsf{PA}.$

Theorem (Fischer)

CT⁻[PA] is relatively interpretable in PA.

Theorem (Enayat-Ł.-Wcisło)

There exists a PTIME function f such that if p is a proof of an arithmetical sentence ϕ in CT⁻[PA], then f(p) is a proof of ϕ in PA.

Disjunctions that are too long for CT⁻.

For a natural number \boldsymbol{n} and a sentence $\boldsymbol{\phi}$ let

$$\bigvee_{i\leq n}\phi:=(\ldots(\phi\vee\phi)\vee\phi)\vee\ldots\vee\phi).$$

Theorem (Kotlarski-Krajewski-Lachlan)

If $\mathcal{M} \models \mathsf{PA}$ is countable and recursively saturated and $a \in M$ is nonstandard, then there is $T \subseteq M$ such that

$$(\mathcal{M}, T) \models \mathsf{CT}^{-}[\mathsf{PA}] + T\left(\bigvee_{i \leq a} 0 = 1\right).$$

イロト イポト イヨト イヨト

Theorem (Cieśliński-Enayat-Pakhomov-Ł.)

Over CT⁻[EA] the following are equivalent:

Theorem (Cieśliński-Enayat-Pakhomov-Ł.)

Over CT⁻[EA] the following are equivalent:

$$\blacktriangleright \forall \phi(\mathsf{Pr}_{\mathsf{PA}}(\phi) \to T(\phi)).$$

Theorem (Cieśliński-Enayat-Pakhomov-Ł.)

Over CT⁻[EA] the following are equivalent:

$$\blacktriangleright \forall \phi(\mathsf{Pr}_{\mathsf{PA}}(\phi) \to T(\phi)).$$

• Δ_0 -induction for the language with the truth predicate.

Theorem (Cieśliński-Enayat-Pakhomov-Ł.)

Over CT⁻[EA] the following are equivalent:

$$\blacktriangleright \forall \phi(\mathsf{Pr}_{\mathsf{PA}}(\phi) \to T(\phi)).$$

• Δ_0 -induction for the language with the truth predicate.

$$\blacktriangleright \forall \phi(\mathsf{Pr}_{\emptyset}(\phi) \to T(\phi))$$

Theorem (Cieśliński-Enayat-Pakhomov-Ł.)

Over CT⁻[EA] the following are equivalent:

$$\blacktriangleright \forall \phi (\mathsf{Pr}_{\mathsf{PA}}(\phi) \to T(\phi)).$$

• Δ_0 -induction for the language with the truth predicate.

$$\blacktriangleright \forall \phi(\mathsf{Pr}_{\emptyset}(\phi) \to T(\phi))$$

$$\blacktriangleright \forall \phi (\mathsf{Pr}_{Sent}^{\mathsf{T}}(\phi) \to \mathsf{T}(\phi))$$

Theorem (Cieśliński-Enayat-Pakhomov-Ł.)

Over CT⁻[EA] the following are equivalent:

$$\blacktriangleright \forall \phi (\mathsf{Pr}_{\mathsf{PA}}(\phi) \to T(\phi)).$$

• Δ_0 -induction for the language with the truth predicate.

$$\blacktriangleright \forall \phi(\mathsf{Pr}_{\emptyset}(\phi) \to T(\phi))$$

$$\blacktriangleright \forall \phi (\mathsf{Pr}_{Sent}^{\mathsf{T}}(\phi) \to \mathsf{T}(\phi))$$

•
$$\forall \bar{\psi} \Big[\mathsf{SentSeq}(\bar{\psi}) \rightarrow (T(\bigvee \bar{\psi}) \equiv \exists i < |\bar{\psi}| T(\psi_i)) \Big].$$
 (DC)

<ロト <回ト < 注ト < 注ト

Theorem (Cieśliński-Enayat-Pakhomov-Ł.)

Over CT⁻[EA] the following are equivalent:

$$\blacktriangleright \forall \phi (\mathsf{Pr}_{\mathsf{PA}}(\phi) \to T(\phi)).$$

• Δ_0 -induction for the language with the truth predicate.

$$\blacktriangleright \forall \phi(\mathsf{Pr}_{\emptyset}(\phi) \to T(\phi))$$

$$\blacktriangleright \forall \phi (\mathsf{Pr}_{Sent}^{\mathsf{T}}(\phi) \to \mathsf{T}(\phi))$$

•
$$\forall \bar{\psi} \Big[\mathsf{SentSeq}(\bar{\psi}) \rightarrow (T(\bigvee \bar{\psi}) \equiv \exists i < |\bar{\psi}| T(\psi_i)) \Big].$$
 (DC)

<ロト <回ト < 注ト < 注ト

Theorem (Cieśliński-Enayat-Pakhomov-Ł.)

Over CT⁻[EA] the following are equivalent:

$$\blacktriangleright \forall \phi (\mathsf{Pr}_{\mathsf{PA}}(\phi) \to T(\phi)).$$

• Δ_0 -induction for the language with the truth predicate.

$$\blacktriangleright \forall \phi(\mathsf{Pr}_{\emptyset}(\phi) \to T(\phi))$$

$$\blacktriangleright \forall \phi (\mathsf{Pr}_{Sent}^{T}(\phi) \to T(\phi))$$

•
$$\forall \bar{\psi} \Big[\mathsf{SentSeq}(\bar{\psi}) \rightarrow (T(\forall \bar{\psi}) \equiv \exists i < |\bar{\psi}|T(\psi_i)) \Big].$$
 (DC)

The above theory is called CT_0 .

Theorem (Kotlarski-Smoryński)

The arithmetical consequences of CT_0 coincide with $RFN^{<\omega}(PA)$.

(日)

Main course: disjunctive correctness

For a sequence of sentences $\phi_0, \ldots, \phi_n, \bigvee_{i \leq n} \phi_i$ denotes the disjunction

 $(\ldots (\phi_0 \lor \phi_1) \lor \phi_2) \lor \ldots) \lor \phi_n.$

Main course: disjunctive correctness

For a sequence of sentences ϕ_0, \ldots, ϕ_n , $\bigvee_{i \leq n} \phi_i$ denotes the disjunction

$$(\ldots (\phi_0 \lor \phi_1) \lor \phi_2) \lor \ldots) \lor \phi_n.$$

DC-out is the following sentence

$$\forall \bar{\phi} \left[\mathsf{SentSeq}(\bar{\phi}) \rightarrow \left(T\left(\bigvee \bar{\phi} \right) \rightarrow \exists i < |\bar{\phi}| T(\phi_i) \right) \right]$$

Main course: disjunctive correctness

For a sequence of sentences $\phi_0, \ldots, \phi_n, \bigvee_{i \leq n} \phi_i$ denotes the disjunction

$$(\ldots (\phi_0 \lor \phi_1) \lor \phi_2) \lor \ldots) \lor \phi_n.$$

DC-out is the following sentence

$$\forall \bar{\phi} \left[\mathsf{SentSeq}(\bar{\phi}) \rightarrow \left(T\left(\bigvee \bar{\phi} \right) \rightarrow \exists i < |\bar{\phi}| T(\phi_i) \right) \right]$$

Theorem (Cieśliński-Wcisło-Ł.)

 $\mathsf{CT}^-[\mathsf{EA}] + \mathsf{DC}\text{-out coincides with }\mathsf{CT}_0.$

(日)

Main course: Σ_1 -reflection over UTB⁻

UTB⁻ denote the following collection of $\mathcal{L}_{\mathcal{T}}$ sentences (extending PA)

$$\forall x \big(T \big(\ulcorner \phi(\dot{x}) \urcorner \big) \equiv \phi(x) \big).$$

Theorem (Ł.) $\Sigma_1^{\mathcal{L}_T}$ -RFN(UTB⁻) + CT⁻ coincides with CT₀.

The main result

► $\mathsf{CT}^- + \Sigma_1^{\mathcal{L}_T} - \mathsf{RFN}(\mathsf{UTB}^-) \vdash \forall \phi(\mathsf{Pr}_{\mathsf{PA}}(\phi) \to T(\phi))$

► $\mathsf{CT}^- + \Sigma_1^{\mathcal{L}_T} - \mathsf{RFN}(\mathsf{UTB}^-) \vdash \forall \phi(\mathsf{Pr}_{\mathsf{PA}}(\phi) \to T(\phi))$

• $CT^- + \Sigma_1^{\mathcal{L}_T} - RFN(UTB^-) \vdash \forall \phi(Pr_{PA}(\phi) \rightarrow T(\phi))$ This follows since for $\phi \in \mathcal{L}$, $T(\ulcorner \phi \urcorner) \in \Delta_0^{\mathcal{L}_T}$ and $PA \vdash \phi \Rightarrow UTB^- \vdash T(\phi)$.

► $CT_0 \vdash DC$ -out.

• $CT^- + \Sigma_1^{\mathcal{L}_T} - RFN(UTB^-) \vdash \forall \phi(Pr_{PA}(\phi) \rightarrow T(\phi))$ This follows since for $\phi \in \mathcal{L}$, $T(\ulcorner \phi \urcorner) \in \Delta_0^{\mathcal{L}_T}$ and $PA \vdash \phi \Rightarrow UTB^- \vdash T(\phi)$.

► $CT_0 \vdash DC$ -out.

► $CT^- + \Sigma_1^{\mathcal{L}_T} - RFN(UTB^-) \vdash \forall \phi(Pr_{PA}(\phi) \rightarrow T(\phi))$ This follows since for $\phi \in \mathcal{L}$, $T(\ulcorner \phi \urcorner) \in \Delta_0^{\mathcal{L}_T}$ and $PA \vdash \phi \Rightarrow UTB^- \vdash T(\phi)$.

CT₀ ⊢ DC-out. Assume ∀i < |ψ̄|T(¬ψ_i) and use bounded induction for the formula φ(x) := T (¬V_{i<x} ¬ψ_i).

The main result

DC-out implies CT_0

Let Sind be the following statement

 $(T(s_0) \land \forall j < |s| - 1(T(s_j) \rightarrow T(s_{j+1})) \rightarrow \forall j < |s|T(s_j)).$

Lemma (Cieśliński)

Over CT⁻[EA] DC-out implies Sind.

Fix a sequence of formulae $\bar{\phi}$ and assume that $T(\phi_0)$ oraz $\forall i < |\bar{\phi}| (T(\phi_i) \rightarrow T(\phi_{i+1})).$

Let Sind be the following statement

 $(T(s_0) \land \forall j < |s| - 1(T(s_j) \rightarrow T(s_{j+1})) \rightarrow \forall j < |s|T(s_j)).$

Lemma (Cieśliński)

Over CT⁻[EA] DC-out implies Sind.

Fix a sequence of formulae $\bar{\phi}$ and assume that $T(\phi_0)$ oraz $\forall i < |\bar{\phi}| (T(\phi_i) \rightarrow T(\phi_{i+1})).$

Let Sind be the following statement

 $(T(s_0) \land \forall j < |s| - 1(T(s_j) \rightarrow T(s_{j+1})) \rightarrow \forall j < |s|T(s_j)).$

Lemma (Cieśliński)

Over CT⁻[EA] DC-out implies Sind.

Fix a sequence of formulae $\bar{\phi}$ and assume that $T(\phi_0)$ oraz $\forall i < |\bar{\phi}|(T(\phi_i) \rightarrow T(\phi_{i+1}))$. Consider the following sequence

$$\psi_0 := \phi_0$$

$$\psi_{i+1} := \neg \phi_{i+1} \to \bigvee_{j \le i} \neg \psi_j$$

A D > A P > A D > A D >

Let Sind be the following statement

 $(T(s_0) \land \forall j < |s| - 1(T(s_j) \rightarrow T(s_{j+1})) \rightarrow \forall j < |s|T(s_j)).$

Lemma (Cieśliński)

Over CT⁻[EA] DC-out implies Sind.

Fix a sequence of formulae $\bar{\phi}$ and assume that $T(\phi_0)$ oraz $\forall i < |\bar{\phi}|(T(\phi_i) \rightarrow T(\phi_{i+1}))$. Consider the following sequence

$$\psi_0 := \phi_0$$

$$\psi_{i+1} := \neg \phi_{i+1} \to \bigvee_{j \le i} \neg \psi_j$$

Claim For all *i*, $T(\psi_i)$.

・ロト ・ 同ト ・ ヨト ・ ヨト

Let Sind be the following statement

 $(T(s_0) \land \forall j < |s| - 1(T(s_j) \rightarrow T(s_{j+1})) \rightarrow \forall j < |s|T(s_j)).$

Lemma (Cieśliński)

Over CT⁻[EA] DC-out implies Sind.

Fix a sequence of formulae $\bar{\phi}$ and assume that $T(\phi_0)$ oraz $\forall i < |\bar{\phi}|(T(\phi_i) \rightarrow T(\phi_{i+1}))$. Consider the following sequence

$$\psi_0 := \phi_0$$

$$\psi_{i+1} := \neg \phi_{i+1} \to \bigvee_{j \le i} \neg \psi_j$$

Claim For all *i*, $T(\psi_i)$. So assume $T(\neg \phi_i)$.

Let Sind be the following statement

 $(T(s_0) \land \forall j < |s| - 1(T(s_j) \rightarrow T(s_{j+1})) \rightarrow \forall j < |s|T(s_j)).$

Lemma (Cieśliński)

Over CT⁻[EA] DC-out implies Sind.

Fix a sequence of formulae $\bar{\phi}$ and assume that $T(\phi_0)$ oraz $\forall i < |\bar{\phi}|(T(\phi_i) \rightarrow T(\phi_{i+1}))$. Consider the following sequence

$$\psi_0 := \phi_0$$

$$\psi_{i+1} := \neg \phi_{i+1} \to \bigvee_{j \le i} \neg \psi_j$$

Claim For all *i*, $T(\psi_i)$. So assume $T(\neg \phi_i)$. Then $T(\bigvee_{j \le i} \neg \psi_j)$.

Let Sind be the following statement

 $(T(s_0) \land \forall j < |s| - 1(T(s_j) \rightarrow T(s_{j+1})) \rightarrow \forall j < |s|T(s_j)).$

Lemma (Cieśliński)

Over CT⁻[EA] DC-out implies Sind.

Fix a sequence of formulae $\bar{\phi}$ and assume that $T(\phi_0)$ oraz $\forall i < |\bar{\phi}|(T(\phi_i) \rightarrow T(\phi_{i+1}))$. Consider the following sequence

$$\psi_0 := \phi_0$$

$$\psi_{i+1} := \neg \phi_{i+1} \to \bigvee_{j \le i} \neg \psi_j$$

Claim For all *i*, $T(\psi_i)$. So assume $T(\neg \phi_i)$. Then $T(\bigvee_{j \le i} \neg \psi_j)$. By DC-out this contradicts the Claim.

Lemma

Over CT⁻[EA], Sind implies DC-in.

Lemma

Over CT⁻[EA], Sind implies DC-in.

Lemma

Over CT⁻[EA], Sind implies DC-in.

Fix a sequence ϕ_0, \ldots, ϕ_a and assume that we have $T(\phi_j)$.

Lemma

Over CT⁻[EA], Sind implies DC-in.

Fix a sequence ϕ_0, \ldots, ϕ_a and assume that we have $T(\phi_j)$. Define a sequence s by putting

$$|s| := a - j - 1$$

 $s_i := \bigvee_{k \le j+i} \phi_k$

Lemma

Over CT⁻[EA], Sind implies DC-in.

Fix a sequence ϕ_0, \ldots, ϕ_a and assume that we have $T(\phi_j)$. Define a sequence s by putting

$$|s| := a - j - 1$$

 $s_i := \bigvee_{k \le j + i} \phi_k$

By our assumption we have $T(s_0)$.

Lemma

Over CT⁻[EA], Sind implies DC-in.

Fix a sequence ϕ_0, \ldots, ϕ_a and assume that we have $T(\phi_j)$. Define a sequence s by putting

$$|s| := a - j - 1$$

 $s_i := \bigvee_{k \le j+i} \phi_k$

By our assumption we have $T(s_0)$. By the compositional axioms for binary disjunctions we have

$$\forall i < |s|(T(s_i) \to T(s_{i+1})).$$

Lemma

Over CT⁻[EA], Sind implies DC-in.

Fix a sequence ϕ_0, \ldots, ϕ_a and assume that we have $T(\phi_j)$. Define a sequence s by putting

$$egin{array}{l} |s| := a - j - 1 \ s_i := igvee_{k \leq j + i} \phi_k \end{array}$$

By our assumption we have $T(s_0)$. By the compositional axioms for binary disjunctions we have

$$\forall i < |s|(T(s_i) \rightarrow T(s_{i+1})).$$

An application of Sind yields the thesis.

(1)

Lemma

 $CT^{-}[EA] + DC + Sind implies CT_{0}$.

Working in $CT^{-}[EA] + DC + Sind$ we show that T is coded, i.e. for every *a* there is a *c* such that

$$\forall x < a(T(x) \equiv x \in c).$$

Fix a and consider the following sequence:

$$\psi_i = \exists c \bigwedge_{\phi < i} (\phi \equiv \phi \in c).$$

Lemma

 $CT^{-}[EA] + DC + Sind implies CT_{0}$.

Working in $CT^{-}[EA] + DC + Sind$ we show that T is coded, i.e. for every *a* there is a *c* such that

$$\forall x < a(T(x) \equiv x \in c).$$

Fix a and consider the following sequence:

$$\psi_i = \exists c \bigwedge_{\phi < i} (\phi \equiv \phi \in c).$$

Lemma

 $CT^{-}[EA] + DC + Sind implies CT_{0}$.

Working in $CT^{-}[EA] + DC + Sind$ we show that T is coded, i.e. for every *a* there is a *c* such that

$$\forall x < a(T(x) \equiv x \in c).$$

Fix a and consider the following sequence:

$$\psi_i = \exists c \bigwedge_{\phi < i} (\phi \equiv \phi \in c).$$

We have (using DC) $T(\psi_0)$ and $T(\psi_i) \rightarrow T(\psi_{i+1})$.

Lemma

 $CT^{-}[EA] + DC + Sind implies CT_{0}$.

Working in $CT^{-}[EA] + DC + Sind$ we show that T is coded, i.e. for every *a* there is a *c* such that

$$\forall x < a(T(x) \equiv x \in c).$$

Fix a and consider the following sequence:

$$\psi_i = \exists c \bigwedge_{\phi < i} (\phi \equiv \phi \in c).$$

We have (using DC) $T(\psi_0)$ and $T(\psi_i) \to T(\psi_{i+1})$. So $T(\psi_a)$ and DC yields the thesis.

The main result

 CT_0 implies $\Sigma_1^{\mathcal{L}_T}$ -RFN(UTB⁻).

Key lemmata

 $\Pr_{Th}^{T}(x)$ is the canonical \mathcal{L}_{T} formula expressing "There is a proof of x from the axioms of Th and the true sentences."

Lemma (Δ_0 -reflection⁺)

For every $\phi(x)\in \Delta_0^{\mathcal{L}_{\mathcal{T}}}$,

$$\mathsf{CT}_0 \vdash \forall x [\mathsf{Pr}_{\mathsf{UTB}}^{\mathcal{T}}(\phi(\dot{x})) \to \phi(x)].$$

VERSI.

Key lemmata

 $\Pr_{Th}^{T}(x)$ is the canonical \mathcal{L}_{T} formula expressing "There is a proof of x from the axioms of Th and the true sentences."

Lemma (Δ_0 -reflection⁺)

For every $\phi(x)\in \Delta_0^{\mathcal{L}_{\mathcal{T}}}$,

$$\mathsf{CT}_0 \vdash \forall x [\mathsf{Pr}_{\mathsf{UTB}}^T(\phi(\dot{x})) \to \phi(x)].$$

Lemma (Bounding lemma)

For every $\phi(x) \in \Delta_0^{\mathcal{L}_T}$,

$$\mathsf{CT}_{\mathsf{0}} \vdash \mathsf{Pr}_{\mathsf{UTB}^{-}}^{\mathcal{T}}(\exists v \phi(v)) \rightarrow \exists y \mathsf{Pr}_{\mathsf{UTB}^{-}}^{\mathcal{T}}(\exists v < \underline{y}\phi(v)).$$

A D > A P > A D > A D >

The most useful property of CT_0

Suppose $(\mathcal{M}, T) \models \mathsf{CT}^{-}[\mathsf{EA}]$ and $d \in M$.

The most useful property of CT_0

Suppose $(\mathcal{M}, T) \models CT^{-}[EA]$ and $d \in M$. Put

$$egin{array}{ll} T\!\upharpoonright_d := \{a\in M \mid T(a)\wedge a < d\}\ T_d := \{a\in M \mid T(a)\wedge \mathrm{dp}(a) < d\} \end{array}$$

The most useful property of CT_0

Suppose $(\mathcal{M}, \mathcal{T}) \models \mathsf{CT}^{-}[\mathsf{EA}]$ and $d \in M$. Put

$$egin{array}{ll} T{\upharpoonright}_d := \{ a \in M \mid T(a) \wedge a < d \} \ T_d := \{ a \in M \mid T(a) \wedge \mathrm{dp}(a) < d \} \end{array}$$

Obviously if $(\mathcal{M}, T) \models \mathsf{CT}^-$, then $(\mathcal{M}, T_d) \models \mathsf{CT}^-(d)$.

Theorem (Essentially Wcisło)

Suppose $(\mathcal{M}, T) \models CT_0$. Then for every $d, (\mathcal{M}, T_d) \models Ind(\mathcal{L}_T)$.

A D > A P > A D > A D >

Fix $\Delta_0^{\mathcal{L}_T}$ formula $\phi(x)$.

Fix $\Delta_0^{\mathcal{L}_T}$ formula $\phi(x)$. Fix $(\mathcal{M}, T) \models CT_0$, $a \in M$ and assume $\Pr_{UTB}^{T}(\phi(\dot{x}))$. Since $\phi(x)$ is bounded there exists $b \in M$ such that

$$(\mathcal{M}, T) \models \phi(a) \iff \exists (\mathcal{N}, T') \supseteq_e (\mathcal{M}, T \upharpoonright_b) \ (\mathcal{N}, T') \models \phi(a).$$

э

Fix $\Delta_0^{\mathcal{L}_T}$ formula $\phi(x)$. Fix $(\mathcal{M}, T) \models CT_0$, $a \in M$ and assume $\Pr_{UTB}^{\mathcal{T}}(\phi(\dot{x}))$. Since $\phi(x)$ is bounded there exists $b \in M$ such that

$$(\mathcal{M}, T) \models \phi(a) \iff \exists (\mathcal{N}, T') \supseteq_e (\mathcal{M}, T \upharpoonright_b) \ (\mathcal{N}, T') \models \phi(a).$$

Assume that *b* is greater than the chosen UTB-proof of $\phi(a)$.

Fix $\Delta_0^{\mathcal{L}_T}$ formula $\phi(x)$. Fix $(\mathcal{M}, T) \models CT_0$, $a \in M$ and assume $\Pr_{UTB}^{\mathcal{T}}(\phi(\dot{x}))$. Since $\phi(x)$ is bounded there exists $b \in M$ such that

$$(\mathcal{M},T)\models\phi(a)\iff \exists (\mathcal{N},T')\supseteq_e (\mathcal{M},T\restriction_b) \ (\mathcal{N},T')\models\phi(a).$$

・ロト ・ 日本 ・ 日本 ・ 日本

э

Assume that *b* is greater than the chosen UTB-proof of $\phi(a)$. Work in $(\mathcal{M}, \mathcal{T}_b) \models \operatorname{Ind}(\mathcal{L}_{\mathcal{T}})$.

Fix $\Delta_0^{\mathcal{L}_T}$ formula $\phi(x)$. Fix $(\mathcal{M}, T) \models CT_0$, $a \in M$ and assume $\Pr_{UTB}^{\mathcal{T}}(\phi(\dot{x}))$. Since $\phi(x)$ is bounded there exists $b \in M$ such that

$$(\mathcal{M},T)\models\phi(a)\iff \exists (\mathcal{N},T')\supseteq_e (\mathcal{M},T\restriction_b) \ (\mathcal{N},T')\models\phi(a).$$

Assume that *b* is greater than the chosen UTB-proof of $\phi(a)$. Work in $(\mathcal{M}, T_b) \models \operatorname{Ind}(\mathcal{L}_T)$. Let $\operatorname{Th}_b := \operatorname{PA} \cup \{\phi \in \mathcal{L} \mid T_b(\phi)\}$.

Fix $\Delta_0^{\mathcal{L}_T}$ formula $\phi(x)$. Fix $(\mathcal{M}, T) \models CT_0$, $a \in M$ and assume $\Pr_{UTB}^{\mathcal{T}}(\phi(\dot{x}))$. Since $\phi(x)$ is bounded there exists $b \in M$ such that

$$(\mathcal{M}, T) \models \phi(a) \iff \exists (\mathcal{N}, T') \supseteq_e (\mathcal{M}, T \upharpoonright_b) \ (\mathcal{N}, T') \models \phi(a).$$

Assume that *b* is greater than the chosen UTB-proof of $\phi(a)$. Work in $(\mathcal{M}, T_b) \models \operatorname{Ind}(\mathcal{L}_T)$. Let $\operatorname{Th}_b := \operatorname{PA} \cup \{\phi \in \mathcal{L} \mid T_b(\phi)\}$. Then we have $\operatorname{Con}_{\operatorname{Th}_b}$.

Fix $\Delta_0^{\mathcal{L}_T}$ formula $\phi(x)$. Fix $(\mathcal{M}, T) \models CT_0$, $a \in M$ and assume $\Pr_{UTB}^{\mathcal{T}}(\phi(\dot{x}))$. Since $\phi(x)$ is bounded there exists $b \in M$ such that

$$(\mathcal{M}, T) \models \phi(a) \iff \exists (\mathcal{N}, T') \supseteq_e (\mathcal{M}, T \upharpoonright_b) \ (\mathcal{N}, T') \models \phi(a).$$

Assume that *b* is greater than the chosen UTB-proof of $\phi(a)$. Work in $(\mathcal{M}, T_b) \models \operatorname{Ind}(\mathcal{L}_T)$. Let $\operatorname{Th}_b := \operatorname{PA} \cup \{\phi \in \mathcal{L} \mid T_b(\phi)\}$. Then we have $\operatorname{Con}_{\operatorname{Th}_b}$. So, $\operatorname{Con}_{\operatorname{UTB}+\operatorname{Th}_b}$.

Fix $\Delta_0^{\mathcal{L}_T}$ formula $\phi(x)$. Fix $(\mathcal{M}, \mathcal{T}) \models CT_0$, $a \in M$ and assume $\Pr_{UTB}^{\mathcal{T}}(\phi(\dot{x}))$. Since $\phi(x)$ is bounded there exists $b \in M$ such that

$$(\mathcal{M}, T) \models \phi(a) \iff \exists (\mathcal{N}, T') \supseteq_e (\mathcal{M}, T \upharpoonright_b) \ (\mathcal{N}, T') \models \phi(a).$$

Assume that *b* is greater than the chosen UTB-proof of $\phi(a)$. Work in $(\mathcal{M}, T_b) \models \operatorname{Ind}(\mathcal{L}_T)$. Let $\operatorname{Th}_b := \operatorname{PA} \cup \{\phi \in \mathcal{L} \mid T_b(\phi)\}$. Then we have $\operatorname{Con}_{\operatorname{Th}_b}$. So, $\operatorname{Con}_{\operatorname{UTB}+\operatorname{Th}_b}$. Hence, by the ACT, there exists $(\mathcal{N}, T') \models \operatorname{UTB} + \operatorname{Th}_b$.

ヘロト ヘ戸ト ヘヨト ヘヨト

Fix $\Delta_0^{\mathcal{L}_T}$ formula $\phi(x)$. Fix $(\mathcal{M}, T) \models CT_0$, $a \in M$ and assume $\Pr_{UTB}^{\mathcal{T}}(\phi(\dot{x}))$. Since $\phi(x)$ is bounded there exists $b \in M$ such that

$$(\mathcal{M}, T) \models \phi(a) \iff \exists (\mathcal{N}, T') \supseteq_e (\mathcal{M}, T \upharpoonright_b) \ (\mathcal{N}, T') \models \phi(a).$$

Assume that *b* is greater than the chosen UTB-proof of $\phi(a)$. Work in $(\mathcal{M}, T_b) \models \operatorname{Ind}(\mathcal{L}_T)$. Let $\operatorname{Th}_b := \operatorname{PA} \cup \{\phi \in \mathcal{L} \mid T_b(\phi)\}$. Then we have $\operatorname{Con}_{\operatorname{Th}_b}$. So, $\operatorname{Con}_{\operatorname{UTB}+\operatorname{Th}_b}$. Hence, by the ACT, there exists $(\mathcal{N}, T') \models \operatorname{UTB} + \operatorname{Th}_b$. So $(\mathcal{N}, T') \models \phi(a)$.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Fix $\Delta_0^{\mathcal{L}_T}$ formula $\phi(x)$. Fix $(\mathcal{M}, T) \models CT_0$, $a \in M$ and assume $\Pr_{UTB}^{\mathcal{T}}(\phi(\dot{x}))$. Since $\phi(x)$ is bounded there exists $b \in M$ such that

$$(\mathcal{M}, T) \models \phi(a) \iff \exists (\mathcal{N}, T') \supseteq_e (\mathcal{M}, T \upharpoonright_b) \ (\mathcal{N}, T') \models \phi(a).$$

Assume that *b* is greater than the chosen UTB-proof of $\phi(a)$. Work in $(\mathcal{M}, T_b) \models \operatorname{Ind}(\mathcal{L}_T)$. Let $\operatorname{Th}_b := \operatorname{PA} \cup \{\phi \in \mathcal{L} \mid T_b(\phi)\}$. Then we have $\operatorname{Con}_{\operatorname{Th}_b}$. So, $\operatorname{Con}_{\operatorname{UTB}+\operatorname{Th}_b}$. Hence, by the ACT, there exists $(\mathcal{N}, T') \models \operatorname{UTB} + \operatorname{Th}_b$. So $(\mathcal{N}, T') \models \phi(a)$. Moreover $(\mathcal{M}, T \upharpoonright_b) \subseteq (\mathcal{N}, T')$.

э

・ロト ・ 『 ト ・ ヨ ト ・ ヨ ト

```
Fix \phi(x) and (\mathcal{M}, T) \models CT_0.
```


Fix $\phi(x)$ and $(\mathcal{M}, \mathcal{T}) \models \mathsf{CT}_0$. Assume that $\neg \mathsf{Pr}_{\mathsf{UTB}}^{\mathcal{T}}(\exists v < \dot{y}\phi(v))$.

Fix $\phi(x)$ and $(\mathcal{M}, T) \models CT_0$. Assume that $\neg Pr_{UTB}^T(\exists v < \dot{y}\phi(v))$. Fix $F := T_c \cup CT^-(c)$ - a finite portion of $T \cup UTB^-$.

Fix $\phi(x)$ and $(\mathcal{M}, T) \models CT_0$. Assume that $\neg Pr_{UTB}^T(\exists v < \dot{y}\phi(v))$. Fix $F := T_c \cup CT^-(c)$ - a finite portion of $T \cup UTB^-$. By the assumption the following theory is consistent

$$\mathsf{Th} := F \cup \{ \forall v < \underline{a} \neg \phi(v) \mid a \in M \}.$$

Let $(\mathcal{N}, T') \models$ Th be a model of Th (which exists by ACT).

Fix $\phi(x)$ and $(\mathcal{M}, T) \models CT_0$. Assume that $\neg Pr_{UTB}^T(\exists v < \dot{y}\phi(v))$. Fix $F := T_c \cup CT^-(c)$ - a finite portion of $T \cup UTB^-$. By the assumption the following theory is consistent

$$\mathsf{Th} := F \cup \{ \forall v < \underline{a} \neg \phi(v) \mid a \in M \}.$$

Let $(\mathcal{N}, T') \models$ Th be a model of Th (which exists by ACT). Consider $(\mathcal{M}, T' \upharpoonright_{\mathcal{M}})$.

Fix $\phi(x)$ and $(\mathcal{M}, T) \models CT_0$. Assume that $\neg Pr_{UTB}^T(\exists v < \dot{y}\phi(v))$. Fix $F := T_c \cup CT^-(c)$ - a finite portion of $T \cup UTB^-$. By the assumption the following theory is consistent

$$\mathsf{Th} := F \cup \{ \forall v < \underline{a} \neg \phi(v) \mid a \in M \}.$$

・ロト ・ 『 ト ・ ヨ ト ・ ヨ ト

э

Let $(\mathcal{N}, T') \models$ Th be a model of Th (which exists by ACT). Consider $(\mathcal{M}, T' \upharpoonright_{\mathcal{M}})$. Then

1. $(\mathcal{M}, T' \upharpoonright_{\mathcal{M}}) \models \forall y \neg \phi(y).$

Fix $\phi(x)$ and $(\mathcal{M}, T) \models CT_0$. Assume that $\neg Pr_{UTB}^T(\exists v < \dot{y}\phi(v))$. Fix $F := T_c \cup CT^-(c)$ - a finite portion of $T \cup UTB^-$. By the assumption the following theory is consistent

$$\mathsf{Th} := F \cup \{ \forall v < \underline{a} \neg \phi(v) \mid a \in M \}.$$

Let $(\mathcal{N}, \mathcal{T}') \models$ Th be a model of Th (which exists by ACT). Consider $(\mathcal{M}, \mathcal{T}' \upharpoonright_{\mathcal{M}})$. Then

1.
$$(\mathcal{M}, \mathcal{T}' \upharpoonright_{\mathcal{M}}) \models \forall y \neg \phi(y)$$
.
2. $(\mathcal{M}, \mathcal{T}' \upharpoonright_{\mathcal{M}}) \models \mathsf{Ind}(\mathcal{L}_{\mathcal{T}})$.

Fix $\phi(x)$ and $(\mathcal{M}, T) \models CT_0$. Assume that $\neg Pr_{UTB}^T(\exists v < \dot{y}\phi(v))$. Fix $F := T_c \cup CT^-(c)$ - a finite portion of $T \cup UTB^-$. By the assumption the following theory is consistent

$$\mathsf{Th} := F \cup \{ \forall v < \underline{a} \neg \phi(v) \mid a \in M \}.$$

Let $(\mathcal{N}, \mathcal{T}') \models$ Th be a model of Th (which exists by ACT). Consider $(\mathcal{M}, \mathcal{T}' \upharpoonright_{\mathcal{M}})$. Then

1.
$$(\mathcal{M}, T' \upharpoonright_{\mathcal{M}}) \models \forall y \neg \phi(y)$$

2.
$$(\mathcal{M}, T' \upharpoonright_M) \models \operatorname{Ind}(\mathcal{L}_T)$$

3. $(\mathcal{M}, T' \upharpoonright_M) \models \mathsf{CT}^-(c).$

Fix $\phi(x)$ and $(\mathcal{M}, T) \models CT_0$. Assume that $\neg Pr_{UTB}^T(\exists v < \dot{y}\phi(v))$. Fix $F := T_c \cup CT^-(c)$ - a finite portion of $T \cup UTB^-$. By the assumption the following theory is consistent

$$\mathsf{Th} := F \cup \{ \forall v < \underline{a} \neg \phi(v) \mid a \in M \}.$$

Let $(\mathcal{N}, \mathcal{T}') \models$ Th be a model of Th (which exists by ACT). Consider $(\mathcal{M}, \mathcal{T}' \upharpoonright_{\mathcal{M}})$. Then

1.
$$(\mathcal{M}, T' \upharpoonright_{\mathcal{M}}) \models \forall y \neg \phi(y)$$

2.
$$(\mathcal{M}, T' \upharpoonright_M) \models \operatorname{Ind}(\mathcal{L}_T)$$

3. $(\mathcal{M}, T' \upharpoonright_M) \models \mathsf{CT}^-(c).$

Fix $\phi(x)$ and $(\mathcal{M}, T) \models CT_0$. Assume that $\neg Pr_{UTB}^T(\exists v < \dot{y}\phi(v))$. Fix $F := T_c \cup CT^-(c)$ - a finite portion of $T \cup UTB^-$. By the assumption the following theory is consistent

$$\mathsf{Th} := F \cup \{ \forall v < \underline{a} \neg \phi(v) \mid a \in M \}.$$

Let $(\mathcal{N}, T') \models$ Th be a model of Th (which exists by ACT). Consider $(\mathcal{M}, T' \upharpoonright_{\mathcal{M}})$. Then

1.
$$(\mathcal{M}, T' \upharpoonright_{\mathcal{M}}) \models \forall y \neg \phi(y)$$

2.
$$(\mathcal{M}, T' \upharpoonright_{\mathcal{M}}) \models \operatorname{Ind}(\mathcal{L}_{\mathcal{T}})$$

3.
$$(\mathcal{M}, T' \upharpoonright_M) \models \mathsf{CT}^-(c).$$

So by induction, $(\mathcal{M}, T' \upharpoonright_{\mathcal{M}}) \models \operatorname{Con}_{F \cup \forall y \neg \phi(y)}$.

ヘロト ヘ戸ト ヘヨト ヘヨト

Fix $\phi(x)$ and $(\mathcal{M}, T) \models CT_0$. Assume that $\neg Pr_{UTB}^T(\exists v < \dot{y}\phi(v))$. Fix $F := T_c \cup CT^-(c)$ - a finite portion of $T \cup UTB^-$. By the assumption the following theory is consistent

$$\mathsf{Th} := F \cup \{ \forall v < \underline{a} \neg \phi(v) \mid a \in M \}.$$

Let $(\mathcal{N}, T') \models$ Th be a model of Th (which exists by ACT). Consider $(\mathcal{M}, T' \upharpoonright_{\mathcal{M}})$. Then

1.
$$(\mathcal{M}, T' \upharpoonright_{\mathcal{M}}) \models \forall y \neg \phi(y)$$

2.
$$(\mathcal{M}, T' \upharpoonright_{\mathcal{M}}) \models \operatorname{Ind}(\mathcal{L}_T)$$

3. $(\mathcal{M}, T' \upharpoonright_{\mathcal{M}}) \models \mathsf{CT}^{-}(c).$

So by induction, $(\mathcal{M}, T' \upharpoonright_{\mathcal{M}}) \models \operatorname{Con}_{F \cup \forall y \neg \phi(y)}$. Since F was arbitrary, we conclude that $\neg \operatorname{Pr}_{\mathsf{UTB}^-}^{\mathcal{T}}(\exists y \phi(y))$.

Some bibliography

DC-out Cieśliński, Ł., Wcisło, "The two halves of disjunctive correctness", submitted. https: //www.researchgate.net/publication/354269317_The_ two_halves_of_disjunctive_correctness

Some bibliography

- DC-out Cieśliński, Ł., Wcisło, "The two halves of disjunctive correctness", submitted. https: //www.researchgate.net/publication/354269317_The_ two_halves_of_disjunctive_correctness
- N(UTB⁻) Ł., "Model theory and proof theory of the Global Reflection Principle", submitted. https://www.researchgate.net/ publication/355126453_Model_Theory_and_Proof_ Theory_of_the_Global_Reflection_Principle

Thank you for your attention.

