Quantifier Elimination Approach to Existential Linear Arithmetic with GCD

Mikhail R. Starchak

Saint-Petersburg State University

m.starchak@spbu.ru

October 25, 2021

Mikhail R. Starchak (SPbU)

quasi-QE for Addition and GCD

October 25, 2021

Theorem (A.P. Bel'tyukov 1976, L. Lipshitz 1978)

The existential theory of the structure $\langle \mathbb{Z}; 1, +, -, \leq, | \rangle$ is decidable.

Theorem (A.P. Bel'tyukov 1976, L. Lipshitz 1978)

The existential theory of the structure $\langle \mathbb{Z}; 1, +, -, \leq, | \rangle$ is decidable.

Divisibility and GCD

We have $\exists \mathsf{Def} \langle \mathbb{Z}; 1, +, -, \leq, | \rangle = \exists \mathsf{Def} \langle \mathbb{Z}; 1, +, -, \leq, \mathsf{GCD} \rangle$

$$\begin{aligned} x \mid y \ \Leftrightarrow \ \mathsf{GCD}(x, y) &= x \lor \mathsf{GCD}(x, y) = -x \\ \mathsf{GCD}(x, y) &= z \ \Leftrightarrow \ 0 \le z \land z \mid x \land z \mid y \land \exists u (x \mid u \land y \mid u + z) \\ \neg \mathsf{GCD}(x, y) &= z \ \Leftrightarrow \ z + 1 \le 0 \lor \neg z \mid x \lor \neg z \mid y \lor \exists v (v \mid x \land v \mid y \land z + 1 \le v) \end{aligned}$$

Theorem (A.P. Bel'tyukov 1976, L. Lipshitz 1978)

The existential theory of the structure $\langle \mathbb{Z}; 1, +, -, \leq, | \rangle$ is decidable.

Divisibility and GCD

We have $\exists \mathsf{Def} \langle \mathbb{Z}; 1, +, -, \leq, | \rangle = \exists \mathsf{Def} \langle \mathbb{Z}; 1, +, -, \leq, \mathsf{GCD} \rangle$

$$\begin{aligned} x \mid y \ \Leftrightarrow \ \mathsf{GCD}(x, y) &= x \lor \mathsf{GCD}(x, y) = -x \\ \mathsf{GCD}(x, y) &= z \ \Leftrightarrow \ 0 \le z \land z \mid x \land z \mid y \land \exists u (x \mid u \land y \mid u + z) \\ \neg \mathsf{GCD}(x, y) &= z \ \Leftrightarrow \ z + 1 \le 0 \lor \neg z \mid x \lor \neg z \mid y \lor \exists v (v \mid x \land v \mid y \land z + 1 \le v) \end{aligned}$$

• L_{σ} FOL of a signature σ . $\langle M; \sigma \rangle$ structure of a signature σ and domain M.

• $\exists L_{\sigma}$ Existential L_{σ} -formulas: $\exists y \varphi(x, y)$ for QF L_{σ} -formula $\varphi(x, y)$.

Theorem (A.P. Bel'tyukov 1976, L. Lipshitz 1978)

The existential theory of the structure $\langle \mathbb{Z}; 1, +, -, \leq, | \rangle$ is decidable.

Divisibility and GCD

We have $\exists \mathsf{Def} \langle \mathbb{Z}; 1, +, -, \leq, | \rangle = \exists \mathsf{Def} \langle \mathbb{Z}; 1, +, -, \leq, \mathsf{GCD} \rangle$

$$\begin{aligned} x \mid y \ \Leftrightarrow \ \mathsf{GCD}(x, y) &= x \lor \mathsf{GCD}(x, y) = -x \\ \mathsf{GCD}(x, y) &= z \ \Leftrightarrow \ 0 \le z \land z \mid x \land z \mid y \land \exists u (x \mid u \land y \mid u + z) \\ \neg \mathsf{GCD}(x, y) &= z \ \Leftrightarrow \ z + 1 \le 0 \lor \neg z \mid x \lor \neg z \mid y \lor \exists v (v \mid x \land v \mid y \land z + 1 \le v) \end{aligned}$$

- L_{σ} FOL of a signature σ . $\langle M; \sigma \rangle$ structure of a signature σ and domain M.
- $\exists L_{\sigma}$ Existential L_{σ} -formulas: $\exists y \varphi(x, y)$ for QFL_{σ} -formula $\varphi(x, y)$.
- $\operatorname{Def}\langle M; \sigma \rangle$ the set of all L_{σ} -definable in M.
- $\exists \text{Def}(M; \sigma)$ and $\text{QFDef}(M; \sigma)$ for $\underline{\exists L_{\sigma^-}}$ and <u>quantifier-free definable</u> relations, respectively.

- QF-formula φ(x) is positive (PQF-formula) if it is constructed from atomic formulas with only logical connectives ∧ and ∨.
- \exists -formula $\exists y \varphi(x, y)$ is positive if $\varphi(x, y)$ is PQF-formula.

- QF-formula φ(x) is positive (PQF-formula) if it is constructed from atomic formulas with only logical connectives ∧ and ∨.
- \exists -formula $\exists y \varphi(x, y)$ is positive if $\varphi(x, y)$ is PQF-formula.
- $\mathsf{P}\exists \mathsf{Def}\langle M; \sigma \rangle$ the set of all $\mathsf{P}\exists$ -defibable in $\langle M; \sigma \rangle$.
- PQFDef $\langle M; \sigma \rangle$ positively QF-definable in $\langle M; \sigma \rangle$.

- QF-formula φ(x) is positive (PQF-formula) if it is constructed from atomic formulas with only logical connectives ∧ and ∨.
- \exists -formula $\exists y \varphi(x, y)$ is positive if $\varphi(x, y)$ is PQF-formula.
- $\mathsf{P}\exists \mathsf{Def}\langle M; \sigma \rangle$ the set of all $\mathsf{P}\exists$ -defibable in $\langle M; \sigma \rangle$.
- PQFDef $\langle M; \sigma \rangle$ positively QF-definable in $\langle M; \sigma \rangle$.

Example

We have $\exists \mathsf{Def} \langle \mathbb{Z}; 1, +, -, \leq, | \rangle = \mathsf{P} \exists \mathsf{Def} \langle \mathbb{Z}; 1, +, -, \leq, | \rangle$

$$x \nmid y \Leftrightarrow x = 0 \land (1 \leq y \lor y \leq -1) \lor \exists z (1 \leq z \land (z \leq x - 1 \lor z \leq -x - 1) \land x \mid y + z).$$

- QF-formula φ(x) is positive (PQF-formula) if it is constructed from atomic formulas with only logical connectives ∧ and ∨.
- \exists -formula $\exists y \varphi(x, y)$ is positive if $\varphi(x, y)$ is PQF-formula.
- $\mathsf{P}\exists \mathsf{Def}\langle M; \sigma \rangle$ the set of all $\mathsf{P}\exists$ -defibable in $\langle M; \sigma \rangle$.
- PQFDef $\langle M; \sigma \rangle$ positively QF-definable in $\langle M; \sigma \rangle$.

Example

We have $\exists \mathsf{Def} \langle \mathbb{Z}; 1, +, -, \leq, | \rangle = \mathsf{P} \exists \mathsf{Def} \langle \mathbb{Z}; 1, +, -, \leq, | \rangle$

$$x \nmid y \Leftrightarrow x = 0 \land (1 \le y \lor y \le -1) \lor \exists z (1 \le z \land (z \le x - 1 \lor z \le -x - 1) \land x \mid y + z).$$

Corollary

 $\mathsf{Def} \langle \mathbb{Z}; 1, +, -, \leq, | \rangle \neq \exists \mathsf{Def} \langle \mathbb{Z}; 1, +, -, \leq, | \rangle, \textit{ since the elementary theory is undecidable.}$

< □ > < 同 > < 回 > < 回 > < 回 >

- QF-formula φ(x) is positive (PQF-formula) if it is constructed from atomic formulas with only logical connectives ∧ and ∨.
- \exists -formula $\exists y \varphi(x, y)$ is positive if $\varphi(x, y)$ is PQF-formula.
- $\mathsf{P}\exists \mathsf{Def}\langle M; \sigma \rangle$ the set of all $\mathsf{P}\exists$ -defibable in $\langle M; \sigma \rangle$.
- PQFDef $\langle M; \sigma \rangle$ positively QF-definable in $\langle M; \sigma \rangle$.

Example

We have $\exists \mathsf{Def} \langle \mathbb{Z}; 1, +, -, \leq, | \rangle = \mathsf{P} \exists \mathsf{Def} \langle \mathbb{Z}; 1, +, -, \leq, | \rangle$

$$x \nmid y \Leftrightarrow x = 0 \land (1 \le y \lor y \le -1) \lor \exists z (1 \le z \land (z \le x - 1 \lor z \le -x - 1) \land x \mid y + z).$$

Corollary

 $\mathsf{Def} \langle \mathbb{Z}; 1, +, -, \leq, | \rangle \neq \exists \mathsf{Def} \langle \mathbb{Z}; 1, +, -, \leq, | \rangle, \textit{ since the elementary theory is undecidable.}$

By Presburger's quantifier-elimination algorithm: $\mathsf{P}\exists\mathsf{Def}\langle\mathbb{Z};1,+,-,\leq\rangle=\mathsf{PQFDef}\langle\mathbb{Z};1,+,-,\leq,2\mid,3\mid,4\mid...\rangle=\mathsf{Def}\langle\mathbb{Z};1,+,-,\leq\rangle.$

・ロト ・四ト ・ヨト ・ヨト

- QF-formula φ(x) is positive (PQF-formula) if it is constructed from atomic formulas with only logical connectives ∧ and ∨.
- \exists -formula $\exists y \varphi(x, y)$ is positive if $\varphi(x, y)$ is PQF-formula.
- $\mathsf{P}\exists \mathsf{Def}\langle M; \sigma \rangle$ the set of all $\mathsf{P}\exists$ -defibable in $\langle M; \sigma \rangle$.
- PQFDef $\langle M; \sigma \rangle$ positively QF-definable in $\langle M; \sigma \rangle$.

Example

We have $\exists \mathsf{Def} \langle \mathbb{Z}; 1, +, -, \leq, | \rangle = \mathsf{P} \exists \mathsf{Def} \langle \mathbb{Z}; 1, +, -, \leq, | \rangle$

$$x \nmid y \Leftrightarrow x = 0 \land (1 \le y \lor y \le -1) \lor \exists z (1 \le z \land (z \le x - 1 \lor z \le -x - 1) \land x \mid y + z).$$

Corollary

 $\mathsf{Def} \langle \mathbb{Z}; 1, +, -, \leq, | \rangle \neq \exists \mathsf{Def} \langle \mathbb{Z}; 1, +, -, \leq, | \rangle, \textit{ since the elementary theory is undecidable.}$

By Presburger's quantifier-elimination algorithm: $P\exists \mathsf{Def}\langle \mathbb{Z}; 1, +, -, \leq \rangle = \mathsf{PQFDef}\langle \mathbb{Z}; 1, +, -, \leq, 2 \mid, 3 \mid, 4 \mid ...\rangle = \mathsf{Def}\langle \mathbb{Z}; 1, +, -, \leq \rangle.$ How can we describe $\mathsf{P}\exists \mathsf{Def}\langle \mathbb{Z}; 1, +, -, \leq, | \rangle?$

Mikhail R. Starchak (SPbU)

- Coprimeness relation: $x \perp y \rightleftharpoons GCD(x, y) = 1$.
- $\mathsf{P}\exists\mathsf{Def}\langle\mathbb{Z};1,+,-,\leq\rangle \subset \mathsf{P}\exists\mathsf{Def}\langle\mathbb{Z};1,+,-,\leq,\bot\rangle \subseteq \mathsf{P}\exists\mathsf{Def}\langle\mathbb{Z};1,+,-,\leq,|\rangle.$

- Coprimeness relation: $x \perp y \rightleftharpoons \text{GCD}(x, y) = 1$.
- $\mathsf{P}\exists\mathsf{Def}\langle\mathbb{Z};1,+,-,\leq\rangle \subset \mathsf{P}\exists\mathsf{Def}\langle\mathbb{Z};1,+,-,\leq,\bot\rangle \subseteq \mathsf{P}\exists\mathsf{Def}\langle\mathbb{Z};1,+,-,\leq,|\rangle.$

Questions

- Set of non-squares is ∃-definable in (ℤ; 1, +, -, ≤, |)? [L. van den Dries and A. Wilkie 2003]
- Order ≤ is ∃-definable in (ℤ; 1, +, -, |)? [M. Bozga and R. Iosif 2005]

- Coprimeness relation: $x \perp y \rightleftharpoons \text{GCD}(x, y) = 1$.
- $\mathsf{P}\exists\mathsf{Def}\langle\mathbb{Z};1,+,-,\leq\rangle \subset \mathsf{P}\exists\mathsf{Def}\langle\mathbb{Z};1,+,-,\leq,\bot\rangle \subseteq \mathsf{P}\exists\mathsf{Def}\langle\mathbb{Z};1,+,-,\leq,|\rangle.$

Questions

- Set of non-squares is ∃-definable in (ℤ; 1, +, -, ≤, |)? [L. van den Dries and A. Wilkie 2003]
- Order ≤ is ∃-definable in (ℤ; 1, +, -, |)? [M. Bozga and R. Iosif 2005]
- Dis-coprimeness $\not\perp$ is P \exists -definable in $\langle \mathbb{Z}; 1, +, -, \leq, \perp \rangle$ or in $\langle \mathbb{Z}; 1, +, -, \perp \rangle$?

- Coprimeness relation: $x \perp y \rightleftharpoons \text{GCD}(x, y) = 1$.
- $\mathsf{P}\exists\mathsf{Def}\langle\mathbb{Z};1,+,-,\leq\rangle \subset \mathsf{P}\exists\mathsf{Def}\langle\mathbb{Z};1,+,-,\leq,\bot\rangle \subseteq \mathsf{P}\exists\mathsf{Def}\langle\mathbb{Z};1,+,-,\leq,|\rangle.$

Questions

- Set of non-squares is ∃-definable in (ℤ; 1, +, -, ≤, |)? [L. van den Dries and A. Wilkie 2003]
- Order ≤ is ∃-definable in (ℤ; 1, +, -, |)? [M. Bozga and R. Iosif 2005]
- Dis-coprimeness $\not\perp$ is P \exists -definable in $\langle \mathbb{Z}; 1, +, -, \leq, \perp \rangle$ or in $\langle \mathbb{Z}; 1, +, -, \perp \rangle$?

Theorem (D. Richard 1989)

The elementary theory of the structure $\langle \mathbb{Z}; 1, +, \perp \rangle$ is undecidable.

- Coprimeness relation: $x \perp y \rightleftharpoons \text{GCD}(x, y) = 1$.
- $\mathsf{P}\exists\mathsf{Def}\langle\mathbb{Z};1,+,-,\leq\rangle \subset \mathsf{P}\exists\mathsf{Def}\langle\mathbb{Z};1,+,-,\leq,\bot\rangle \subseteq \mathsf{P}\exists\mathsf{Def}\langle\mathbb{Z};1,+,-,\leq,|\rangle.$

Questions

- Set of non-squares is ∃-definable in (ℤ; 1, +, -, ≤, |)? [L. van den Dries and A. Wilkie 2003]
- Order ≤ is ∃-definable in (ℤ; 1, +, -, |)? [M. Bozga and R. Iosif 2005]
- Dis-coprimeness $\not\perp$ is P \exists -definable in $\langle \mathbb{Z}; 1, +, -, \leq, \perp \rangle$ or in $\langle \mathbb{Z}; 1, +, -, \perp \rangle$?

Theorem (D. Richard 1989)

The elementary theory of the structure $\langle \mathbb{Z}; 1, +, \perp \rangle$ is undecidable.

Quantifier elimination to describe P \exists -definable sets in $\langle \mathbb{Z}; 1, +, \perp \rangle$:

- Coprimeness relation: $x \perp y \rightleftharpoons \text{GCD}(x, y) = 1$.
- $\mathsf{P}\exists\mathsf{Def}\langle\mathbb{Z};1,+,-,\leq\rangle \subset \mathsf{P}\exists\mathsf{Def}\langle\mathbb{Z};1,+,-,\leq,\bot\rangle \subseteq \mathsf{P}\exists\mathsf{Def}\langle\mathbb{Z};1,+,-,\leq,|\rangle.$

Questions

- Set of non-squares is ∃-definable in (ℤ; 1, +, -, ≤, |)? [L. van den Dries and A. Wilkie 2003]
- Order ≤ is ∃-definable in (Z; 1, +, -, |)? [M. Bozga and R. Iosif 2005]
- Dis-coprimeness $\not\perp$ is P \exists -definable in $\langle \mathbb{Z}; 1, +, -, \leq, \perp \rangle$ or in $\langle \mathbb{Z}; 1, +, -, \perp \rangle$?

Theorem (D. Richard 1989)

The elementary theory of the structure $\langle \mathbb{Z}; 1, +, \perp \rangle$ is undecidable.

Quantifier elimination to describe P \exists -definable sets in $\langle \mathbb{Z}; 1, +, \perp \rangle$:

• Extend the signature $\langle 1, +, \perp \rangle \rightsquigarrow \sigma$ with some P \exists -definable predicates.

- Coprimeness relation: $x \perp y \rightleftharpoons \text{GCD}(x, y) = 1$.
- $\mathsf{P}\exists\mathsf{Def}\langle\mathbb{Z};1,+,-,\leq\rangle \subset \mathsf{P}\exists\mathsf{Def}\langle\mathbb{Z};1,+,-,\leq,\bot\rangle \subseteq \mathsf{P}\exists\mathsf{Def}\langle\mathbb{Z};1,+,-,\leq,|\rangle.$

Questions

- Set of non-squares is ∃-definable in (ℤ; 1, +, -, ≤, |)? [L. van den Dries and A. Wilkie 2003]
- Order ≤ is ∃-definable in (Z; 1, +, -, |)? [M. Bozga and R. Iosif 2005]
- Dis-coprimeness $\not\perp$ is P \exists -definable in $\langle \mathbb{Z}; 1, +, -, \leq, \perp \rangle$ or in $\langle \mathbb{Z}; 1, +, -, \perp \rangle$?

Theorem (D. Richard 1989)

The elementary theory of the structure $\langle \mathbb{Z}; 1, +, \bot \rangle$ is undecidable.

Quantifier elimination to describe P \exists -definable sets in $\langle \mathbb{Z}; 1, +, \bot \rangle$:

- Extend the signature $\langle 1, +, \perp \rangle \rightsquigarrow \sigma$ with some P \exists -definable predicates.
- For every $\exists x \varphi(x, y)$, where $\varphi(x, y)$ is PQF L_{σ} -formula, construct an equivalent in \mathbb{Z} PQF L_{σ} -formula $\psi(y)$.

P∃-definability in $\langle \mathbb{Z}; 1, +, \bot \rangle$

Positive Existential Definitions

- $x = 0 \Leftrightarrow x + 1 \perp x + 1 \land 3 \perp x + 2$
- $y = -x \Leftrightarrow x + y = 0$ and $x = y \Leftrightarrow \exists t (t = -y \land x + t = 0)$
- $GCD(x, y) = d \Leftrightarrow \exists u \exists v (x = du \land y = dv \land u \perp v)$

- $x = 0 \Leftrightarrow x + 1 \perp x + 1 \land 3 \perp x + 2$
- $y = -x \Leftrightarrow x + y = 0$ and $x = y \Leftrightarrow \exists t(t = -y \land x + t = 0)$
- $GCD(x, y) = d \Leftrightarrow \exists u \exists v (x = du \land y = dv \land u \perp v)$
- $x \neq 0 \Leftrightarrow \exists t (x \perp t \land x \perp t + 4) \text{ and } x \neq y \Leftrightarrow \exists t (t = -y \land x + t \neq 0)$

• $x = 0 \Leftrightarrow x + 1 \perp x + 1 \land 3 \perp x + 2$

•
$$y = -x \Leftrightarrow x + y = 0$$
 and $x = y \Leftrightarrow \exists t(t = -y \land x + t = 0)$

•
$$GCD(x, y) = d \Leftrightarrow \exists u \exists v (x = du \land y = dv \land u \perp v)$$

• $x \neq 0 \Leftrightarrow \exists t (x \perp t \land x \perp t + 4) \text{ and } x \neq y \Leftrightarrow \exists t (t = -y \land x + t \neq 0)$

$$t \equiv 1 (\mathsf{mod}\ 2) \land t \equiv 1 (\mathsf{mod}\ 3) \land \bigwedge_{p \in P_x \setminus \{2,3\}} t \equiv 2 (\mathsf{mod}\ p),$$

where P_x is the set of prime divisors of x.

- $x = 0 \Leftrightarrow x + 1 \perp x + 1 \land 3 \perp x + 2$
- $y = -x \Leftrightarrow x + y = 0$ and $x = y \Leftrightarrow \exists t(t = -y \land x + t = 0)$

•
$$GCD(x, y) = d \Leftrightarrow \exists u \exists v (x = du \land y = dv \land u \perp v)$$

• $x \neq 0 \Leftrightarrow \exists t (x \perp t \land x \perp t + 4) \text{ and } x \neq y \Leftrightarrow \exists t (t = -y \land x + t \neq 0)$

$$t \equiv 1 ({
m mod } 2) \wedge t \equiv 1 ({
m mod } 3) \wedge \bigwedge_{p \in P_x \setminus \{2,3\}} t \equiv 2 ({
m mod } p),$$

where P_x is the set of prime divisors of x.

• x = y is PQF-definable in $\langle \mathbb{Z}; 1, +, -, \perp \rangle$ and $x \neq y$ is PQF-definable in $\langle \mathbb{Z}; 1, +, -, \neq 0, \perp \rangle$

Mikhail R. Starchak (SPbU)

October 25, 2021

5/16

•
$$x = 0 \Leftrightarrow x + 1 \perp x + 1 \land 3 \perp x + 2$$

•
$$y = -x \Leftrightarrow x + y = 0$$
 and $x = y \Leftrightarrow \exists t (t = -y \land x + t = 0)$

•
$$GCD(x, y) = d \Leftrightarrow \exists u \exists v (x = du \land y = dv \land u \perp v)$$

•
$$x \neq 0 \Leftrightarrow \exists t (x \perp t \land x \perp t + 4) \text{ and } x \neq y \Leftrightarrow \exists t (t = -y \land x + t \neq 0)$$

$$t \equiv 1 ({
m mod } 2) \wedge t \equiv 1 ({
m mod } 3) \wedge \bigwedge_{p \in P_x \setminus \{2,3\}} t \equiv 2 ({
m mod } p),$$

where P_x is the set of prime divisors of x.

• x = y is PQF-definable in $\langle \mathbb{Z}; 1, +, -, \perp \rangle$ and $x \neq y$ is PQF-definable in $\langle \mathbb{Z}; 1, +, -, \neq 0, \perp \rangle$

Proposition (PQF-undefinability of dis-equality) The relation $x \neq 0$ is not PQF-definable in the structure $\langle \mathbb{Z}; 1, +, -, \perp \rangle$.

PQF-undefinability of dis-equality proof.

• Euclidean algorithm: $(f(\mathbf{y}) + \mathbf{a}x, g(\mathbf{y}) + \mathbf{b}x) \rightsquigarrow (\widetilde{f}(\mathbf{y}), \widetilde{g}(\mathbf{y}) + cx)$ such that $GCD(f(\mathbf{y}) + \mathbf{a}x, g(\mathbf{y}) + \mathbf{b}x) = GCD(\widetilde{f}(\mathbf{y}), \widetilde{g}(\mathbf{y}) + cx).$

PQF-undefinability of dis-equality proof.

Euclidean algorithm: (f(y) + ax, g(y) + bx) → (f̃(y), g̃(y) + cx) such that GCD(f(y) + ax, g(y) + bx) = GCD(f̃(y), g̃(y) + cx).
Suppose φ(x) ⇒ ∨_{j∈J} (∧_{i∈lj} a_i ⊥ b_i + c_ix) defines x ≠ 0.
¬φ(0) is ∧_{i∈I} (∨_{i∈lj} a_i ⊥ b_i) → take such i_j ∈ I_j that a_{ij} ⊥ b_{ij}.

PQF-undefinability of dis-equality proof.

Euclidean algorithm: (f(y) + ax, g(y) + bx) → (f̃(y), g̃(y) + cx) such that GCD(f(y) + ax, g(y) + bx) = GCD(f̃(y), g̃(y) + cx).
Suppose φ(x) ⇒ V_{j∈J} (∧ a_i ⊥ b_i + c_ix) defines x ≠ 0.
¬φ(0) is ∧ (V_{i∈Ij} a_i ⊥ b_i) → take such i_j ∈ I_j that a_{ij} ⊥ b_{ij}.
1. All a_{ij} = 0 → large x.

PQF-undefinability of dis-equality proof.

Euclidean algorithm: (f(y) + ax, g(y) + bx) → (f̃(y), g̃(y) + cx) such that GCD(f(y) + ax, g(y) + bx) = GCD(f̃(y), g̃(y) + cx).
Suppose φ(x) ⇒ V_{j∈J} (∧ a_i ⊥ b_i + c_ix) defines x ≠ 0.
¬φ(0) is ∧ (V_{i∈Ij} = b_i) → take such i_j ∈ I_j that a_{ij} ⊥ b_{ij}.
1. All a_{ij} = 0 → large x . 2. Otherwise for A = ∏_{j∈J∧a_{ij}≠0} a_{ij} > 0 we have ¬φ(A).

PQF-undefinability of dis-equality proof.

Euclidean algorithm: (f(y) + ax, g(y) + bx) → (f̃(y), g̃(y) + cx) such that GCD(f(y) + ax, g(y) + bx) = GCD(f̃(y), g̃(y) + cx).
Suppose φ(x) ≓ V_{j∈J} (∧ a_i ⊥ b_i + c_ix) defines x ≠ 0.
¬φ(0) is ∧ (∨ a_i ⊥ b_i) → take such i_j ∈ I_j that a_{ij} ⊥ b_{ij}.
1. All a_{ij} = 0 → large x . 2. Otherwise for A = ∏_{j∈J∧a_{ij}≠0} a_{ij} > 0 we have ¬φ(A).

Proposition

 $\mathsf{Fix} \ d \geq 2. \ \mathsf{The \ relation} \ \mathsf{GCD}(x,y) = d \ \mathsf{is \ not} \ \mathsf{PQF}\mathsf{-definable} \ \mathsf{in} \ \langle \mathbb{Z}; 1, +, -, \neq, \bot \rangle.$

PQF-undefinability of dis-equality proof.

Euclidean algorithm: (f(y) + ax, g(y) + bx) → (f̃(y), g̃(y) + cx) such that GCD(f(y) + ax, g(y) + bx) = GCD(f̃(y), g̃(y) + cx).
Suppose φ(x) ⇒ V_{j∈J} (∧ a_i ⊥ b_i + c_ix) defines x ≠ 0.
¬φ(0) is ∧ (V_{i∈I_j} (∨ a_i ⊥ b_i) → take such i_j ∈ I_j that a_{i_j} ⊥ b_{i_j}.
1. All a_{i_j} = 0 → large x . 2. Otherwise for A = ∏_{j∈J∧a_{i_j}≠0} a_{i_j} > 0 we have ¬φ(A).

Proposition

Fix $d \geq 2$. The relation GCD(x, y) = d is not PQF-definable in $\langle \mathbb{Z}; 1, +, -, \neq, \bot \rangle$.

Theorem

$$\mathsf{P}\exists \mathsf{Def} \langle \mathbb{Z}; 1, +, \bot \rangle = \mathsf{P}\mathsf{QFDef} \langle \mathbb{Z}; 1, +, -, \neq, \bot, \mathsf{GCD}_2, \mathsf{GCD}_3, \mathsf{GCD}_4, ... \rangle.$$

PQF-undefinability of dis-equality proof.

Euclidean algorithm: (f(y) + ax, g(y) + bx) → (f̃(y), g̃(y) + cx) such that GCD(f(y) + ax, g(y) + bx) = GCD(f̃(y), g̃(y) + cx).
Suppose φ(x) ⇒ V_{j∈J} (∧ a_i ⊥ b_i + c_ix) defines x ≠ 0.
¬φ(0) is ∧ (V_{i∈Ij} → b_i) → take such i_j ∈ I_j that a_{ij} ⊥ b_{ij}.
1. All a_{ij} = 0 → large x . 2. Otherwise for A = ∏_{j∈J∧a_{ij}≠0} a_{ij} > 0 we have ¬φ(A).

Proposition

Fix $d \geq 2$. The relation GCD(x, y) = d is not PQF-definable in $\langle \mathbb{Z}; 1, +, -, \neq, \bot \rangle$.

Theorem

 $\mathsf{P}\exists\mathsf{Def}\langle\mathbb{Z};1,+,\bot\rangle = \mathsf{PQFDef}\langle\mathbb{Z};1,+,-,\neq,\bot,\mathsf{GCD}_2,\mathsf{GCD}_3,\mathsf{GCD}_4,...\rangle.$

Fix the signature $\sigma = \langle 1, +, -, \neq, \bot, \text{GCD}_2, \text{GCD}_3, \text{GCD}_4, ... \rangle$. Quantifier elimination algorithm For every PQFL $_{\sigma}$ -formula $\varphi(x, y)$ the algorithm assigns to $\exists x \varphi(x, y)$ an equivalent in \mathbb{Z} PQFL $_{\sigma}$ -formula $\psi(y)$. Mikhail R. Starchak (SPbU) quasi-QE for Addition and GCD October 25, 2021 6/16

GCD-Lemma

$$\exists x \bigwedge_{i \in [1..m]} \mathsf{GCD}(a_i, b_i + x) = d_i. (1)$$

Lemma (GCD-Lemma)

For the system (1) with $a_i, b_i, d_i \in \mathbb{Z}$, $a_i \neq 0$, $d_i > 0$ for every $i \in [1..m]$, we define for every prime p the integer $M_p = \max_{i \in [1..m]} v_p(d_i)$ and the index sets $J_p = \{i \in [1..m] : v_p(d_i) = M_p\}$ and $I_p = \{i \in J_p : v_p(a_i) > M_p\}$. Then (1) has a solution in \mathbb{Z} iff the following conditions simultaneously hold:

$$\ \ \, \bigwedge_{i\in[1..m]} d_i \mid a_i$$

$$\sum_{i,j\in[1..m]} \mathsf{GCD}(d_i,d_j) \mid b_i - b_j$$

Geric For every prime p ≤ m and every I ⊆ I_p such that |I| = p there are such i, j ∈ I, i ≠ j that v_p(b_i − b_j) > M_p.

GCD-Lemma

$$\exists x \bigwedge_{i \in [1..m]} \operatorname{GCD}(a_i, b_i + x) = d_i. (1) \begin{cases} \operatorname{GCD}(6, x) = 2 \\ \operatorname{GCD}(6, x) = 3 \end{cases}$$

Lemma (GCD-Lemma)

For the system (1) with $a_i, b_i, d_i \in \mathbb{Z}$, $a_i \neq 0$, $d_i > 0$ for every $i \in [1..m]$, we define for every prime p the integer $M_p = \max_{i \in [1..m]} v_p(d_i)$ and the index sets $J_p = \{i \in [1..m] : v_p(d_i) = M_p\}$ and $I_p = \{i \in J_p : v_p(a_i) > M_p\}$. Then (1) has a solution in \mathbb{Z} iff the following conditions simultaneously hold:

$$\ \ \, \bigwedge_{i\in[1..m]} d_i \mid a_i$$

$$\sum_{i,j\in[1..m]} \mathsf{GCD}(d_i,d_j) \mid b_i - b_j$$

Geric For every prime p ≤ m and every I ⊆ I_p such that |I| = p there are such i, j ∈ I, i ≠ j that v_p(b_i − b_j) > M_p.

GCD-Lemma

$$\exists x \bigwedge_{i \in [1..m]} \text{GCD}(a_i, b_i + x) = d_i. (1) \begin{cases} \text{GCD}(6, x) = 2 \\ \text{GCD}(6, x) = 3 \end{cases} \begin{cases} \text{GCD}(6, x) = 1 \\ \text{GCD}(2, 1 + x) = 1 \end{cases}$$

Lemma (GCD-Lemma)

For the system (1) with $a_i, b_i, d_i \in \mathbb{Z}$, $a_i \neq 0$, $d_i > 0$ for every $i \in [1..m]$, we define for every prime p the integer $M_p = \max_{i \in [1..m]} v_p(d_i)$ and the index sets $J_p = \{i \in [1..m] : v_p(d_i) = M_p\}$ and $I_p = \{i \in J_p : v_p(a_i) > M_p\}$. Then (1) has a solution in \mathbb{Z} iff the following conditions simultaneously hold:

$$\ \ \, \bigwedge_{i\in[1..m]} d_i \mid a_i$$

$$\sum_{i,j\in[1..m]} \mathsf{GCD}(d_i,d_j) \mid b_i - b_j$$

• For every prime $p \le m$ and every $I \subseteq I_p$ such that |I| = p there are such $i, j \in I$, $i \ne j$ that $v_p(b_i - b_j) > M_p$.

Quantifier elimination algorithm (sketch)

$$\exists x \left(\bigwedge_{i \in [1..m]} \mathsf{GCD}(f_i(\boldsymbol{y}), g_i(\boldsymbol{y}) + c_i x) = d_i \land \bigwedge_{i \in [m+1..l]} f_i(\boldsymbol{y}) \neq c_i x \right)$$

3)) J

Quantifier elimination algorithm (sketch)

$$\exists x \left(\bigwedge_{i \in [1..m]} \text{GCD}(f_i(\boldsymbol{y}), g_i(\boldsymbol{y}) + \boldsymbol{c}_i x) = d_i \land \bigwedge_{i \in [m+1..l]} f_i(\boldsymbol{y}) \neq \boldsymbol{c}_i x \right)$$
$$\boldsymbol{C} = \underset{i=1..l}{\text{LCM}} (\boldsymbol{c}_i) \rightsquigarrow$$

3)) J

Quantifier elimination algorithm (sketch)

$$\exists x \left(\bigwedge_{i \in [1..m]} \text{GCD}(f_i(\boldsymbol{y}), g_i(\boldsymbol{y}) + c_i x) = d_i \wedge \bigwedge_{i \in [m+1..l]} f_i(\boldsymbol{y}) \neq c_i x \right)$$

 $\textbf{\textit{C}} = \underset{i=1..l}{\text{LCM}}(\textbf{\textit{c}}_i) \rightsquigarrow \text{ multiply by } \frac{\textbf{\textit{C}}}{\textbf{\textit{c}}_i} \rightsquigarrow$

B → B

$$\exists x \left(\bigwedge_{i \in [1..m]} \mathsf{GCD}(f_i(\boldsymbol{y}), g_i(\boldsymbol{y}) + \boldsymbol{c}_i x) = d_i \land \bigwedge_{i \in [m+1..l]} f_i(\boldsymbol{y}) \neq \boldsymbol{c}_i x \right)$$

 $C = \underset{i=1..l}{\mathsf{LCM}}(c_i) \rightsquigarrow \text{ multiply by } \frac{c}{c_i} \rightsquigarrow \text{ replace } Cx \text{ by } \widetilde{x} \text{ and adjoin } \mathsf{GCD}(C, \widetilde{x}) = C$

$$\exists x \underbrace{\left(\bigwedge_{i \in [1..m]} \mathsf{GCD}(f_i(\boldsymbol{y}), g_i(\boldsymbol{y}) + x) = d_i \land \bigwedge_{i \in [m+1..l]} f_i(\boldsymbol{y}) \neq x\right)}_{(q, q)}$$

 $\varphi(x, y)$

3)) J

$$\exists x \underbrace{\left(\bigwedge_{i \in [1..m]} \mathsf{GCD}(f_i(\boldsymbol{y}), g_i(\boldsymbol{y}) + x) = d_i \land \bigwedge_{i \in [m+1..l]} f_i(\boldsymbol{y}) \neq x\right)}_{\varphi(\mathbf{x}, \mathbf{y})}$$

Case 1. For some $i \in [1..m]$ we have $f_i(\mathbf{y}) = 0$.

э

$$\exists x \underbrace{\left(\bigwedge_{i \in [1..m]} \text{GCD}(f_i(\boldsymbol{y}), g_i(\boldsymbol{y}) + x) = d_i \land \bigwedge_{i \in [m+1..l]} f_i(\boldsymbol{y}) \neq x\right)}_{\varphi(x, \boldsymbol{y})}$$

Case 1. For some $i \in [1..m]$ we have $f_i(\boldsymbol{y}) = 0$.
$$\rightsquigarrow \bigvee_{i \in [1..m]} \left(f_i(\boldsymbol{y}) = 0 \land \bigvee_{\boldsymbol{s} \in \{-1,1\}} \varphi(\boldsymbol{s} \cdot \boldsymbol{d}_i - \boldsymbol{g}_i(\boldsymbol{y}), \boldsymbol{y})\right).$$

3)) J

$$\exists x \underbrace{\left(\bigwedge_{i \in [1..m]} \text{GCD}(f_i(\boldsymbol{y}), g_i(\boldsymbol{y}) + x) = d_i \land \bigwedge_{i \in [m+1..l]} f_i(\boldsymbol{y}) \neq x\right)}_{\varphi(x, \boldsymbol{y})}$$

Case 1. For some $i \in [1..m]$ we have $f_i(\boldsymbol{y}) = 0$.
$$\rightsquigarrow \bigvee_{i \in [1..m]} \left(f_i(\boldsymbol{y}) = 0 \land \bigvee_{\boldsymbol{s} \in \{-1,1\}} \varphi(\boldsymbol{s} \cdot d_i - g_i(\boldsymbol{y}), \boldsymbol{y})\right).$$

Case 2. For all $i \in [1..m]$ we have $f_i(\mathbf{y}) \neq 0$.

$$\exists x \underbrace{\left(\bigwedge_{i \in [1..m]} \text{GCD}(f_i(\boldsymbol{y}), g_i(\boldsymbol{y}) + x) = d_i \land \bigwedge_{i \in [m+1..l]} f_i(\boldsymbol{y}) \neq x\right)}_{\varphi(\mathbf{x}, \boldsymbol{y})}$$

Case 1. For some $i \in [1..m]$ we have $f_i(\boldsymbol{y}) = 0$.
$$\rightsquigarrow \bigvee_{i \in [1..m]} \left(f_i(\boldsymbol{y}) = 0 \land \bigvee_{s \in \{-1,1\}} \varphi(s \cdot d_i - g_i(\boldsymbol{y}), \boldsymbol{y})\right).$$

Case 2. For all $i \in [1..m]$ we have $f_i(\boldsymbol{y}) \neq 0$.
$$\rightsquigarrow \text{ apply GCD-Lemma:} \bigwedge_{i \in [1..m]} f_i(\boldsymbol{y}) \neq 0 \land \underline{\psi_{GCD}(\boldsymbol{y})}.$$

Mikhail R. Starchak (SPbU)

3)) J

$$\exists x \underbrace{\left(\bigwedge_{i \in [1..m]} \text{GCD}(f_i(\boldsymbol{y}), g_i(\boldsymbol{y}) + x) = d_i \land \bigwedge_{i \in [m+1..l]} f_i(\boldsymbol{y}) \neq x\right)}_{\varphi(x, \boldsymbol{y})}$$

Case 1. For some $i \in [1..m]$ we have $f_i(\boldsymbol{y}) = 0$.
$$\bigvee_{i \in [1..m]} \left(f_i(\boldsymbol{y}) = 0 \land \bigvee_{\boldsymbol{s} \in \{-1,1\}} \varphi(\boldsymbol{s} \cdot d_i - g_i(\boldsymbol{y}), \boldsymbol{y})\right).$$

Case 2. For all $i \in [1..m]$ we have $f_i(\boldsymbol{y}) \neq 0$.
$$\bigoplus_{i \in [1..m]} \text{GCD-Lemma:} \bigwedge_{i \in [1..m]} f_i(\boldsymbol{y}) \neq 0 \land \underline{\psi_{GCD}(\boldsymbol{y})}.$$

Formula $\psi_{GCD}(\mathbf{y})$ is a conjunction of conditions 1 - 4 of GCD-Lemma.

э

$$\exists x \underbrace{\left(\bigwedge_{i \in [1..m]} \text{GCD}(f_i(\boldsymbol{y}), g_i(\boldsymbol{y}) + x) = d_i \land \bigwedge_{i \in [m+1..l]} f_i(\boldsymbol{y}) \neq x\right)}_{\varphi(x, \boldsymbol{y})}$$

Case 1. For some $i \in [1..m]$ we have $f_i(\boldsymbol{y}) = 0$.
$$\bigvee_{i \in [1..m]} \left(f_i(\boldsymbol{y}) = 0 \land \bigvee_{s \in \{-1,1\}} \varphi(s \cdot d_i - g_i(\boldsymbol{y}), \boldsymbol{y})\right).$$

Case 2. For all $i \in [1..m]$ we have $f_i(\boldsymbol{y}) \neq 0$.
$$\mapsto \text{ apply GCD-Lemma: } \bigwedge_{i \in [1..m]} f_i(\boldsymbol{y}) \neq 0 \land \underline{\psi_{GCD}(\boldsymbol{y})}.$$

Formula $\psi_{GCD}(\mathbf{y})$ is a conjunction of conditions 1 - 4 of GCD-Lemma. Consider condition 3:

For every $i, j \in [1..m]$ we have GCD (GCD $(f_i(\mathbf{y}), d_j), g_i(\mathbf{y}) - g_j(\mathbf{y})) \mid d_i$

$$\exists x \underbrace{\left(\bigwedge_{i \in [1..m]} \text{GCD}(f_i(\boldsymbol{y}), g_i(\boldsymbol{y}) + x) = d_i \land \bigwedge_{i \in [m+1..l]} f_i(\boldsymbol{y}) \neq x\right)}_{\varphi(x, \boldsymbol{y})}$$

Case 1. For some $i \in [1..m]$ we have $f_i(\boldsymbol{y}) = 0$.
$$\bigvee_{i \in [1..m]} \left(f_i(\boldsymbol{y}) = 0 \land \bigvee_{s \in \{-1,1\}} \varphi(s \cdot d_i - g_i(\boldsymbol{y}), \boldsymbol{y})\right).$$

Case 2. For all $i \in [1..m]$ we have $f_i(\boldsymbol{y}) \neq 0$.
$$\mapsto \text{ apply GCD-Lemma: } \bigwedge_{i \in [1..m]} f_i(\boldsymbol{y}) \neq 0 \land \underline{\psi_{GCD}(\boldsymbol{y})}.$$

Formula $\psi_{GCD}(\mathbf{y})$ is a conjunction of conditions 1 - 4 of GCD-Lemma. Consider condition 3:

For every $i, j \in [1..m]$ we have GCD (GCD $(f_i(\boldsymbol{y}), d_j), g_i(\boldsymbol{y}) - g_j(\boldsymbol{y})) \mid d_i$

$$\rightsquigarrow \bigvee_{\boldsymbol{a}|\boldsymbol{d}_j} (\mathsf{GCD}(f_i(\boldsymbol{y}), \boldsymbol{d}_j) = \boldsymbol{a}$$

Mikhail R. Starchak (SPbU)

$$\exists x \underbrace{\left(\bigwedge_{i \in [1..m]} \text{GCD}(f_i(\boldsymbol{y}), g_i(\boldsymbol{y}) + x) = d_i \land \bigwedge_{i \in [m+1..l]} f_i(\boldsymbol{y}) \neq x\right)}_{\varphi(x, \boldsymbol{y})}$$

Case 1. For some $i \in [1..m]$ we have $f_i(\boldsymbol{y}) = 0$.
$$\bigvee_{i \in [1..m]} \left(f_i(\boldsymbol{y}) = 0 \land \bigvee_{s \in \{-1,1\}} \varphi(s \cdot d_i - g_i(\boldsymbol{y}), \boldsymbol{y})\right).$$

Case 2. For all $i \in [1..m]$ we have $f_i(\boldsymbol{y}) \neq 0$.
$$\mapsto \text{ apply GCD-Lemma: } \bigwedge_{i \in [1..m]} f_i(\boldsymbol{y}) \neq 0 \land \underline{\psi_{GCD}(\boldsymbol{y})}.$$

Formula $\psi_{GCD}(\mathbf{y})$ is a conjunction of conditions 1 - 4 of GCD-Lemma. Consider condition 3:

For every $i, j \in [1..m]$ we have $\underline{\mathsf{GCD}\left(\mathsf{GCD}\left(f_i(\boldsymbol{y}), d_j\right), g_i(\boldsymbol{y}) - g_j(\boldsymbol{y})\right) \mid d_i}$

$$\rightsquigarrow \bigvee_{\mathbf{a}|d_j} \left(\mathsf{GCD}(f_i(\mathbf{y}), d_j) = \mathbf{a} \land \bigvee_{d|d_i} \mathsf{GCD}(\mathbf{a}, g_i(\mathbf{y}) - g_j(\mathbf{y})) = d \right).$$

Mikhail R. Starchak (SPbU)

Corollaries

Theorem

$\mathsf{P}\exists\mathsf{Def}\langle\mathbb{Z};1,+,\bot\rangle = \mathsf{PQFDef}\langle\mathbb{Z};1,+,-,\neq,\bot,\mathsf{GCD}_2,\mathsf{GCD}_3,\mathsf{GCD}_4,...\rangle.$

Image: Image:

> < 3 >

$\mathsf{P}\exists\mathsf{Def}\langle\mathbb{Z};1,+,\bot\rangle = \mathsf{PQFDef}\langle\mathbb{Z};1,+,-,\neq,\bot,\mathsf{GCD}_2,\mathsf{GCD}_3,\mathsf{GCD}_4,...\rangle.$

Corollary 1. Dis-coprimeness $\not\perp$ is not P \exists -definable in $\langle \mathbb{Z}; 1, +, -, \bot \rangle$.

→

$$\mathsf{P}\exists \mathsf{Def} \langle \mathbb{Z}; 1, +, \bot \rangle = \mathsf{P}\mathsf{QFDef} \langle \mathbb{Z}; 1, +, -, \neq, \bot, \mathsf{GCD}_2, \mathsf{GCD}_3, \mathsf{GCD}_4, ... \rangle.$$

Corollary 1. Dis-coprimeness $\not\perp$ is not P∃-definable in $\langle \mathbb{Z}; 1, +, -, \perp \rangle$. *Proof*

• Assume $\not\perp$ is P \exists -definable.

•
$$\neg \text{GCD}(x, y) = d \Leftrightarrow d \nmid x \lor d \nmid y \lor \exists u \exists v (x = du \land y = dv \land u \not\perp v).$$

< 47 ▶

포 문 문

$$\mathsf{P}\exists \mathsf{Def} \langle \mathbb{Z}; 1, +, \bot \rangle = \mathsf{P}\mathsf{QFDef} \langle \mathbb{Z}; 1, +, -, \neq, \bot, \mathsf{GCD}_2, \mathsf{GCD}_3, \mathsf{GCD}_4, ... \rangle.$$

Corollary 1. Dis-coprimeness $\not\perp$ is not P \exists -definable in $\langle \mathbb{Z}; 1, +, -, \perp \rangle$. *Proof*

• Assume $\not\perp$ is P \exists -definable.

•
$$\neg \text{GCD}(x, y) = d \Leftrightarrow d \nmid x \lor d \nmid y \lor \exists u \exists v (x = du \land y = dv \land u \not\perp v).$$

• $d \nmid x \Leftrightarrow \bigvee_{\substack{k=1..d-1}} d \mid x + k \rightsquigarrow$ similar to PA case, we can eliminate all the quantifiers

$$\mathsf{P}\exists \mathsf{Def} \langle \mathbb{Z}; 1, +, \bot \rangle = \mathsf{P}\mathsf{QFDef} \langle \mathbb{Z}; 1, +, -, \neq, \bot, \mathsf{GCD}_2, \mathsf{GCD}_3, \mathsf{GCD}_4, ... \rangle.$$

Corollary 1. Dis-coprimeness $\not\perp$ is not P \exists -definable in $\langle \mathbb{Z}; 1, +, -, \perp \rangle$. *Proof*

• Assume $\not\perp$ is P \exists -definable.

•
$$\neg \text{GCD}(x, y) = d \Leftrightarrow d \nmid x \lor d \nmid y \lor \exists u \exists v (x = du \land y = dv \land u \not\perp v).$$

• $d \nmid x \Leftrightarrow \bigvee_{\substack{k=1..d-1}} d \mid x + k \rightsquigarrow$ similar to PA case, we can eliminate all the quantifiers and $\text{Th}\langle \mathbb{Z}; 1, +, \perp \rangle$ is decidable.

$$\mathsf{P}\exists \mathsf{Def} \langle \mathbb{Z}; 1, +, \bot \rangle = \mathsf{P}\mathsf{QFDef} \langle \mathbb{Z}; 1, +, -, \neq, \bot, \mathsf{GCD}_2, \mathsf{GCD}_3, \mathsf{GCD}_4, ... \rangle.$$

Corollary 1. Dis-coprimeness $\not\perp$ is not P \exists -definable in $\langle \mathbb{Z}; 1, +, -, \perp \rangle$. *Proof*

• Assume $\not\perp$ is P \exists -definable.

•
$$\neg \text{GCD}(x, y) = d \Leftrightarrow d \nmid x \lor d \nmid y \lor \exists u \exists v (x = du \land y = dv \land u \not\perp v).$$

• $d \nmid x \Leftrightarrow \bigvee_{\substack{k=1..d-1}} d \mid x+k \rightsquigarrow$ similar to PA case, we can eliminate all the quantifiers and $\text{Th}\langle \mathbb{Z}; 1, +, \bot \rangle$ is decidable.

Corollary 2. The order relation \leq is not P \exists -definable in $\langle \mathbb{Z}; 1, +, -, \perp \rangle$. (consider $x \geq 0$).

$$\mathsf{P}\exists \mathsf{Def} \langle \mathbb{Z}; 1, +, \bot \rangle = \mathsf{P}\mathsf{QFDef} \langle \mathbb{Z}; 1, +, -, \neq, \bot, \mathsf{GCD}_2, \mathsf{GCD}_3, \mathsf{GCD}_4, ... \rangle.$$

Corollary 1. Dis-coprimeness $\not\perp$ is not P \exists -definable in $\langle \mathbb{Z}; 1, +, -, \perp \rangle$. *Proof*

• Assume $\not\perp$ is P \exists -definable.

•
$$\neg \text{GCD}(x, y) = d \Leftrightarrow d \nmid x \lor d \nmid y \lor \exists u \exists v (x = du \land y = dv \land u \not\perp v).$$

• $d \nmid x \Leftrightarrow \bigvee_{\substack{k=1..d-1}} d \mid x+k \rightsquigarrow$ similar to PA case, we can eliminate all the quantifiers and $\text{Th}\langle \mathbb{Z}; 1, +, \bot \rangle$ is decidable.

Corollary 2. The order relation \leq is not P \exists -definable in $\langle \mathbb{Z}; 1, +, -, \perp \rangle$. (consider $x \geq 0$).

Consider $\langle \mathbb{N}; S, \bot \rangle$, where S is the successor function $x \mapsto x + 1$.

• Th $\langle \mathbb{N}; S, \perp \rangle$ is undecidable. [A.R. Woods 1981, D. Richard 1982]

$$\mathsf{P}\exists \mathsf{Def} \langle \mathbb{Z}; 1, +, \bot \rangle = \mathsf{P}\mathsf{QFDef} \langle \mathbb{Z}; 1, +, -, \neq, \bot, \mathsf{GCD}_2, \mathsf{GCD}_3, \mathsf{GCD}_4, ... \rangle.$$

Corollary 1. Dis-coprimeness $\not\perp$ is not P \exists -definable in $\langle \mathbb{Z}; 1, +, -, \perp \rangle$. *Proof*

• Assume $\not\perp$ is P \exists -definable.

•
$$\neg \text{GCD}(x, y) = d \Leftrightarrow d \nmid x \lor d \nmid y \lor \exists u \exists v (x = du \land y = dv \land u \not\perp v).$$

• $d \nmid x \Leftrightarrow \bigvee_{\substack{k=1..d-1}} d \mid x+k \rightsquigarrow$ similar to PA case, we can eliminate all the quantifiers and $\text{Th}\langle \mathbb{Z}; 1, +, \bot \rangle$ is decidable.

Corollary 2. The order relation \leq is not P \exists -definable in $\langle \mathbb{Z}; 1, +, -, \perp \rangle$. (consider $x \geq 0$).

Consider $\langle \mathbb{N}; S, \bot \rangle$, where S is the successor function $x \mapsto x + 1$.

- Th $\langle \mathbb{N}; S, \perp \rangle$ is undecidable. [A.R. Woods 1981, D. Richard 1982]
- $x \neq 0 \Leftrightarrow \exists y(x \perp SSy)$ is not P \exists -definable in $\langle \mathbb{N}; S, \perp \rangle$.

$$\mathsf{P}\exists \mathsf{Def} \langle \mathbb{Z}; 1, +, \bot \rangle = \mathsf{P}\mathsf{QFDef} \langle \mathbb{Z}; 1, +, -, \neq, \bot, \mathsf{GCD}_2, \mathsf{GCD}_3, \mathsf{GCD}_4, ... \rangle.$$

Corollary 1. Dis-coprimeness $\not\perp$ is not P \exists -definable in $\langle \mathbb{Z}; 1, +, -, \perp \rangle$. *Proof*

• Assume $\not\perp$ is P \exists -definable.

•
$$\neg \text{GCD}(x, y) = d \Leftrightarrow d \nmid x \lor d \nmid y \lor \exists u \exists v (x = du \land y = dv \land u \not\perp v).$$

• $d \nmid x \Leftrightarrow \bigvee_{\substack{k=1..d-1}} d \mid x+k \rightsquigarrow$ similar to PA case, we can eliminate all the quantifiers and $\text{Th}\langle \mathbb{Z}; 1, +, \bot \rangle$ is decidable.

Corollary 2. The order relation \leq is not P \exists -definable in $\langle \mathbb{Z}; 1, +, -, \perp \rangle$. (consider $x \geq 0$).

Consider $\langle \mathbb{N}; S, \bot \rangle$, where S is the successor function $x \mapsto x + 1$.

- Th $\langle \mathbb{N}; S, \perp \rangle$ is undecidable. [A.R. Woods 1981, D. Richard 1982]
- $x \neq 0 \Leftrightarrow \exists y(x \perp SSy)$ is not $P\exists$ -definable in $\langle \mathbb{N}; S, \perp \rangle$.

Mikhail R. Starchak (SPbU)

We know: $\forall \exists$ -Theory of the structure $\langle \mathbb{Z}; 1, +, -, \leq, | \rangle$ is undecidable.

We know: $\forall \exists$ -Theory of the structure $\langle \mathbb{Z}; 1, +, -, \leq, | \rangle$ is undecidable. (DPRM-theorem + *universal* formula:

 $y = x^2 \Leftrightarrow x \mid y \land x + 1 \mid x + y \land \forall z (x \mid z \land x + 1 \mid x + z \Rightarrow x + y \mid x + z))$

We know: $\forall \exists$ -Theory of the structure $\langle \mathbb{Z}; 1, +, -, \leq, | \rangle$ is undecidable. (DPRM-theorem + *universal* formula: $y = x^2 \Leftrightarrow x \mid y \land x + 1 \mid x + y \land \forall z (x \mid z \land x + 1 \mid x + z \Rightarrow x + y \mid x + z))$

Decidable Fragments

Here $\varphi_i(\mathbf{x})$ will be some QFL_{PAD}-formulas

We know: $\forall \exists$ -Theory of the structure $\langle \mathbb{Z}; 1, +, -, \leq, | \rangle$ is undecidable. (DPRM-theorem + *universal* formula: $y = x^2 \Leftrightarrow x \mid y \land x + 1 \mid x + y \land \forall z (x \mid z \land x + 1 \mid x + z \Rightarrow x + y \mid x + z))$

Decidable Fragments

Here $\varphi_i(\mathbf{x})$ will be some QFL_{PAD}-formulas

• By G.A. Pérez and R. Raha (2020).

$$\forall \, \mathbf{x} \, \exists \, \mathbf{y} \bigvee_{i \in I_j \in J_i} \left(f_j(\mathbf{x}) \mid g_j(\mathbf{x}, \mathbf{y}) \wedge f_j(\mathbf{x}) \geq 0 \right) \right) \wedge \underline{\varphi_i(\mathbf{x})} \wedge \mathbf{x} \geq 0 \wedge \mathbf{y} \geq 0.$$

We know: $\forall \exists$ -Theory of the structure $\langle \mathbb{Z}; 1, +, -, \leq, | \rangle$ is undecidable. (DPRM-theorem + *universal* formula: $y = x^2 \Leftrightarrow x \mid y \land x + 1 \mid x + y \land \forall z(x \mid z \land x + 1 \mid x + z \Rightarrow x + y \mid x + z))$

Decidable Fragments

Here $\varphi_i(\mathbf{x})$ will be some QFL_{PAD}-formulas

• By G.A. Pérez and R. Raha (2020).

$$\forall \, \boldsymbol{x} \, \exists \, \boldsymbol{y} \bigvee_{i \in I j \in J_i} \Big(f_j(\boldsymbol{x}) \mid g_j(\boldsymbol{x}, \boldsymbol{y}) \wedge f_j(\boldsymbol{x}) \geq 0) \Big) \wedge \underline{\varphi_i(\boldsymbol{x})} \wedge \boldsymbol{x} \geq 0 \wedge \boldsymbol{y} \geq 0.$$

• Our result.

$$\forall \mathbf{x} \exists \mathbf{y} \bigvee_{i \in I_j \in J_i} \left(\mathsf{GCD}(f_j(\mathbf{x}, \mathbf{y}), g_j(\mathbf{x}, \mathbf{y})) = d_j \right) \land \underline{\varphi_i(\mathbf{x})}.$$

Mikhail R. Starchak (SPbU)

October 25, 2021

We know: $\forall \exists$ -Theory of the structure $\langle \mathbb{Z}; 1, +, -, \leq, | \rangle$ is undecidable. (DPRM-theorem + *universal* formula: $y = x^2 \Leftrightarrow x \mid y \land x + 1 \mid x + y \land \forall z(x \mid z \land x + 1 \mid x + z \Rightarrow x + y \mid x + z))$

Decidable Fragments

Here $\varphi_i(\mathbf{x})$ will be some QFL_{PAD}-formulas

• By G.A. Pérez and R. Raha (2020). Divisibility.

$$\forall \mathbf{x} \exists \mathbf{y} \bigvee_{i \in I_j \in J_i} \left(\underbrace{\mathsf{GCD}(f_j(\mathbf{x}), g_j(\mathbf{x}, \mathbf{y})) = f_j(\mathbf{x})}_{f_j(\mathbf{x})} \land f_j(\mathbf{x}) \ge 0 \right) \land \underline{\varphi_i(\mathbf{x})} \land \mathbf{x} \ge 0 \land \mathbf{y} \ge 0.$$

• Our result. Coprimeness.

$$\forall \mathbf{x} \exists \mathbf{y} \bigvee_{i \in I_j \in J_i} \left(\underline{\mathsf{GCD}}(f_j(\mathbf{x}, \mathbf{y}), g_j(\mathbf{x}, \mathbf{y})) = d_j \right) \land \underline{\varphi}_i(\mathbf{x}).$$

Mikhail R. Starchak (SPbU)

October 25, 2021

We know: $\forall \exists$ -Theory of the structure $\langle \mathbb{Z}; 1, +, -, \leq, | \rangle$ is undecidable. (DPRM-theorem + *universal* formula: $y = x^2 \Leftrightarrow x \mid y \land x + 1 \mid x + y \land \forall z(x \mid z \land x + 1 \mid x + z \Rightarrow x + y \mid x + z))$

Decidable Fragments

Here $\varphi_i(\mathbf{x})$ will be some QFL_{PAD}-formulas

• By G.A. Pérez and R. Raha (2020). Divisibility.

$$\forall \mathbf{x} \exists \mathbf{y} \bigvee_{i \in I_j \in J_i} \left(\underbrace{\mathsf{GCD}(f_j(\mathbf{x}), g_j(\mathbf{x}, \mathbf{y})) = f_j(\mathbf{x})}_{f_j(\mathbf{x})} \land f_j(\mathbf{x}) \ge 0 \right) \land \underline{\varphi_i(\mathbf{x})} \land \mathbf{x} \ge 0 \land \mathbf{y} \ge 0.$$

• Our result. Coprimeness.

$$\forall \mathbf{x} \exists \mathbf{y} \bigvee_{i \in I_j \in J_i} \left(\underline{\mathsf{GCD}}(f_j(\mathbf{x}, \mathbf{y}), g_j(\mathbf{x}, \mathbf{y})) = d_j \right) \land \underline{\varphi}_i(\mathbf{x}).$$

Proof sketch: isolate $y_i \in \mathbf{y}$

Mikhail R. Starchak (SPbU)

10/16

We know: $\forall \exists$ -Theory of the structure $\langle \mathbb{Z}; 1, +, -, \leq, | \rangle$ is undecidable. (DPRM-theorem + *universal* formula: $y = x^2 \Leftrightarrow x \mid y \land x + 1 \mid x + y \land \forall z(x \mid z \land x + 1 \mid x + z \Rightarrow x + y \mid x + z))$

Decidable Fragments

Here $\varphi_i(\mathbf{x})$ will be some QFL_{PAD}-formulas

• By G.A. Pérez and R. Raha (2020). Divisibility.

$$\forall \mathbf{x} \exists \mathbf{y} \bigvee_{i \in I_j \in J_i} \left(\underbrace{\mathsf{GCD}(f_j(\mathbf{x}), g_j(\mathbf{x}, \mathbf{y})) = f_j(\mathbf{x})}_{f_j(\mathbf{x})} \land f_j(\mathbf{x}) \ge 0 \right) \land \underline{\varphi_i(\mathbf{x})} \land \mathbf{x} \ge 0 \land \mathbf{y} \ge 0.$$

• Our result. Coprimeness.

$$\forall \mathbf{x} \exists \mathbf{y} \bigvee_{i \in I_j \in J_i} \left(\underline{\mathsf{GCD}}(f_j(\mathbf{x}, \mathbf{y}), g_j(\mathbf{x}, \mathbf{y})) = d_j \right) \land \underline{\varphi}_i(\mathbf{x}).$$

Proof sketch: isolate $y_i \in \mathbf{y} \rightarrow$ eliminate $\exists y_i$

Mikhail R. Starchak (SPbU)

We know: $\forall \exists$ -Theory of the structure $\langle \mathbb{Z}; 1, +, -, \leq, | \rangle$ is undecidable. (DPRM-theorem + *universal* formula: $y = x^2 \Leftrightarrow x \mid y \land x + 1 \mid x + y \land \forall z(x \mid z \land x + 1 \mid x + z \Rightarrow x + y \mid x + z))$

Decidable Fragments

Here $\varphi_i(\mathbf{x})$ will be some QFL_{PAD}-formulas

• By G.A. Pérez and R. Raha (2020). Divisibility.

$$\forall \mathbf{x} \exists \mathbf{y} \bigvee_{i \in I_j \in J_i} \left(\underbrace{\mathsf{GCD}(f_j(\mathbf{x}), g_j(\mathbf{x}, \mathbf{y})) = f_j(\mathbf{x})}_{f_j(\mathbf{x})} \land f_j(\mathbf{x}) \ge 0 \right) \land \underline{\varphi_i(\mathbf{x})} \land \mathbf{x} \ge 0 \land \mathbf{y} \ge 0.$$

• Our result. Coprimeness.

$$\forall \mathbf{x} \exists \mathbf{y} \bigvee_{i \in I_j \in J_i} \left(\underline{\mathsf{GCD}}(f_j(\mathbf{x}, \mathbf{y}), g_j(\mathbf{x}, \mathbf{y})) = d_j \right) \land \underline{\varphi}_i(\mathbf{x}).$$

Proof sketch: isolate $y_i \in \mathbf{y} \rightarrow$ eliminate $\exists y_i \rightarrow$ rewrite GCD using *universal* quantifiers

We know: $\forall \exists$ -Theory of the structure $\langle \mathbb{Z}; 1, +, -, \leq, | \rangle$ is undecidable. (DPRM-theorem + *universal* formula: $y = x^2 \Leftrightarrow x \mid y \land x + 1 \mid x + y \land \forall z(x \mid z \land x + 1 \mid x + z \Rightarrow x + y \mid x + z))$

Decidable Fragments

Here $\varphi_i(\mathbf{x})$ will be some QFL_{PAD}-formulas

• By G.A. Pérez and R. Raha (2020). Divisibility.

$$\forall \mathbf{x} \exists \mathbf{y} \bigvee_{i \in I_j \in J_i} \bigwedge \left(\underbrace{\mathsf{GCD}(f_j(\mathbf{x}), g_j(\mathbf{x}, \mathbf{y})) = f_j(\mathbf{x})}_{f_j(\mathbf{x})} \land f_j(\mathbf{x}) \ge 0 \right) \land \underbrace{\varphi_i(\mathbf{x})}_{i \in I_j} \land \mathbf{x} \ge 0 \land \mathbf{y} \ge 0.$$

• Our result. Coprimeness.

$$\forall \mathbf{x} \exists \mathbf{y} \bigvee_{i \in I_j \in J_i} \left(\underline{\mathsf{GCD}}(f_j(\mathbf{x}, \mathbf{y}), g_j(\mathbf{x}, \mathbf{y})) = d_j \right) \land \underline{\varphi}_i(\mathbf{x}).$$

Proof sketch: isolate $y_i \in \mathbf{y} \rightsquigarrow$ eliminate $\exists y_i \rightsquigarrow$ rewrite GCD using *universal* quantifiers $\rightsquigarrow \forall$ -Theory of $\langle \mathbb{Z}; 1, +, -, \leq, | \rangle$ is decidable since \exists -Theory is decidable.

Decidability of $P\exists Th\langle \mathbb{Z}; 1, +, -, \leq, | \rangle$ by [Bel'tyukov 1976, Lipshitz 1978]:

PQFL_{PAD}-formula $\varphi(\mathbf{x})$

Decidability of $P\exists Th\langle \mathbb{Z}; 1, +, -, \leq, | \rangle$ by [Bel'tyukov 1976, Lipshitz 1978]:

 $\mathsf{PQF}L_{PAD}\text{-formula }\varphi(\mathbf{x})$

 $\rightsquigarrow \mathsf{equi-satisfiable} \ \mathsf{PQF}_{L_{PAD}}\text{-formula} \ \bigvee_{j \in J} \varphi_j(\mathbf{y}_j) \land \mathbf{y}_j \geq 0 \ \underline{\mathsf{without} \leq \mathsf{in} \ \varphi_j(\mathbf{y}_j)}.$

Decidability of $P\exists Th\langle \mathbb{Z}; 1, +, -, \leq, | \rangle$ by [Bel'tyukov 1976, Lipshitz 1978]:

 $\mathsf{PQF}L_{\mathsf{PAD}}\text{-formula }\varphi(\mathbf{x})$

 \rightsquigarrow equi-satisfiable PQF L_{PAD} -formula $\bigvee_{j \in J} \varphi_j(\mathbf{y}_j) \land \mathbf{y}_j \ge 0$ without $\le \text{ in } \varphi_j(\mathbf{y}_j)$.

→ for such $\varphi_j(\mathbf{y}_j)$ we can construct a constant ν_j such that $\exists \mathbf{y}_j \varphi_j(\mathbf{y}_j)$ in \mathbb{N} iff $\exists \mathbf{y}_j \varphi_j(\mathbf{y}_j)$ in the *p*-adic integers for every prime $p \leq \nu_j$ [Weispfenning 1988].

Decidability of $P\exists Th\langle \mathbb{Z}; 1, +, -, \leq, | \rangle$ by [Bel'tyukov 1976, Lipshitz 1978]:

 $\mathsf{PQF}L_{PAD}\text{-formula }\varphi(\mathbf{x})$

→ equi-satisfiable PQF*L*_{PAD}-formula $\bigvee_{j \in J} \varphi_j(\mathbf{y}_j) \land \mathbf{y}_j \ge 0$ without \le in $\varphi_j(\mathbf{y}_j)$. → for such $\varphi_j(\mathbf{y}_j)$ we can construct a constant ν_j such that $\exists \mathbf{y}_j \varphi_j(\mathbf{y}_j)$ in \mathbb{N} iff $\exists \mathbf{y}_j \varphi_j(\mathbf{y}_j)$ in the *p*-adic integers for every prime $p \le \nu_j$ [Weispfenning 1988].

Constructing $\varphi_j(\mathbf{y}_j)$ is rather sophisticated

Decidability of $P\exists Th\langle \mathbb{Z}; 1, +, -, \leq, | \rangle$ by [Bel'tyukov 1976, Lipshitz 1978]:

 $\mathsf{PQF}L_{PAD}\text{-formula }\varphi(\mathbf{x})$

→ equi-satisfiable PQF*L*_{PAD}-formula $\bigvee_{j \in J} \varphi_j(\mathbf{y}_j) \land \mathbf{y}_j \ge 0$ without \le in $\varphi_j(\mathbf{y}_j)$. → for such $\varphi_j(\mathbf{y}_j)$ we can construct a constant ν_j such that $\exists \mathbf{y}_j \varphi_j(\mathbf{y}_j)$ in \mathbb{N} iff $\exists \mathbf{y}_j \varphi_j(\mathbf{y}_j)$ in the *p*-adic integers for every prime $p \le \nu_j$ [Weispfenning 1988].

Constructing $\varphi_j(\mathbf{y}_j)$ is rather sophisticated \rightsquigarrow more quantifier-elimination spirit

Decidability of $P\exists Th\langle \mathbb{Z}; 1, +, -, \leq, | \rangle$ by [Bel'tyukov 1976, Lipshitz 1978]:

 $\mathsf{PQF}L_{\mathsf{PAD}}\text{-formula }\varphi(\mathbf{x})$

→ equi-satisfiable PQF*L*_{PAD}-formula $\bigvee_{j \in J} \varphi_j(\mathbf{y}_j) \land \mathbf{y}_j \ge 0$ without \le in $\varphi_j(\mathbf{y}_j)$. → for such $\varphi_j(\mathbf{y}_j)$ we can construct a constant ν_j such that $\exists \mathbf{y}_j \varphi_j(\mathbf{y}_j)$ in \mathbb{N} iff $\exists \mathbf{y}_j \varphi_j(\mathbf{y}_j)$ in the *p*-adic integers for every prime $p \le \nu_j$ [Weispfenning 1988].

Constructing $\varphi_j(\mathbf{y}_j)$ is rather sophisticated \rightsquigarrow more quantifier-elimination spirit Decidability of P \exists Th $\langle \mathbb{Z}; 1, +, -, \leq, \perp \rangle$. Step 1. Variable isolation: PQF L_{PAC} -formula $\phi(\mathbf{x})$

Decidability of $P\exists Th\langle \mathbb{Z}; 1, +, -, \leq, | \rangle$ by [Bel'tyukov 1976, Lipshitz 1978]:

 $\mathsf{PQF}L_{\mathsf{PAD}}\text{-formula }\varphi(\mathbf{x})$

→ equi-satisfiable PQF*L*_{PAD}-formula $\bigvee_{j \in J} \varphi_j(\mathbf{y}_j) \land \mathbf{y}_j \ge 0$ without \le in $\varphi_j(\mathbf{y}_j)$. → for such $\varphi_j(\mathbf{y}_j)$ we can construct a constant ν_j such that $\exists \mathbf{y}_j \varphi_j(\mathbf{y}_j)$ in \mathbb{N} iff $\exists \mathbf{y}_j \varphi_j(\mathbf{y}_j)$ in the *p*-adic integers for every prime $p \le \nu_j$ [Weispfenning 1988].

Constructing $\varphi_j(\mathbf{y}_j)$ is rather sophisticated \rightsquigarrow more quantifier-elimination spirit Decidability of P \exists Th $\langle \mathbb{Z}; 1, +, -, \leq, \perp \rangle$. Step 1. Variable isolation: PQF L_{PAC} -formula $\phi(\mathbf{x}) \rightsquigarrow$ equi-satisfiable $\bigvee_{i \in J} \phi_j(\mathbf{y}_i)$, where

• Every list y_i has <u>at most the same size</u> as x.

Positive existential arithmetic with addition and coprimeness

Decidability of $P\exists Th\langle \mathbb{Z}; 1, +, -, \leq, | \rangle$ by [Bel'tyukov 1976, Lipshitz 1978]:

 $\mathsf{PQF}L_{PAD}\text{-formula }\varphi(\mathbf{x})$

→ equi-satisfiable PQF*L*_{PAD}-formula $\bigvee_{j \in J} \varphi_j(\mathbf{y}_j) \land \mathbf{y}_j \ge 0$ without \le in $\varphi_j(\mathbf{y}_j)$. → for such $\varphi_j(\mathbf{y}_j)$ we can construct a constant ν_j such that $\exists \mathbf{y}_j \varphi_j(\mathbf{y}_j)$ in \mathbb{N} iff $\exists \mathbf{y}_j \varphi_j(\mathbf{y}_j)$ in the *p*-adic integers for every prime $p \le \nu_j$ [Weispfenning 1988].

Constructing $\varphi_j(\mathbf{y}_j)$ is rather sophisticated \rightsquigarrow more quantifier-elimination spirit Decidability of P∃Th(\mathbb{Z} ; 1, +, -, \leq , \perp). Step 1. Variable isolation: PQFL_{PAC}-formula $\phi(\mathbf{x}) \rightsquigarrow$ equi-satisfiable $\bigvee_{i \in I} \phi_j(\mathbf{y}_i)$, where

- Every list y_j has <u>at most the same size</u> as x.
- $\phi_j(\mathbf{y}_j)$ has form $\mathbf{z}_j \ge 0 \land \mathbf{t}_j \ge 0 \land \widetilde{\varphi}(\mathbf{z}_j) \land \bigwedge_{i \in [1...m_j]} \text{GCD}(f_{i,j}(\mathbf{z}_j), \mathbf{g}_{i,j}(\mathbf{z}_j) + c_{i,j}\mathbf{t}_j) = d_{i,j}$, where $f_{i,j}(\mathbf{z}_j)$ has non-negative coefficients and positive constant terms.

Positive existential arithmetic with addition and coprimeness

Decidability of $P\exists Th\langle \mathbb{Z}; 1, +, -, \leq, | \rangle$ by [Bel'tyukov 1976, Lipshitz 1978]:

 $\mathsf{PQF}L_{PAD}\text{-formula }\varphi(\mathbf{x})$

→ equi-satisfiable PQF*L*_{PAD}-formula $\bigvee_{j \in J} \varphi_j(\mathbf{y}_j) \land \mathbf{y}_j \ge 0$ without \le in $\varphi_j(\mathbf{y}_j)$. → for such $\varphi_j(\mathbf{y}_j)$ we can construct a constant ν_j such that $\exists \mathbf{y}_j \varphi_j(\mathbf{y}_j)$ in \mathbb{N} iff $\exists \mathbf{y}_j \varphi_j(\mathbf{y}_j)$ in the *p*-adic integers for every prime $p \le \nu_j$ [Weispfenning 1988].

Constructing $\varphi_j(\mathbf{y}_j)$ is rather sophisticated \rightsquigarrow more quantifier-elimination spirit Decidability of P∃Th(\mathbb{Z} ; 1, +, -, \leq , \perp). Step 1. Variable isolation: PQFL_{PAC}-formula $\phi(\mathbf{x}) \rightsquigarrow$ equi-satisfiable $\bigvee_{i \in I} \phi_j(\mathbf{y}_i)$, where

• Every list y_j has <u>at most the same size</u> as x.

• $\phi_j(\mathbf{y}_j)$ has form $\mathbf{z}_j \ge 0 \land \mathbf{t}_j \ge 0 \land \widetilde{\varphi}(\mathbf{z}_j) \land \bigwedge_{i \in [1..m_j]} \text{GCD}(f_{i,j}(\mathbf{z}_j), g_{i,j}(\mathbf{z}_j) + c_{i,j}\mathbf{t}_j) = d_{i,j}$, where $f_{i,j}(\mathbf{z}_j)$ has non-negative coefficients and positive constant terms.

Step 2. Quantifier elimination: Apply GCD-Lemma to eliminate each t_j.

Difficulties:

• Every variable $t \in \mathbf{y}$ can appear in right-hand side polynomials

$$GCD(f(z), g(z) + ct) = h(z) + dt$$

with c, d > 0. \rightsquigarrow Lipshitz's basic transformations (Lemma 2).

Difficulties:

• Every variable $t \in \mathbf{y}$ can appear in right-hand side polynomials

$$GCD(f(z), g(z) + ct) = h(z) + dt$$

with c, d > 0. \rightsquigarrow Lipshitz's basic transformations (Lemma 2).

• Application of GCD-Lemma to systems of the form

$$\bigwedge_{i\in[1..m]} \operatorname{GCD}(f_i(\boldsymbol{z}),g_i(\boldsymbol{z})+\boldsymbol{t})=h_i(\boldsymbol{z})$$

requires introducing new variables.

Difficulties:

• Every variable $t \in \mathbf{y}$ can appear in right-hand side polynomials

$$GCD(f(z), g(z) + ct) = h(z) + dt$$

with c, d > 0. \rightsquigarrow Lipshitz's basic transformations (Lemma 2).

• Application of GCD-Lemma to systems of the form

$$\bigwedge_{i\in[1..m]} \operatorname{GCD}(f_i(\boldsymbol{z}),g_i(\boldsymbol{z})+\boldsymbol{t})=h_i(\boldsymbol{z})$$

requires introducing new variables. Consider (2): $GCD(h_i(z), h_j(z)) | g_i(z) - g_j(z)$

Difficulties:

• Every variable $t \in \mathbf{y}$ can appear in right-hand side polynomials

$$GCD(f(z), g(z) + ct) = h(z) + dt$$

with c, d > 0. \rightsquigarrow Lipshitz's basic transformations (Lemma 2).

• Application of GCD-Lemma to systems of the form

$$\bigwedge_{i\in[1..m]} \operatorname{GCD}(f_i(\boldsymbol{z}),g_i(\boldsymbol{z})+\boldsymbol{t})=h_i(\boldsymbol{z})$$

requires introducing new variables. Consider (2): $\underline{\text{GCD}(h_i(\boldsymbol{z}), h_j(\boldsymbol{z})) \mid g_i(\boldsymbol{z}) - g_j(\boldsymbol{z})}_{\text{for each } (i, j), 1 \le i < j \le m, \text{ we introduce } \zeta_{i,j}, \text{ such that}}$ $\rightsquigarrow \exists \zeta_{i,j} (\text{GCD}(h_i(\boldsymbol{z}), h_j(\boldsymbol{z})) = \zeta_{i,j} \land \text{GCD}(\zeta_{i,j}, g_i(\boldsymbol{z}) - g_j(\boldsymbol{z})) = \zeta_{i,j}).$

Difficulties:

• Every variable $t \in \mathbf{y}$ can appear in right-hand side polynomials

$$GCD(f(z), g(z) + ct) = h(z) + dt$$

with c, d > 0. \rightsquigarrow Lipshitz's basic transformations (Lemma 2).

• Application of GCD-Lemma to systems of the form

$$\bigwedge_{i\in[1..m]} \operatorname{GCD}(f_i(\boldsymbol{z}),g_i(\boldsymbol{z})+\boldsymbol{t})=h_i(\boldsymbol{z})$$

requires introducing new variables. Consider (2): $\frac{\text{GCD}(h_i(\boldsymbol{z}), h_j(\boldsymbol{z})) | g_i(\boldsymbol{z}) - g_j(\boldsymbol{z})}{\text{for each } (i, j), \ 1 \le i < j \le m, \ \text{we introduce } \zeta_{i,j}, \ \text{such that}}$ $\rightsquigarrow \exists \zeta_{i,j} (\text{GCD}(h_i(\boldsymbol{z}), h_j(\boldsymbol{z})) = \zeta_{i,j} \land \text{GCD}(\zeta_{i,j}, g_i(\boldsymbol{z}) - g_j(\boldsymbol{z})) = \zeta_{i,j}).$ Aim: eliminate all Latin variables \rightsquigarrow

each linear polynomial is either $a\zeta$ or a for some a > 0.

• Two disjoint sorts of variables: S_1 (Latin letters) and S_2 (Greek letters).

- Two disjoint sorts of variables: S_1 (Latin letters) and S_2 (Greek letters).
- Structure $\langle M; \sigma \rangle$ and language L_{σ} with variables from $S_1 \cup S_2$.

- Two disjoint sorts of variables: S_1 (Latin letters) and S_2 (Greek letters).
- Structure $\langle M; \sigma \rangle$ and language L_{σ} with variables from $S_1 \cup S_2$.
- Language L_A ⊂ L_σ; all occurrences of <u>Latin variables are free</u> and all occurrences of <u>Greek variables are bound</u>.

- Two disjoint sorts of variables: S_1 (Latin letters) and S_2 (Greek letters).
- Structure $\langle M; \sigma \rangle$ and language L_{σ} with variables from $S_1 \cup S_2$.
- Language L_A ⊂ L_σ; all occurrences of <u>Latin variables are free</u> and all occurrences of <u>Greek variables are bound</u>.

Quasi-QE algorithm \mathcal{A} for the language $L_{\mathcal{A}}$ in the structure $\langle M; \sigma \rangle$:

- Two disjoint sorts of variables: S_1 (Latin letters) and S_2 (Greek letters).
- Structure $\langle M; \sigma \rangle$ and language L_{σ} with variables from $S_1 \cup S_2$.
- Language L_A ⊂ L_σ; all occurrences of <u>Latin variables are free</u> and all occurrences of <u>Greek variables are bound</u>.

Quasi-QE algorithm \mathcal{A} for the language $L_{\mathcal{A}}$ in the structure $\langle M; \sigma \rangle$: (1) $L_{\mathcal{A}}$ -formulas of elimination form: $L_{\mathcal{A}}^{\times} \subseteq L_{\mathcal{A}}$.

- Two disjoint sorts of variables: S_1 (Latin letters) and S_2 (Greek letters).
- Structure $\langle M; \sigma \rangle$ and language L_{σ} with variables from $S_1 \cup S_2$.
- Language L_A ⊂ L_σ; all occurrences of <u>Latin variables are free</u> and all occurrences of <u>Greek variables are bound</u>.

Quasi-QE algorithm \mathcal{A} for the language $\mathcal{L}_{\mathcal{A}}$ in the structure $\langle M; \sigma \rangle$: (1) $\mathcal{L}_{\mathcal{A}}$ -formulas of elimination form: $\mathcal{L}_{\mathcal{A}}^{\times} \subseteq \mathcal{L}_{\mathcal{A}}$. (2) Step 1: $\mathcal{L}_{\mathcal{A}}$ -formula $\exists \alpha \varphi(\mathbf{y}, \alpha) \rightsquigarrow$ <u>equi-satisfiable</u> $\bigvee_{j \in J} \exists \alpha \widetilde{\varphi}_{j}(\mathbf{y}_{j}, \alpha)$ and for every $j \in J$:

- Two disjoint sorts of variables: S_1 (Latin letters) and S_2 (Greek letters).
- Structure $\langle M; \sigma \rangle$ and language L_{σ} with variables from $S_1 \cup S_2$.
- Language L_A ⊂ L_σ; all occurrences of <u>Latin variables are free</u> and all occurrences of <u>Greek variables are bound</u>.

Quasi-QE algorithm \mathcal{A} for the language $L_{\mathcal{A}}$ in the structure $\langle M; \sigma \rangle$: (1) $L_{\mathcal{A}}$ -formulas of elimination form: $L_{\mathcal{A}}^{\times} \subseteq L_{\mathcal{A}}$. (2) Step 1: $L_{\mathcal{A}}$ -formula $\exists \alpha \varphi(\mathbf{y}, \alpha) \rightsquigarrow$ <u>equi-satisfiable</u> $\bigvee_{j \in J} \exists \alpha \widetilde{\varphi}_j(\mathbf{y}_j, \alpha)$ and for every $j \in J$:

() y_j comprises at most the same number of variables as y.

- Two disjoint sorts of variables: S_1 (Latin letters) and S_2 (Greek letters).
- Structure $\langle M; \sigma \rangle$ and language L_{σ} with variables from $S_1 \cup S_2$.
- Language L_A ⊂ L_σ; all occurrences of <u>Latin variables are free</u> and all occurrences of <u>Greek variables are bound</u>.

Quasi-QE algorithm \mathcal{A} for the language $L_{\mathcal{A}}$ in the structure $\langle M; \sigma \rangle$: (1) $L_{\mathcal{A}}$ -formulas of elimination form: $L_{\mathcal{A}}^{\times} \subseteq L_{\mathcal{A}}$. (2) Step 1: $L_{\mathcal{A}}$ -formula $\exists \alpha \varphi(\mathbf{y}, \alpha) \rightsquigarrow$ <u>equi-satisfiable</u> $\bigvee_{j \in J} \exists \alpha \widetilde{\varphi}_j(\mathbf{y}_j, \alpha)$ and for every $j \in J$:

1 y_j comprises at most the same number of variables as y.

2 There is a variable $\widetilde{x}_j \in y_j$ such that $[\exists \alpha \widetilde{\varphi}_j(y_j, \alpha)]_x^{\widetilde{x}_j} \in L^{\mathsf{x}}_{\mathcal{A}}$.

- Two disjoint sorts of variables: S_1 (Latin letters) and S_2 (Greek letters).
- Structure $\langle M; \sigma \rangle$ and language L_{σ} with variables from $S_1 \cup S_2$.
- Language L_A ⊂ L_σ; all occurrences of <u>Latin variables are free</u> and all occurrences of <u>Greek variables are bound</u>.

Quasi-QE algorithm \mathcal{A} for the language $L_{\mathcal{A}}$ in the structure $\langle M; \sigma \rangle$: (1) $L_{\mathcal{A}}$ -formulas of elimination form: $L_{\mathcal{A}}^{\times} \subseteq L_{\mathcal{A}}$. (2) Step 1: $L_{\mathcal{A}}$ -formula $\exists \alpha \varphi(\mathbf{y}, \alpha) \rightsquigarrow$ <u>equi-satisfiable</u> $\bigvee_{j \in J} \exists \alpha \widetilde{\varphi}_j(\mathbf{y}_j, \alpha)$ and for every $j \in J$:

1 y_j comprises at most the same number of variables as y.

2 There is a variable $\widetilde{x}_j \in y_j$ such that $[\exists \alpha \widetilde{\varphi}_j(y_j, \alpha)]_x^{\widetilde{x}_j} \in L^{\times}_{\mathcal{A}}$.

(3) Step 2: $\exists x \exists \alpha \widetilde{\varphi}(x, z, \alpha) \rightsquigarrow \text{ equivalent } L_{\mathcal{A}}\text{-formula } \exists \alpha \exists \beta \widetilde{\psi}(z, \alpha, \beta)$. Here $\exists \alpha \widetilde{\varphi}(x, z, \alpha) \text{ is some } L_{\mathcal{A}}^{\times}\text{-formula.}$

- Two disjoint sorts of variables: S_1 (Latin letters) and S_2 (Greek letters).
- Structure $\langle M; \sigma \rangle$ and language L_{σ} with variables from $S_1 \cup S_2$.
- Language L_A ⊂ L_σ; all occurrences of <u>Latin variables are free</u> and all occurrences of <u>Greek variables are bound</u>.

Quasi-QE algorithm \mathcal{A} for the language $L_{\mathcal{A}}$ in the structure $\langle M; \sigma \rangle$: (1) $L_{\mathcal{A}}$ -formulas of elimination form: $L_{\mathcal{A}}^{\times} \subseteq L_{\mathcal{A}}$. (2) Step 1: $L_{\mathcal{A}}$ -formula $\exists \alpha \varphi(\mathbf{y}, \alpha) \rightsquigarrow$ <u>equi-satisfiable</u> $\bigvee_{j \in J} \exists \alpha \widetilde{\varphi}_j(\mathbf{y}_j, \alpha)$ and for every $j \in J$:

1 y_j comprises at most the same number of variables as y.

2 There is a variable $\widetilde{x}_j \in y_j$ such that $[\exists \alpha \widetilde{\varphi}_j(y_j, \alpha)]_x^{\widetilde{x}_j} \in L^*_{\mathcal{A}}$.

(3) Step 2: $\exists x \exists \alpha \widetilde{\varphi}(x, z, \alpha) \rightsquigarrow \text{ equivalent } L_{\mathcal{A}}\text{-formula } \exists \alpha \exists \beta \widetilde{\psi}(z, \alpha, \beta)$. Here $\exists \alpha \widetilde{\varphi}(x, z, \alpha) \text{ is some } L_{\mathcal{A}}^{\times}\text{-formula.}$

 \mathcal{A} applies Step 1 and Step 2 to $\mathcal{L}_{\mathcal{A}}$ -formulas: $\varphi(\mathbf{x}) \rightsquigarrow ... \rightsquigarrow \exists \gamma \psi(\gamma)$ such that

 $\varphi(\mathbf{x})$ is satisfiable in $\langle M; \sigma \rangle$ if and only if $\exists \gamma \psi(\gamma)$ is true in $\langle M; \sigma \rangle$.

• $L_{\mathcal{R}}$ is the set of formulas $\exists \alpha \bigvee_{j \in J} \varphi_j(y_j, \alpha)$ for some finite index set J and formulas $\varphi_j(y, \alpha)$ of the form

$$\boldsymbol{\alpha} \geq 1 \wedge \boldsymbol{y} \geq 0 \wedge \bigwedge_{i \in [1..m_j]} \operatorname{GCD}(f_{i,j}(\boldsymbol{y}, \boldsymbol{\alpha}), g_{i,j}(\boldsymbol{y}, \boldsymbol{\alpha})) = h_{i,j}(\boldsymbol{y}, \boldsymbol{\alpha}),$$

where every gcd-expression takes one of the forms:

• $L_{\mathcal{R}}$ is the set of formulas $\exists \alpha \bigvee_{j \in J} \varphi_j(\mathbf{y}_j, \alpha)$ for some finite index set J and formulas $\varphi_j(\mathbf{y}, \alpha)$ of the form

$$\boldsymbol{\alpha} \geq 1 \wedge \boldsymbol{y} \geq 0 \wedge \bigwedge_{i \in [1..m_j]} \operatorname{GCD}(f_{i,j}(\boldsymbol{y}, \boldsymbol{\alpha}), g_{i,j}(\boldsymbol{y}, \boldsymbol{\alpha})) = h_{i,j}(\boldsymbol{y}, \boldsymbol{\alpha}),$$

where every gcd-expression takes one of the forms:

• GCD $(f(\mathbf{y}), g(\mathbf{y})) = h(\mathbf{y})$ • GCD $(f(\mathbf{y}), g(\mathbf{y})) = a\zeta$ • GCD $(a\zeta, g(\mathbf{y})) = b\eta$ • GCD $(a\zeta, b\eta) = c\theta$,

• $L_{\mathcal{R}}$ is the set of formulas $\exists \alpha \bigvee_{j \in J} \varphi_j(\mathbf{y}_j, \alpha)$ for some finite index set J and formulas $\varphi_j(\mathbf{y}, \alpha)$ of the form

$$\boldsymbol{\alpha} \geq 1 \wedge \boldsymbol{y} \geq 0 \wedge \bigwedge_{i \in [1..m_j]} \operatorname{GCD}(f_{i,j}(\boldsymbol{y}, \boldsymbol{\alpha}), g_{i,j}(\boldsymbol{y}, \boldsymbol{\alpha})) = h_{i,j}(\boldsymbol{y}, \boldsymbol{\alpha}),$$

where every gcd-expression takes one of the forms:

- GCD $(f(\mathbf{y}), g(\mathbf{y})) = h(\mathbf{y})$ • GCD $(f(\mathbf{y}), g(\mathbf{y})) = a\zeta$ • GCD $(a\zeta, g(\mathbf{y})) = b\eta$ • GCD $(a\zeta, b\eta) = c\theta$,
- $L_{\mathcal{R}}^{\mathsf{x}} \subseteq L_{\mathcal{R}}$ comprise formulas $\exists \alpha \bigvee_{j \in J_2} \widetilde{\varphi}_j(\mathbf{x}, \mathbf{z}_j, \alpha)$ for some finite index set J_2 and formulas $\widetilde{\varphi}_j(\mathbf{x}, \mathbf{z}, \alpha)$ of the form

$$\boldsymbol{\alpha} \geq 1 \wedge \boldsymbol{z} \geq 0 \wedge \boldsymbol{x} \geq 0 \wedge \widetilde{\widetilde{\varphi}}_{j}(\boldsymbol{z}, \boldsymbol{\alpha}) \wedge \bigwedge_{i \in [1..\widetilde{m}_{j}]} \mathsf{GCD}(\widetilde{f}_{i,j}(\boldsymbol{z}, \boldsymbol{\alpha}), \widetilde{g}_{i,j}(\boldsymbol{z}) + \boldsymbol{c}_{i,j}\boldsymbol{x}) = \widetilde{h}_{i,j}(\boldsymbol{z}, \boldsymbol{\alpha}),$$

• $L_{\mathcal{R}}$ is the set of formulas $\exists \alpha \bigvee_{j \in J} \varphi_j(\mathbf{y}_j, \alpha)$ for some finite index set J and formulas $\varphi_j(\mathbf{y}, \alpha)$ of the form

$$\boldsymbol{\alpha} \geq 1 \wedge \boldsymbol{y} \geq 0 \wedge \bigwedge_{i \in [1..m_j]} \operatorname{GCD}(f_{i,j}(\boldsymbol{y}, \boldsymbol{\alpha}), g_{i,j}(\boldsymbol{y}, \boldsymbol{\alpha})) = h_{i,j}(\boldsymbol{y}, \boldsymbol{\alpha}),$$

where every gcd-expression takes one of the forms:

- GCD $(f(\mathbf{y}), g(\mathbf{y})) = h(\mathbf{y})$ • GCD $(f(\mathbf{y}), g(\mathbf{y})) = a\zeta$ • GCD $(a\zeta, g(\mathbf{y})) = b\eta$ • GCD $(a\zeta, b\eta) = c\theta$,
- $L_{\mathcal{R}}^{\mathsf{x}} \subseteq L_{\mathcal{R}}$ comprise formulas $\exists \alpha \bigvee_{j \in J_2} \widetilde{\varphi}_j(\mathbf{x}, \mathbf{z}_j, \alpha)$ for some finite index set J_2 and formulas $\widetilde{\varphi}_j(\mathbf{x}, \mathbf{z}, \alpha)$ of the form

$$\boldsymbol{\alpha} \geq 1 \wedge \boldsymbol{z} \geq 0 \wedge \boldsymbol{x} \geq 0 \wedge \widetilde{\widetilde{\varphi}}_{j}(\boldsymbol{z}, \boldsymbol{\alpha}) \wedge \bigwedge_{i \in [1...\widetilde{m}_{j}]} \mathsf{GCD}(\widetilde{f}_{i,j}(\boldsymbol{z}, \boldsymbol{\alpha}), \widetilde{g}_{i,j}(\boldsymbol{z}) + c_{i,j}\boldsymbol{x}) = \widetilde{h}_{i,j}(\boldsymbol{z}, \boldsymbol{\alpha}),$$

• <u>GCD-Lemma</u> at **Step 2** of \mathcal{R} to eliminate x and obtain an $L_{\mathcal{R}}$ -formula.

Every $L_{\mathcal{R}}$ -formula with **only Greek variables** is a $P\exists L_{\sigma}$ -formula for $\sigma = \langle 1, \{a\cdot\}_{a\in\mathbb{Z}_{>0}}, \text{GCD} \rangle$.

Every $L_{\mathcal{R}}$ -formula with only Greek variables is a $P\exists L_{\sigma}$ -formula for $\sigma = \langle 1, \{a\cdot\}_{a\in\mathbb{Z}_{>0}}, \text{GCD} \rangle$.

Theorem

The decision problem for $\exists Th \langle \mathbb{Z}; 1, +, -, \leq, GCD \rangle$ is reducible to the decision problem for $P\exists Th \langle \mathbb{Z}_{>0}; 1, \{a\cdot\}_{a \in \mathbb{Z}_{>0}}, GCD \rangle$, where $a \cdot is a unary functional symbol for multiplication by a positive integer <math>a$.

Every $L_{\mathcal{R}}$ -formula with **only Greek variables** is a $P\exists L_{\sigma}$ -formula for $\sigma = \langle 1, \{a\cdot\}_{a\in\mathbb{Z}_{>0}}, \text{GCD} \rangle$.

Theorem

The decision problem for $\exists Th \langle \mathbb{Z}; 1, +, -, \leq, GCD \rangle$ is reducible to the decision problem for $P\exists Th \langle \mathbb{Z}_{>0}; 1, \{a\cdot\}_{a \in \mathbb{Z}_{>0}}, GCD \rangle$, where $a \cdot is a unary functional symbol for multiplication by a positive integer <math>a$.

Skolem Arithmetic with constants Th(ℤ_{>0}; {a}_{a∈ℤ>0}, ·, =) is decidable [Barth D., Beck M., Dose T., Glaßer C., Michler L., Technau M. "Emptiness Problems for Integer Circuits" 2017].

Every $L_{\mathcal{R}}$ -formula with **only Greek variables** is a $P\exists L_{\sigma}$ -formula for $\sigma = \langle 1, \{a\cdot\}_{a\in\mathbb{Z}_{>0}}, \text{GCD} \rangle$.

Theorem

The decision problem for $\exists Th \langle \mathbb{Z}; 1, +, -, \leq, GCD \rangle$ is reducible to the decision problem for $P\exists Th \langle \mathbb{Z}_{>0}; 1, \{a\cdot\}_{a \in \mathbb{Z}_{>0}}, GCD \rangle$, where $a \cdot is a unary functional symbol for multiplication by a positive integer <math>a$.

- Skolem Arithmetic with constants Th(ℤ>0; {a}_{a∈ℤ>0}, ·, =) is decidable [Barth D., Beck M., Dose T., Glaßer C., Michler L., Technau M. "Emptiness Problems for Integer Circuits" 2017].
- The proof of the BL-Theorem now follows from

$$GCD(x,y) = z \Leftrightarrow z \mid x \land z \mid y \land \forall t(t \mid x \land t \mid y \Rightarrow t \mid z),$$

where
$$x \mid y \rightleftharpoons \exists z(y = z \cdot x)$$
.

 $\mathsf{P}\exists\text{-Definability in } \langle \mathbb{Z}; 1,+,\leq,\perp\rangle$

• Dis-coprimeness $\not\perp$ is P∃-definable?

▲ 西部

B → B

$\mathsf{P}\exists\text{-Definability in } \langle \mathbb{Z}; 1,+,\leq,\bot\rangle$

- Dis-coprimeness $\not\perp$ is P \exists -definable?
- More general decidable $\forall \exists$ -fragment of $\langle \mathbb{Z}; 1, +, -, \leq, | \rangle$?

э

$\mathsf{P}\exists\text{-Definability in } \langle \mathbb{Z}; 1,+,\leq,\bot\rangle$

- Dis-coprimeness ⊥ is P∃-definable?
- More general decidable $\forall \exists$ -fragment of $\langle \mathbb{Z}; 1, +, -, \leq, | \rangle$?

Complexity of $A\mathbf{x} = B \land C\mathbf{x} \ge D \land \bigwedge_{i \in [1..m]} \text{GCD}(f_i(\mathbf{x}), g_i(\mathbf{x})) = d_i$

$\mathsf{P}\exists\text{-Definability in } \langle \mathbb{Z}; 1,+,\leq,\bot\rangle$

- Dis-coprimeness ⊥ is P∃-definable?
- More general decidable $\forall \exists \text{-fragment} \text{ of } \langle \mathbb{Z}; 1, +, -, \leq, | \rangle ?$

Complexity of $A\mathbf{x} = B \land C\mathbf{x} \ge D \land \bigwedge_{i \in [1..m]} \text{GCD}(f_i(\mathbf{x}), g_i(\mathbf{x})) = d_i$

• Polynomial upper bound on small solutions?

P∃-Definability in $\langle \mathbb{Z}; 1, +, \leq, \bot \rangle$

- Dis-coprimeness ⊥ is P∃-definable?
- More general decidable $\forall \exists$ -fragment of $\langle \mathbb{Z}; 1, +, -, \leq, | \rangle$?

Complexity of $A\mathbf{x} = B \land C\mathbf{x} \ge D \land \bigwedge_{i \in [1..m]} \text{GCD}(f_i(\mathbf{x}), g_i(\mathbf{x})) = d_i$

- Polynomial upper bound on small solutions?
- Satisfiability check in polynomial time when size of x is fixed?

P∃-Definability in $\langle \mathbb{Z}; 1, +, \leq, \bot \rangle$

- Dis-coprimeness ⊥ is P∃-definable?
- More general decidable $\forall \exists \text{-fragment} \text{ of } \langle \mathbb{Z}; 1, +, -, \leq, | \rangle ?$

Complexity of $A\mathbf{x} = B \land C\mathbf{x} \ge D \land \bigwedge_{i \in [1..m]} \text{GCD}(f_i(\mathbf{x}), g_i(\mathbf{x})) = d_i$

- Polynomial upper bound on small solutions?
- Satisfiability check in **polynomial time** when size of **x** is fixed?
- $\exists L_{PA}$ -formulas : true and for $\exists L_{PAD}$ -formulas: false.

P∃-Definability in $\langle \mathbb{Z}; 1, +, \leq, \bot \rangle$

- Dis-coprimeness ⊥ is P∃-definable?
- More general decidable $\forall \exists \text{-fragment} \text{ of } \langle \mathbb{Z}; 1, +, -, \leq, | \rangle ?$

Complexity of $A\mathbf{x} = B \land C\mathbf{x} \ge D \land \bigwedge_{i \in [1..m]} \text{GCD}(f_i(\mathbf{x}), g_i(\mathbf{x})) = d_i$

- Polynomial upper bound on small solutions?
- Satisfiability check in polynomial time when size of x is fixed?
- $\exists L_{PA}$ -formulas : true and for $\exists L_{PAD}$ -formulas: false.

Thanks for your attention !