Quantifier Elimination Approach to Existential Linear Arithmetic with GCD

Mikhail R. Starchak
Saint-Petersburg State University
m.starchak@spbu.ru

October 25, 2021

The Diophantine Problem for Addition and Divisibility

Theorem (A.P. Bel'tyukov 1976, L. Lipshitz 1978)
The existential theory of the structure $\langle\mathbb{Z} ; 1,+,-, \leq, \mid\rangle$ is decidable.

The Diophantine Problem for Addition and Divisibility

Theorem (A.P. Bel'tyukov 1976, L. Lipshitz 1978)

The existential theory of the structure $\langle\mathbb{Z} ; 1,+,-, \leq, \mid\rangle$ is decidable.

Divisibility and GCD

We have $\exists \operatorname{Def}\langle\mathbb{Z} ; 1,+,-, \leq, \mid\rangle=\exists \operatorname{Def}\langle\mathbb{Z} ; 1,+,-, \leq, G C D\rangle$

$$
\begin{aligned}
x \mid y & \Leftrightarrow \operatorname{GCD}(x, y)=x \vee \operatorname{GCD}(x, y)=-x \\
\operatorname{GCD}(x, y)=z & \Leftrightarrow 0 \leq z \wedge z|x \wedge z| y \wedge \exists u(x|u \wedge y| u+z) \\
\neg \operatorname{GCD}(x, y)=z & \Leftrightarrow z+1 \leq 0 \vee \neg z|x \vee \neg z| y \vee \exists v(v|x \wedge v| y \wedge z+1 \leq v)
\end{aligned}
$$

The Diophantine Problem for Addition and Divisibility

Theorem (A.P. Bel'tyukov 1976, L. Lipshitz 1978)

The existential theory of the structure $\langle\mathbb{Z} ; 1,+,-, \leq, \mid\rangle$ is decidable.

Divisibility and GCD

We have $\exists \operatorname{Def}\langle\mathbb{Z} ; 1,+,-, \leq, \mid\rangle=\exists \operatorname{Def}\langle\mathbb{Z} ; 1,+,-, \leq, G C D\rangle$

$$
\begin{aligned}
x \mid y & \Leftrightarrow \operatorname{GCD}(x, y)=x \vee \operatorname{GCD}(x, y)=-x \\
\operatorname{GCD}(x, y)=z & \Leftrightarrow 0 \leq z \wedge z|x \wedge z| y \wedge \exists u(x|u \wedge y| u+z) \\
\neg \operatorname{GCD}(x, y)=z & \Leftrightarrow z+1 \leq 0 \vee \neg z|x \vee \neg z| y \vee \exists v(v|x \wedge v| y \wedge z+1 \leq v)
\end{aligned}
$$

- L_{σ} FOL of a signature $\sigma .\langle M ; \sigma\rangle$ structure of a signature σ and domain M.
- $\exists L_{\sigma}$ Existential L_{σ}-formulas: $\exists \boldsymbol{y} \varphi(\boldsymbol{x}, \boldsymbol{y})$ for $\mathrm{QF} L_{\sigma}$-formula $\varphi(\boldsymbol{x}, \boldsymbol{y})$.

The Diophantine Problem for Addition and Divisibility

Theorem (A.P. Bel'tyukov 1976, L. Lipshitz 1978)

The existential theory of the structure $\langle\mathbb{Z} ; 1,+,-, \leq, \mid\rangle$ is decidable.

Divisibility and GCD

We have $\exists \operatorname{Def}\langle\mathbb{Z} ; 1,+,-, \leq, \mid\rangle=\exists \operatorname{Def}\langle\mathbb{Z} ; 1,+,-, \leq, G C D\rangle$

$$
\begin{aligned}
x \mid y & \Leftrightarrow \operatorname{GCD}(x, y)=x \vee \operatorname{GCD}(x, y)=-x \\
\operatorname{GCD}(x, y)=z & \Leftrightarrow 0 \leq z \wedge z|x \wedge z| y \wedge \exists u(x|u \wedge y| u+z) \\
\neg \operatorname{GCD}(x, y)=z & \Leftrightarrow z+1 \leq 0 \vee \neg z|x \vee \neg z| y \vee \exists v(v|x \wedge v| y \wedge z+1 \leq v)
\end{aligned}
$$

- L_{σ} FOL of a signature $\sigma .\langle M ; \sigma\rangle$ structure of a signature σ and domain M.
- $\exists L_{\sigma}$ Existential L_{σ}-formulas: $\exists \boldsymbol{y} \varphi(\boldsymbol{x}, \boldsymbol{y})$ for $\mathrm{QF} L_{\sigma}$-formula $\varphi(\boldsymbol{x}, \boldsymbol{y})$.
- $\operatorname{Def}\langle M ; \sigma\rangle$ the set of all L_{σ}-definable in M.
- $\exists \operatorname{Def}\langle M ; \sigma\rangle$ and $\operatorname{QFDef}\langle M ; \sigma\rangle$ for $\exists L_{\sigma^{-}}$and quantifier-free definable relations, respectively.

Positive existential definability with divisibility

- QF-formula $\varphi(\boldsymbol{x})$ is positive (PQF-formula) if it is constructed from atomic formulas with only logical connectives \wedge and \vee.
- \exists-formula $\exists \boldsymbol{y} \varphi(\boldsymbol{x}, \boldsymbol{y})$ is positive if $\varphi(\boldsymbol{x}, \boldsymbol{y})$ is PQF-formula.

Positive existential definability with divisibility

- QF-formula $\varphi(\boldsymbol{x})$ is positive (PQF-formula) if it is constructed from atomic formulas with only logical connectives \wedge and \vee.
- \exists-formula $\exists \boldsymbol{y} \varphi(\boldsymbol{x}, \boldsymbol{y})$ is positive if $\varphi(\boldsymbol{x}, \boldsymbol{y})$ is PQF-formula.
- $\operatorname{P\exists Def}\langle M ; \sigma\rangle$ the set of all $\mathrm{P} \exists$-defibable in $\langle M ; \sigma\rangle$.
- PQFDef $\langle M ; \sigma\rangle$ positively QF-definable in $\langle M ; \sigma\rangle$.

Positive existential definability with divisibility

- QF-formula $\varphi(\boldsymbol{x})$ is positive (PQF-formula) if it is constructed from atomic formulas with only logical connectives \wedge and \vee.
- \exists-formula $\exists \boldsymbol{y} \varphi(\boldsymbol{x}, \boldsymbol{y})$ is positive if $\varphi(\boldsymbol{x}, \boldsymbol{y})$ is PQF-formula.
- $\mathrm{P} \exists \operatorname{Def}\langle M ; \sigma\rangle$ the set of all $\mathrm{P} \exists$-defibable in $\langle M ; \sigma\rangle$.
- PQFDef $\langle M ; \sigma\rangle$ positively QF-definable in $\langle M ; \sigma\rangle$.

Example

We have $\exists \operatorname{Def}\langle\mathbb{Z} ; 1,+,-, \leq, \mid\rangle=\operatorname{P\exists \operatorname {Def}\langle \mathbb {Z};1,+,-,\leq ,|\rangle \rangle =1.}$
$x \nmid y \Leftrightarrow x=0 \wedge(1 \leq y \vee y \leq-1) \vee \exists z(1 \leq z \wedge(z \leq x-1 \vee z \leq-x-1) \wedge x \mid y+z)$.

Positive existential definability with divisibility

- QF-formula $\varphi(\boldsymbol{x})$ is positive (PQF-formula) if it is constructed from atomic formulas with only logical connectives \wedge and \vee.
- \exists-formula $\exists \boldsymbol{y} \varphi(\boldsymbol{x}, \boldsymbol{y})$ is positive if $\varphi(\boldsymbol{x}, \boldsymbol{y})$ is PQF-formula.
- $\mathrm{P} \exists \operatorname{Def}\langle M ; \sigma\rangle$ the set of all $\mathrm{P} \exists$-defibable in $\langle M ; \sigma\rangle$.
- PQFDef $\langle M ; \sigma\rangle$ positively QF-definable in $\langle M ; \sigma\rangle$.

Example

We have $\exists \operatorname{Def}\langle\mathbb{Z} ; 1,+,-, \leq, \mid\rangle=\operatorname{P} \exists \operatorname{Def}\langle\mathbb{Z} ; 1,+,-, \leq, \mid\rangle$
$x \nmid y \Leftrightarrow x=0 \wedge(1 \leq y \vee y \leq-1) \vee \exists z(1 \leq z \wedge(z \leq x-1 \vee z \leq-x-1) \wedge x \mid y+z)$.

Corollary

$\operatorname{Def}\langle\mathbb{Z} ; 1,+,-, \leq, \mid\rangle \neq \exists \operatorname{Def}\langle\mathbb{Z} ; 1,+,-, \leq, \mid\rangle$, since the elementary theory is undecidable.

Positive existential definability with divisibility

- QF-formula $\varphi(\boldsymbol{x})$ is positive (PQF-formula) if it is constructed from atomic formulas with only logical connectives \wedge and \vee.
- \exists-formula $\exists \boldsymbol{y} \varphi(\boldsymbol{x}, \boldsymbol{y})$ is positive if $\varphi(\boldsymbol{x}, \boldsymbol{y})$ is PQF-formula.
- $\mathrm{P} \exists \operatorname{Def}\langle M ; \sigma\rangle$ the set of all $\mathrm{P} \exists$-defibable in $\langle M ; \sigma\rangle$.
- PQFDef $\langle M ; \sigma\rangle$ positively QF-definable in $\langle M ; \sigma\rangle$.

Example

We have $\exists \operatorname{Def}\langle\mathbb{Z} ; 1,+,-, \leq, \mid\rangle=\operatorname{P\exists \operatorname {Def}\langle \mathbb {Z};1,+,-,\leq ,|\rangle \rangle =1.}$
$x \nmid y \Leftrightarrow x=0 \wedge(1 \leq y \vee y \leq-1) \vee \exists z(1 \leq z \wedge(z \leq x-1 \vee z \leq-x-1) \wedge x \mid y+z)$.

Corollary

$\operatorname{Def}\langle\mathbb{Z} ; 1,+,-, \leq, \mid\rangle \neq \exists \operatorname{Def}\langle\mathbb{Z} ; 1,+,-, \leq, \mid\rangle$, since the elementary theory is undecidable.
By Presburger's quantifier-elimination algorithm:
$\operatorname{P} \exists \operatorname{Def}\langle\mathbb{Z} ; 1,+,-, \leq\rangle=\operatorname{PQFDef}\langle\mathbb{Z} ; 1,+,-, \leq, 2|, 3|, 4| \ldots\rangle=\operatorname{Def}\langle\mathbb{Z} ; 1,+,-, \leq\rangle$.

Positive existential definability with divisibility

- QF-formula $\varphi(\boldsymbol{x})$ is positive (PQF-formula) if it is constructed from atomic formulas with only logical connectives \wedge and \vee.
- \exists-formula $\exists \boldsymbol{y} \varphi(\boldsymbol{x}, \boldsymbol{y})$ is positive if $\varphi(\boldsymbol{x}, \boldsymbol{y})$ is PQF-formula.
- $\mathrm{P} \exists \operatorname{Def}\langle M ; \sigma\rangle$ the set of all $\mathrm{P} \exists$-defibable in $\langle M ; \sigma\rangle$.
- PQFDef $\langle M ; \sigma\rangle$ positively QF-definable in $\langle M ; \sigma\rangle$.

Example

We have $\exists \operatorname{Def}\langle\mathbb{Z} ; 1,+,-, \leq, \mid\rangle=\operatorname{P\exists \operatorname {Def}\langle \mathbb {Z};1,+,-,\leq ,|\rangle \rangle =1.}$
$x \nmid y \Leftrightarrow x=0 \wedge(1 \leq y \vee y \leq-1) \vee \exists z(1 \leq z \wedge(z \leq x-1 \vee z \leq-x-1) \wedge x \mid y+z)$.

Corollary

$\operatorname{Def}\langle\mathbb{Z} ; 1,+,-, \leq, \mid\rangle \neq \exists \operatorname{Def}\langle\mathbb{Z} ; 1,+,-, \leq, \mid\rangle$, since the elementary theory is undecidable.
By Presburger's quantifier-elimination algorithm:
$\operatorname{P} \exists \operatorname{Def}\langle\mathbb{Z} ; 1,+,-, \leq\rangle=\operatorname{PQFDef}\langle\mathbb{Z} ; 1,+,-, \leq, 2|, 3|, 4| \ldots\rangle=\operatorname{Def}\langle\mathbb{Z} ; 1,+,-, \leq\rangle$. How can we describe $\operatorname{P} \exists \operatorname{Def}\langle\mathbb{Z} ; 1,+,-, \leq, \mid\rangle$?

Intermediate structures

- Coprimeness relation: $x \perp y \rightleftharpoons \mathrm{GCD}(x, y)=1$.
- $\operatorname{P\exists } \operatorname{Def}\langle\mathbb{Z} ; 1,+,-, \leq\rangle \subset \operatorname{P} \exists \operatorname{Def}\langle\mathbb{Z} ; 1,+,-, \leq, \perp\rangle \subseteq \operatorname{P\exists } \operatorname{Def}\langle\mathbb{Z} ; 1,+,-, \leq, \mid\rangle$.

Intermediate structures

- Coprimeness relation: $x \perp y \rightleftharpoons \mathrm{GCD}(x, y)=1$.
- $\operatorname{P\exists Def}\langle\mathbb{Z} ; 1,+,-, \leq\rangle \subset \operatorname{P\exists } \operatorname{Def}\langle\mathbb{Z} ; 1,+,-, \leq, \perp\rangle \subseteq \operatorname{P} \exists \operatorname{Def}\langle\mathbb{Z} ; 1,+,-, \leq, \mid\rangle$.

Questions

- Set of non-squares is \exists-definable in $\langle\mathbb{Z} ; 1,+,-, \leq, \mid\rangle$? $[\mathrm{L}$. van den Dries and A. Wilkie 2003]
- Order \leq is \exists-definable in $\langle\mathbb{Z} ; 1,+,-, \mid\rangle$? [M. Bozga and R. Iosif 2005]

Intermediate structures

- Coprimeness relation: $x \perp y \rightleftharpoons \mathrm{GCD}(x, y)=1$.
- $\operatorname{P\exists Def}\langle\mathbb{Z} ; 1,+,-, \leq\rangle \subset \operatorname{P\exists } \operatorname{Def}\langle\mathbb{Z} ; 1,+,-, \leq, \perp\rangle \subseteq \operatorname{P} \exists \operatorname{Def}\langle\mathbb{Z} ; 1,+,-, \leq, \mid\rangle$.

Questions

- Set of non-squares is \exists-definable in $\langle\mathbb{Z} ; 1,+,-, \leq, \mid\rangle$? $[\mathrm{L}$. van den Dries and A. Wilkie 2003]
- Order \leq is \exists-definable in $\langle\mathbb{Z} ; 1,+,-, \mid\rangle$? [M. Bozga and R. Iosif 2005]
- Dis-coprimeness $\not \perp$ is P \exists-definable in $\langle\mathbb{Z} ; 1,+,-, \leq, \perp\rangle$ or in $\langle\mathbb{Z} ; 1,+,-, \perp\rangle$?

Intermediate structures

- Coprimeness relation: $x \perp y \rightleftharpoons \mathrm{GCD}(x, y)=1$.
- $\mathrm{P} \exists \operatorname{Def}\langle\mathbb{Z} ; 1,+,-, \leq\rangle \subset \operatorname{P} \exists \operatorname{Def}\langle\mathbb{Z} ; 1,+,-, \leq, \perp\rangle \subseteq \mathrm{P} \exists \operatorname{Def}\langle\mathbb{Z} ; 1,+,-, \leq, \mid\rangle$.

Questions

- Set of non-squares is \exists-definable in $\langle\mathbb{Z} ; 1,+,-, \leq, \mid\rangle$? $[\mathrm{L}$. van den Dries and A. Wilkie 2003]
- Order \leq is \exists-definable in $\langle\mathbb{Z} ; 1,+,-, \mid\rangle$? [M. Bozga and R. Iosif 2005]
- Dis-coprimeness $\not \perp$ is P \exists-definable in $\langle\mathbb{Z} ; 1,+,-, \leq, \perp\rangle$ or in $\langle\mathbb{Z} ; 1,+,-, \perp\rangle$?

Theorem (D. Richard 1989)

The elementary theory of the structure $\langle\mathbb{Z} ; 1,+, \perp\rangle$ is undecidable.

Intermediate structures

- Coprimeness relation: $x \perp y \rightleftharpoons \mathrm{GCD}(x, y)=1$.
- $\mathrm{P} \exists \operatorname{Def}\langle\mathbb{Z} ; 1,+,-, \leq\rangle \subset \operatorname{P} \exists \operatorname{Def}\langle\mathbb{Z} ; 1,+,-, \leq, \perp\rangle \subseteq \mathrm{P} \exists \operatorname{Def}\langle\mathbb{Z} ; 1,+,-, \leq, \mid\rangle$.

Questions

- Set of non-squares is \exists-definable in $\langle\mathbb{Z} ; 1,+,-, \leq, \mid\rangle$? $[\mathrm{L}$. van den Dries and A. Wilkie 2003]
- Order \leq is \exists-definable in $\langle\mathbb{Z} ; 1,+,-, \mid\rangle$? [M. Bozga and R. Iosif 2005]
- Dis-coprimeness $\not \perp$ is $\mathrm{P} \exists$-definable in $\langle\mathbb{Z} ; 1,+,-, \leq, \perp\rangle$ or in $\langle\mathbb{Z} ; 1,+,-, \perp\rangle$?

Theorem (D. Richard 1989)

The elementary theory of the structure $\langle\mathbb{Z} ; 1,+, \perp\rangle$ is undecidable.
Quantifier elimination to describe $\mathrm{P} \exists$-definable sets in $\langle\mathbb{Z} ; 1,+, \perp\rangle$:

Intermediate structures

- Coprimeness relation: $x \perp y \rightleftharpoons \mathrm{GCD}(x, y)=1$.
- $\mathrm{P} \exists \operatorname{Def}\langle\mathbb{Z} ; 1,+,-, \leq\rangle \subset \operatorname{P} \exists \operatorname{Def}\langle\mathbb{Z} ; 1,+,-, \leq, \perp\rangle \subseteq \mathrm{P} \exists \operatorname{Def}\langle\mathbb{Z} ; 1,+,-, \leq, \mid\rangle$.

Questions

- Set of non-squares is \exists-definable in $\langle\mathbb{Z} ; 1,+,-, \leq, \mid\rangle$? $[\mathrm{L}$. van den Dries and A. Wilkie 2003]
- Order \leq is \exists-definable in $\langle\mathbb{Z} ; 1,+,-, \mid\rangle$? [M. Bozga and R. Iosif 2005]
- Dis-coprimeness $\not \perp$ is $\mathrm{P} \exists$-definable in $\langle\mathbb{Z} ; 1,+,-, \leq, \perp\rangle$ or in $\langle\mathbb{Z} ; 1,+,-, \perp\rangle$?

Theorem (D. Richard 1989)

The elementary theory of the structure $\langle\mathbb{Z} ; 1,+, \perp\rangle$ is undecidable.
Quantifier elimination to describe $\mathrm{P} \exists$-definable sets in $\langle\mathbb{Z} ; 1,+, \perp\rangle$:

- Extend the signature $\langle 1,+, \perp\rangle \rightsquigarrow \sigma$ with some $\mathrm{P} \exists$-definable predicates.

Intermediate structures

- Coprimeness relation: $x \perp y \rightleftharpoons \mathrm{GCD}(x, y)=1$.
- $\operatorname{P\exists Def}\langle\mathbb{Z} ; 1,+,-, \leq\rangle \subset \operatorname{P} \exists \operatorname{Def}\langle\mathbb{Z} ; 1,+,-, \leq, \perp\rangle \subseteq \operatorname{P} \exists \operatorname{Def}\langle\mathbb{Z} ; 1,+,-, \leq, \mid\rangle$.

Questions

- Set of non-squares is \exists-definable in $\langle\mathbb{Z} ; 1,+,-, \leq, \mid\rangle$? $[\mathrm{L}$. van den Dries and A. Wilkie 2003]
- Order \leq is \exists-definable in $\langle\mathbb{Z} ; 1,+,-, \mid\rangle$? [M. Bozga and R. Iosif 2005]
- Dis-coprimeness $\not \perp$ is $\mathrm{P} \exists$-definable in $\langle\mathbb{Z} ; 1,+,-, \leq, \perp\rangle$ or in $\langle\mathbb{Z} ; 1,+,-, \perp\rangle$?

Theorem (D. Richard 1989)

The elementary theory of the structure $\langle\mathbb{Z} ; 1,+, \perp\rangle$ is undecidable.
Quantifier elimination to describe $\mathrm{P} \exists$-definable sets in $\langle\mathbb{Z} ; 1,+, \perp\rangle$:

- Extend the signature $\langle 1,+, \perp\rangle \rightsquigarrow \sigma$ with some $\mathrm{P} \exists$-definable predicates.
- For every $\exists x \varphi(x, y)$, where $\varphi(x, y)$ is PQFL_{σ}-formula, construct an equivalent in $\mathbb{Z} \mathrm{PQF} L_{\sigma}$-formula $\psi(\boldsymbol{y})$.

Pヨ-definability in $\langle\mathbb{Z} ; 1,+, \perp\rangle$

Positive Existential Definitions

- $x=0 \Leftrightarrow x+1 \perp x+1 \wedge 3 \perp x+2$
- $y=-x \Leftrightarrow x+y=0$ and $x=y \Leftrightarrow \exists t(t=-y \wedge x+t=0)$
- $\operatorname{GCD}(x, y)=d \Leftrightarrow \exists u \exists v(x=d u \wedge y=d v \wedge u \perp v)$

Pヨ-definability in $\langle\mathbb{Z} ; 1,+, \perp\rangle$

Positive Existential Definitions

- $x=0 \Leftrightarrow x+1 \perp x+1 \wedge 3 \perp x+2$
- $y=-x \Leftrightarrow x+y=0$ and $x=y \Leftrightarrow \exists t(t=-y \wedge x+t=0)$
- $\operatorname{GCD}(x, y)=d \Leftrightarrow \exists u \exists v(x=d u \wedge y=d v \wedge u \perp v)$
- $x \neq 0 \Leftrightarrow \exists t(x \perp t \wedge x \perp t+4)$ and $x \neq y \Leftrightarrow \exists t(t=-y \wedge x+t \neq 0)$

Pヨ-definability in $\langle\mathbb{Z} ; 1,+, \perp\rangle$

Positive Existential Definitions

- $x=0 \Leftrightarrow x+1 \perp x+1 \wedge 3 \perp x+2$
- $y=-x \Leftrightarrow x+y=0$ and $x=y \Leftrightarrow \exists t(t=-y \wedge x+t=0)$
- $\operatorname{GCD}(x, y)=d \Leftrightarrow \exists u \exists v(x=d u \wedge y=d v \wedge u \perp v)$
- $x \neq 0 \Leftrightarrow \exists t(x \perp t \wedge x \perp t+4)$ and $x \neq y \Leftrightarrow \exists t(t=-y \wedge x+t \neq 0)$

$$
t \equiv 1(\bmod 2) \wedge t \equiv 1(\bmod 3) \wedge \bigwedge_{p \in P_{x} \backslash\{2,3\}} t \equiv 2(\bmod p),
$$ where P_{x} is the set of prime divisors of x.

Pヨ-definability in $\langle\mathbb{Z} ; 1,+, \perp\rangle$

Positive Existential Definitions

- $x=0 \Leftrightarrow x+1 \perp x+1 \wedge 3 \perp x+2$
- $y=-x \Leftrightarrow x+y=0$ and $x=y \Leftrightarrow \exists t(t=-y \wedge x+t=0)$
- $\operatorname{GCD}(x, y)=d \Leftrightarrow \exists u \exists v(x=d u \wedge y=d v \wedge u \perp v)$
- $x \neq 0 \Leftrightarrow \exists t(x \perp t \wedge x \perp t+4)$ and $x \neq y \Leftrightarrow \exists t(t=-y \wedge x+t \neq 0)$

$$
t \equiv 1(\bmod 2) \wedge t \equiv 1(\bmod 3) \wedge \bigwedge_{p \in P_{x} \backslash\{2,3\}} t \equiv 2(\bmod p),
$$ where P_{x} is the set of prime divisors of x.

- $x=y$ is PQF-definable in $\langle\mathbb{Z} ; 1,+,-, \perp\rangle$ and $x \neq y$ is PQF-definable in $\langle\mathbb{Z} ; 1,+,-, \neq 0, \perp\rangle$

Pヨ-definability in $\langle\mathbb{Z} ; 1,+, \perp\rangle$

Positive Existential Definitions

- $x=0 \Leftrightarrow x+1 \perp x+1 \wedge 3 \perp x+2$
- $y=-x \Leftrightarrow x+y=0$ and $x=y \Leftrightarrow \exists t(t=-y \wedge x+t=0)$
- $\operatorname{GCD}(x, y)=d \Leftrightarrow \exists u \exists v(x=d u \wedge y=d v \wedge u \perp v)$
- $x \neq 0 \Leftrightarrow \exists t(x \perp t \wedge x \perp t+4)$ and $x \neq y \Leftrightarrow \exists t(t=-y \wedge x+t \neq 0)$

$$
t \equiv 1(\bmod 2) \wedge t \equiv 1(\bmod 3) \wedge \bigwedge_{p \in P_{x} \backslash\{2,3\}} t \equiv 2(\bmod p)
$$

where P_{x} is the set of prime divisors of x.

- $x=y$ is PQF-definable in $\langle\mathbb{Z} ; 1,+,-, \perp\rangle$ and $x \neq y$ is PQF-definable in $\langle\mathbb{Z} ; 1,+,-, \neq 0, \perp\rangle$
Proposition (PQF-undefinability of dis-equality)
The relation $x \neq 0$ is not PQF-definable in the structure $\langle\mathbb{Z} ; 1,+,-, \perp\rangle$.

Extension of the signature. The first main result.

PQF-undefinability of dis-equality proof.

- Euclidean algorithm: $(f(\boldsymbol{y})+a x, g(\boldsymbol{y})+b x) \rightsquigarrow(\widetilde{f}(\boldsymbol{y}), \tilde{g}(\boldsymbol{y})+c x)$ such that $\operatorname{GCD}(f(\boldsymbol{y})+a x, g(\boldsymbol{y})+b x)=\operatorname{GCD}(\tilde{f}(\boldsymbol{y}), \tilde{g}(\boldsymbol{y})+c x)$.

Extension of the signature. The first main result.

PQF-undefinability of dis-equality proof.

- Euclidean algorithm: $(f(\boldsymbol{y})+a x, g(\boldsymbol{y})+b x) \rightsquigarrow(\widetilde{f}(\boldsymbol{y}), \tilde{g}(\boldsymbol{y})+c x)$ such that $\operatorname{GCD}(f(\boldsymbol{y})+a x, g(\boldsymbol{y})+b x)=\operatorname{GCD}(\tilde{f}(\boldsymbol{y}), \tilde{g}(\boldsymbol{y})+c x)$.
- Suppose $\varphi(x) \rightleftharpoons \bigvee_{j \in J}\left(\bigwedge_{i \in I_{j}} a_{i} \perp b_{i}+c_{i} x\right)$ defines $x \neq 0$.
- $\neg \varphi(0)$ is $\bigwedge_{j \in J}\left(\bigvee_{i \in I_{j}} a_{i} \not \perp b_{i}\right) \rightsquigarrow$ take such $i_{j} \in I_{j}$ that $a_{i j} \not \perp b_{i_{j}}$.

Extension of the signature. The first main result.

PQF-undefinability of dis-equality proof.

- Euclidean algorithm: $(f(\boldsymbol{y})+a x, g(\boldsymbol{y})+b x) \rightsquigarrow(\widetilde{f}(\boldsymbol{y}), \tilde{g}(\boldsymbol{y})+c x)$ such that $\operatorname{GCD}(f(\boldsymbol{y})+a x, g(\boldsymbol{y})+b x)=\operatorname{GCD}(\tilde{f}(\boldsymbol{y}), \tilde{g}(\boldsymbol{y})+c x)$.
- Suppose $\varphi(x) \rightleftharpoons \bigvee_{j \in J}\left(\bigwedge_{i \in I_{j}} a_{i} \perp b_{i}+c_{i} x\right)$ defines $x \neq 0$.
- $\neg \varphi(0)$ is $\bigwedge_{j \in J}\left(\bigvee_{i \in I_{j}} a_{i} \not \perp b_{i}\right) \rightsquigarrow$ take such $i_{j} \in I_{j}$ that $a_{i j} \not \perp b_{i j}$.
- 1. All $a_{i_{j}}=0 \rightsquigarrow$ large x.

Extension of the signature. The first main result.

PQF-undefinability of dis-equality proof.

- Euclidean algorithm: $(f(\boldsymbol{y})+a x, g(\boldsymbol{y})+b x) \rightsquigarrow(\widetilde{f}(\boldsymbol{y}), \tilde{g}(\boldsymbol{y})+c x)$ such that $\operatorname{GCD}(f(\boldsymbol{y})+a x, g(\boldsymbol{y})+b x)=\operatorname{GCD}(\tilde{f}(\boldsymbol{y}), \tilde{g}(\boldsymbol{y})+c x)$.
- Suppose $\varphi(x) \rightleftharpoons \bigvee_{j \in J}\left(\bigwedge_{i \in I_{j}} a_{i} \perp b_{i}+c_{i} x\right)$ defines $x \neq 0$.
- $\neg \varphi(0)$ is $\bigwedge_{j \in J}\left(\bigvee_{i \in I_{j}} a_{i} \not \perp b_{i}\right) \rightsquigarrow$ take such $i_{j} \in I_{j}$ that $a_{i j} \not \perp b_{i_{j}}$.
- 1. All $a_{i_{j}}=0 \rightsquigarrow$ large x. 2. Otherwise for $A=\prod_{j \in J \wedge a_{i_{j}} \neq 0} a_{i_{j}}>0$ we have $\neg \varphi(A)$.

Extension of the signature. The first main result.

PQF-undefinability of dis-equality proof.

- Euclidean algorithm: $(f(\boldsymbol{y})+a x, g(\boldsymbol{y})+b x) \rightsquigarrow(\widetilde{f}(\boldsymbol{y}), \tilde{g}(\boldsymbol{y})+c x)$ such that $\operatorname{GCD}(f(\boldsymbol{y})+a x, g(\boldsymbol{y})+b x)=\operatorname{GCD}(\tilde{f}(\boldsymbol{y}), \tilde{g}(\boldsymbol{y})+c x)$.
- Suppose $\varphi(x) \rightleftharpoons \bigvee_{j \in J}\left(\bigwedge_{i \in I_{j}} a_{i} \perp b_{i}+c_{i} x\right)$ defines $x \neq 0$.
- $\neg \varphi(0)$ is $\bigwedge_{j \in J}\left(\bigvee_{i \in I_{j}} a_{i} \not \perp b_{i}\right) \rightsquigarrow$ take such $i_{j} \in I_{j}$ that $a_{i j} \not \perp b_{i_{j}}$.
- 1. All $a_{i_{j}}=0 \rightsquigarrow$ large x. 2. Otherwise for $A=\prod_{j \in J \wedge a_{i_{j}} \neq 0} a_{i_{j}}>0$ we have $\neg \varphi(A)$.

Proposition

Fix $d \geq 2$. The relation $\operatorname{GCD}(x, y)=d$ is not PQF-definable in $\langle\mathbb{Z} ; 1,+,-, \neq, \perp\rangle$.

Extension of the signature. The first main result.

PQF-undefinability of dis-equality proof.

- Euclidean algorithm: $(f(\boldsymbol{y})+a x, g(\boldsymbol{y})+b x) \rightsquigarrow(\widetilde{f}(\boldsymbol{y}), \tilde{g}(\boldsymbol{y})+c x)$ such that $\operatorname{GCD}(f(\boldsymbol{y})+a x, g(\boldsymbol{y})+b x)=\operatorname{GCD}(\tilde{f}(\boldsymbol{y}), \tilde{g}(\boldsymbol{y})+c x)$.
- Suppose $\varphi(x) \rightleftharpoons \bigvee_{j \in J}\left(\bigwedge_{i \in I_{j}} a_{i} \perp b_{i}+c_{i} x\right)$ defines $x \neq 0$.
- $\neg \varphi(0)$ is $\bigwedge_{j \in J}\left(\bigvee_{i \in I_{j}} a_{i} \not \perp b_{i}\right) \rightsquigarrow$ take such $i_{j} \in I_{j}$ that $a_{i_{j}} \not \perp b_{i_{j}}$.
- 1. All $a_{i_{j}}=0 \rightsquigarrow$ large x. 2. Otherwise for $A=\prod_{j \in J \wedge a_{i_{j}} \neq 0} a_{i_{j}}>0$ we have $\neg \varphi(A)$.

Proposition

Fix $d \geq 2$. The relation $\operatorname{GCD}(x, y)=d$ is not PQF-definable in $\langle\mathbb{Z} ; 1,+,-, \neq, \perp\rangle$.

Theorem

$\operatorname{P\exists Def}\langle\mathbb{Z} ; 1,+, \perp\rangle=\operatorname{PQFDef}\left\langle\mathbb{Z} ; 1,+,-, \neq, \perp, \mathrm{GCD}_{2}, \mathrm{GCD}_{3}, \mathrm{GCD}_{4}, \ldots\right\rangle$.

Extension of the signature. The first main result.

PQF-undefinability of dis-equality proof.

- Euclidean algorithm: $(f(\boldsymbol{y})+a x, g(\boldsymbol{y})+b x) \rightsquigarrow(\widetilde{f}(\boldsymbol{y}), \tilde{g}(\boldsymbol{y})+c x)$ such that $\operatorname{GCD}(f(\boldsymbol{y})+a x, g(\boldsymbol{y})+b x)=\operatorname{GCD}(\tilde{f}(\boldsymbol{y}), \tilde{g}(\boldsymbol{y})+c x)$.
- Suppose $\varphi(x) \rightleftharpoons \bigvee_{j \in J}\left(\bigwedge_{i \in I_{j}} a_{i} \perp b_{i}+c_{i} x\right)$ defines $x \neq 0$.
- $\neg \varphi(0)$ is $\bigwedge_{j \in J}\left(\bigvee_{i \in I_{j}} a_{i} \not \perp b_{i}\right) \rightsquigarrow$ take such $i_{j} \in I_{j}$ that $a_{i j} \not \perp b_{i_{j}}$.
- 1. All $a_{i_{j}}=0 \rightsquigarrow$ large x. 2. Otherwise for $A=\prod_{j \in J \wedge a_{i_{j}} \neq 0} a_{i_{j}}>0$ we have $\neg \varphi(A)$.

Proposition

Fix $d \geq 2$. The relation $\operatorname{GCD}(x, y)=d$ is not PQF-definable in $\langle\mathbb{Z} ; 1,+,-, \neq, \perp\rangle$.

Theorem

$\operatorname{P\exists Def}\langle\mathbb{Z} ; 1,+, \perp\rangle=\operatorname{PQFDef}\left\langle\mathbb{Z} ; 1,+,-, \neq, \perp, \mathrm{GCD}_{2}, \mathrm{GCD}_{3}, \mathrm{GCD}_{4}, \ldots\right\rangle$.
Fix the signature $\sigma=\left\langle 1,+,-, \neq, \perp, \mathrm{GCD}_{2}, \mathrm{GCD}_{3}, \mathrm{GCD}_{4}, \ldots\right\rangle$.
Quantifier elimination algorithm
For every $\mathrm{PQF} L_{\sigma}$-formula $\varphi(x, \boldsymbol{y})$ the algorithm assigns to $\exists x \varphi(x, \boldsymbol{y})$ an equivalent in \mathbb{Z} PQF L_{σ}-formula $\psi(\boldsymbol{y})$.

GCD-Lemma

$\exists x \bigwedge \operatorname{GCD}\left(a_{i}, b_{i}+x\right)=d_{i}$. $i \in[1 . . m]$

Lemma (GCD-Lemma)

For the system (1) with $a_{i}, b_{i}, d_{i} \in \mathbb{Z}, a_{i} \neq 0, d_{i}>0$ for every $i \in[1 . . m]$, we define for every prime p the integer $M_{p}=\max _{i \in[1 . . m]} v_{p}\left(d_{i}\right)$ and the index sets $J_{p}=\left\{i \in[1 . . m]: v_{p}\left(d_{i}\right)=M_{p}\right\}$ and $I_{p}=\left\{i \in J_{p}: v_{p}\left(a_{i}\right)>M_{p}\right\}$. Then (1) has a solution in \mathbb{Z} iff the following conditions simultaneously hold:
(1) $\bigwedge_{i \in[1 . . m]} d_{i} \mid a_{i}$
(2) $\bigwedge_{i, j \in[1 . . m]} \mathrm{GCD}\left(d_{i}, d_{j}\right) \mid b_{i}-b_{j}$
(3) $\bigwedge_{i, j \in[1 . . m]} \operatorname{GCD}\left(a_{i}, d_{j}, b_{i}-b_{j}\right) \mid d_{i}$
(4) For every prime $p \leq m$ and every $I \subseteq I_{p}$ such that $|I|=p$ there are such $i, j \in I$, $i \neq j$ that $v_{p}\left(b_{i}-b_{j}\right)>M_{p}$.

GCD-Lemma

$\exists x \bigwedge \operatorname{GCD}\left(a_{i}, b_{i}+x\right)=d_{i}$. $i \in[1 . . m]$
(1) $\left\{\begin{array}{l}\operatorname{GCD}(6, x)=2 \\ \operatorname{GCD}(6, x)=3\end{array}\right.$

$$
\left\{\begin{array}{l}
\operatorname{GCD}(6, x)=2 \tag{1}\\
\operatorname{GCD}(6, x)=3
\end{array}\right.
$$

Lemma (GCD-Lemma)

For the system (1) with $a_{i}, b_{i}, d_{i} \in \mathbb{Z}, a_{i} \neq 0, d_{i}>0$ for every $i \in[1 . . m]$, we define for every prime p the integer $M_{p}=\max _{i \in[1 . . m]} v_{p}\left(d_{i}\right)$ and the index sets $J_{p}=\left\{i \in[1 . . m]: v_{p}\left(d_{i}\right)=M_{p}\right\}$ and $I_{p}=\left\{i \in J_{p}: v_{p}\left(a_{i}\right)>M_{p}\right\}$. Then (1) has a solution in \mathbb{Z} iff the following conditions simultaneously hold:
(1) $\bigwedge_{i \in[1 . . m]} d_{i} \mid a_{i}$
(2) $\bigwedge_{i, j \in[1 . . m]} \mathrm{GCD}\left(d_{i}, d_{j}\right) \mid b_{i}-b_{j}$
(3) $\wedge_{i, j \in[1 . . m]} \operatorname{GCD}\left(a_{i}, d_{j}, b_{i}-b_{j}\right) \mid d_{i}$
(4) For every prime $p \leq m$ and every $I \subseteq I_{p}$ such that $|I|=p$ there are such $i, j \in I$, $i \neq j$ that $v_{p}\left(b_{i}-b_{j}\right)>M_{p}$.

GCD-Lemma

$\exists x \bigwedge \operatorname{GCD}\left(a_{i}, b_{i}+x\right)=d_{i}$. $i \in[1 . . m]$
(1) $\left\{\begin{array}{l}\operatorname{GCD}(6, x)=2 \\ \operatorname{GCD}(6, x)=3\end{array} \quad\left\{\begin{array}{l}\operatorname{GCD}(6, x)=1 \\ \operatorname{GCD}(2,1+x)=1\end{array}\right.\right.$

Lemma (GCD-Lemma)

For the system (1) with $a_{i}, b_{i}, d_{i} \in \mathbb{Z}, a_{i} \neq 0, d_{i}>0$ for every $i \in[1 . . m]$, we define for every prime p the integer $M_{p}=\max _{i \in[1 . . m]} v_{p}\left(d_{i}\right)$ and the index sets $J_{p}=\left\{i \in[1 . . m]: v_{p}\left(d_{i}\right)=M_{p}\right\}$ and $I_{p}=\left\{i \in J_{p}: v_{p}\left(a_{i}\right)>M_{p}\right\}$. Then (1) has a solution in \mathbb{Z} iff the following conditions simultaneously hold:
(1) $\bigwedge_{i \in[1 . . m]} d_{i} \mid a_{i}$
(2) $\bigwedge_{i, j \in[1 . . m]} \operatorname{GCD}\left(d_{i}, d_{j}\right) \mid b_{i}-b_{j}$
(3) $\bigwedge_{i, j \in[1 . . m]} \operatorname{GCD}\left(a_{i}, d_{j}, b_{i}-b_{j}\right) \mid d_{i}$
(4) For every prime $p \leq m$ and every $I \subseteq I_{p}$ such that $|I|=p$ there are such $i, j \in I$, $i \neq j$ that $v_{p}\left(b_{i}-b_{j}\right)>M_{p}$.

Quantifier elimination algorithm (sketch)

$\exists x\left(\wedge_{i \in 1 . . . m]} \operatorname{GCD}\left(f_{i}(\boldsymbol{y}), g_{i}(\boldsymbol{y})+c_{i} x\right)=d_{i} \wedge \wedge_{i \in[m+1 . . \mid 1]} f_{i}(\boldsymbol{y}) \neq c_{i} x\right)$

Quantifier elimination algorithm (sketch)

$$
\begin{aligned}
& \exists x\left(\bigwedge_{i \in[1 . . m]} \operatorname{GCD}\left(f_{i}(\boldsymbol{y}), g_{i}(\boldsymbol{y})+c_{i} x\right)=d_{i} \wedge \wedge_{i \in[m+1.1]} f_{i}(\boldsymbol{y}) \neq c_{i} x\right) \\
& \left.C=\underset{i=1.1 / I}{ } \operatorname{Lcm}_{i}\right) \rightsquigarrow
\end{aligned}
$$

Quantifier elimination algorithm (sketch)

$$
\begin{aligned}
& \exists x\left(\bigwedge_{i \in[1 . . m]} \operatorname{GCD}\left(f_{i}(\boldsymbol{y}), g_{i}(\boldsymbol{y})+c_{i} x\right)=d_{i} \wedge \bigwedge_{i \in[m+1 . . \mid]} f_{i}(\boldsymbol{y}) \neq c_{i} x\right) \\
& C=\underset{i=1 . . I}{ } \operatorname{LMM}\left(c_{i}\right) \rightsquigarrow \text { multiply by } \frac{c}{c_{i}} \rightsquigarrow
\end{aligned}
$$

Quantifier elimination algorithm (sketch)

$\exists x\left(\wedge_{i \in[1 . . . m]} \operatorname{GCD}\left(f_{i}(\boldsymbol{y}), g_{i}(\boldsymbol{y})+c_{i} x\right)=d_{i} \wedge \wedge_{i \in[m+1 . .1]} f_{i}(\boldsymbol{y}) \neq c_{i} x\right)$
$C=\underset{i=1 . . l}{\mathrm{LCM}}\left(c_{i}\right) \rightsquigarrow$ multiply by $\frac{C}{c_{i}} \rightsquigarrow$ replace $C x$ by \widetilde{x} and adjoin $\operatorname{GCD}(C, \widetilde{x})=C$

Quantifier elimination algorithm (sketch)

Quantifier elimination algorithm (sketch)

$\exists x \underbrace{\left(\bigwedge_{i 11 . m]} \operatorname{GCD}\left(f(\boldsymbol{y}), g_{i}(\boldsymbol{y})+x\right)=d_{i} \wedge \bigwedge_{i \in[m+1 . . \mid} f_{i}(\boldsymbol{y}) \neq x\right)}_{\varphi(x, y)}$
Case 1. For some $i \in[1 . . m]$ we have $f_{i}(\boldsymbol{y})=0$.

Quantifier elimination algorithm (sketch)

$$
\exists x \underbrace{\left(\bigwedge_{i \in[1 . . m]} \operatorname{GCD}\left(f_{i}(\boldsymbol{y}), g_{i}(\boldsymbol{y})+x\right)=d_{i} \wedge \bigwedge_{i \in[m+1 . . /]} f_{i}(\boldsymbol{y}) \neq x\right)}_{\varphi(x, y)}
$$

Case 1. For some $i \in[1 . . m]$ we have $f_{i}(\boldsymbol{y})=0$.

$$
\rightsquigarrow \bigvee_{i \in[1 \ldots m]}\left(f_{i}(\boldsymbol{y})=0 \wedge \underset{s \in\{-1,1\}}{\bigvee} \varphi\left(s \cdot d_{i}-g_{i}(\boldsymbol{y}), \boldsymbol{y}\right)\right) .
$$

Quantifier elimination algorithm (sketch)

$$
\exists x \underbrace{\left(\bigwedge_{i \in[1 . . m]} \operatorname{GCD}\left(f_{i}(\boldsymbol{y}), g_{i}(\boldsymbol{y})+x\right)=d_{i} \wedge \bigwedge_{i \in[m+1 . . /]} f_{i}(\boldsymbol{y}) \neq x\right)}_{\varphi(x, y)}
$$

Case 1. For some $i \in[1 . . m]$ we have $f_{i}(\boldsymbol{y})=0$.

$$
\rightsquigarrow \bigvee_{i \in[1 \ldots m]}\left(f_{i}(\boldsymbol{y})=0 \wedge \bigvee_{s \in\{-1,1\}} \varphi\left(s \cdot d_{i}-g_{i}(\boldsymbol{y}), \boldsymbol{y}\right)\right) .
$$

Case 2. For all $i \in[1 . . m]$ we have $f_{i}(\boldsymbol{y}) \neq 0$.

Quantifier elimination algorithm (sketch)

$$
\exists x \underbrace{\left(\bigwedge_{i \in[1 . . m]} \operatorname{GCD}\left(f_{i}(\boldsymbol{y}), g_{i}(\boldsymbol{y})+x\right)=d_{i} \wedge \bigwedge_{i \in[m+1 . . /]} f_{i}(\boldsymbol{y}) \neq x\right)}_{\varphi(x, y)}
$$

Case 1. For some $i \in[1 . . m]$ we have $f_{i}(\boldsymbol{y})=0$.

$$
\rightsquigarrow \bigvee_{i \in[1 \ldots m]}\left(f_{i}(\boldsymbol{y})=0 \wedge \underset{s \in\{-1,1\}}{\bigvee} \varphi\left(s \cdot d_{i}-g_{i}(\boldsymbol{y}), \boldsymbol{y}\right)\right) .
$$

Case 2. For all $i \in[1 . . m]$ we have $f_{i}(\boldsymbol{y}) \neq 0$. \rightsquigarrow apply GCD-Lemma: $\bigwedge_{i \in[1 . . m]} f_{i}(\boldsymbol{y}) \neq 0 \wedge \underline{\psi_{G C D}(\boldsymbol{y})}$.

Quantifier elimination algorithm (sketch)

$$
\exists x \underbrace{\left(\bigwedge_{i \in[1 . . m]} \operatorname{GCD}\left(f_{i}(\boldsymbol{y}), g_{i}(\boldsymbol{y})+x\right)=d_{i} \wedge \bigwedge_{i \in[m+1 . .!]} f_{i}(\boldsymbol{y}) \neq x\right)}_{\varphi(x, \boldsymbol{y})}
$$

Case 1. For some $i \in[1 . . m]$ we have $f_{i}(\boldsymbol{y})=0$.

$$
\rightsquigarrow \bigvee_{i \in[1 . . m]}\left(f_{i}(\boldsymbol{y})=0 \wedge \bigvee_{s \in\{-1,1\}} \varphi\left(s \cdot d_{i}-g_{i}(\boldsymbol{y}), \boldsymbol{y}\right)\right) .
$$

Case 2. For all $i \in[1 . . m]$ we have $f_{i}(\boldsymbol{y}) \neq 0$.
\rightsquigarrow apply GCD-Lemma: $\bigwedge_{i \in[1 . . m]} f_{i}(\boldsymbol{y}) \neq 0 \wedge \underline{\psi_{G C D}(\boldsymbol{y})}$.
Formula $\psi_{G C D}(\boldsymbol{y})$ is a conjunction of conditions $1-4$ of GCD-Lemma.

Quantifier elimination algorithm (sketch)

$$
\exists x \underbrace{\left(\bigwedge_{i \in[1 . . m]} \operatorname{GCD}\left(f_{i}(\boldsymbol{y}), g_{i}(\boldsymbol{y})+x\right)=d_{i} \wedge \bigwedge_{i \in[m+1 . .!]} f_{i}(\boldsymbol{y}) \neq x\right)}_{\varphi(x, \boldsymbol{y})}
$$

Case 1. For some $i \in[1 . . m]$ we have $f_{i}(\boldsymbol{y})=0$.

$$
\rightsquigarrow \bigvee_{i \in[1 . . m]}\left(f_{i}(\boldsymbol{y})=0 \wedge \underset{s \in\{-1,1\}}{\bigvee} \varphi\left(s \cdot d_{i}-g_{i}(\boldsymbol{y}), \boldsymbol{y}\right)\right) .
$$

Case 2. For all $i \in[1 . . m]$ we have $f_{i}(\boldsymbol{y}) \neq 0$.

$$
\rightsquigarrow \text { apply GCD-Lemma: } \bigwedge_{i \in[1 . . m]} f_{i}(\boldsymbol{y}) \neq 0 \wedge \underline{\psi_{G C D}(\boldsymbol{y})} .
$$

Formula $\psi_{G C D}(\boldsymbol{y})$ is a conjunction of conditions $1-4$ of GCD-Lemma.
Consider condition 3:
For every $i, j \in[1 . . m]$ we have $\underline{\operatorname{GCD}\left(\operatorname{GCD}\left(f_{i}(\boldsymbol{y}), d_{j}\right), g_{i}(\boldsymbol{y})-g_{j}(\boldsymbol{y})\right) \mid d_{i}}$

Quantifier elimination algorithm (sketch)

$$
\exists x \underbrace{\left(\bigwedge_{i \in[1 . . m]} \operatorname{GCD}\left(f_{i}(\boldsymbol{y}), g_{i}(\boldsymbol{y})+x\right)=d_{i} \wedge \bigwedge_{i \in[m+1 . .1]} f_{i}(\boldsymbol{y}) \neq x\right)}_{\varphi(x, \boldsymbol{y})}
$$

Case 1. For some $i \in[1 . . m]$ we have $f_{i}(\boldsymbol{y})=0$.

$$
\rightsquigarrow \bigvee_{i \in[1 . . m]}\left(f_{i}(\boldsymbol{y})=0 \wedge \underset{s \in\{-1,1\}}{\bigvee} \varphi\left(s \cdot d_{i}-g_{i}(\boldsymbol{y}), \boldsymbol{y}\right)\right) .
$$

Case 2. For all $i \in[1 . . m]$ we have $f_{i}(\boldsymbol{y}) \neq 0$.

$$
\rightsquigarrow \text { apply GCD-Lemma: } \bigwedge_{i \in[1 . . m]} f_{i}(\boldsymbol{y}) \neq 0 \wedge \underline{\psi_{G C D}(\boldsymbol{y})} .
$$

Formula $\psi_{G C D}(\boldsymbol{y})$ is a conjunction of conditions $1-4$ of GCD-Lemma.
Consider condition 3:
For every $i, j \in[1 . . m]$ we have $\underline{\operatorname{GCD}\left(\operatorname{GCD}\left(f_{i}(\boldsymbol{y}), d_{j}\right), g_{i}(\boldsymbol{y})-g_{j}(\boldsymbol{y})\right) \mid d_{i}}$

$$
\rightsquigarrow \bigvee_{a \mid d_{j}}\left(\operatorname{GCD}\left(f_{i}(\boldsymbol{y}), d_{j}\right)=a\right.
$$

Quantifier elimination algorithm (sketch)

$$
\exists x \underbrace{\left(\bigwedge_{i \in[1 . . m]} \operatorname{GCD}\left(f_{i}(\boldsymbol{y}), g_{i}(\boldsymbol{y})+x\right)=d_{i} \wedge \bigwedge_{i \in[m+1 . .!]} f_{i}(\boldsymbol{y}) \neq x\right)}_{\varphi(x, \boldsymbol{y})}
$$

Case 1. For some $i \in[1 . . m]$ we have $f_{i}(\boldsymbol{y})=0$.

$$
\rightsquigarrow \bigvee_{i \in[1 . . m]}\left(f_{i}(\boldsymbol{y})=0 \wedge \underset{s \in\{-1,1\}}{\bigvee} \varphi\left(s \cdot d_{i}-g_{i}(\boldsymbol{y}), \boldsymbol{y}\right)\right) .
$$

Case 2. For all $i \in[1 . . m]$ we have $f_{i}(\boldsymbol{y}) \neq 0$.

$$
\rightsquigarrow \text { apply GCD-Lemma: } \bigwedge_{i \in[1 . . m]} f_{i}(\boldsymbol{y}) \neq 0 \wedge \underline{\psi_{G C D}(\boldsymbol{y})} .
$$

Formula $\psi_{G C D}(\boldsymbol{y})$ is a conjunction of conditions $1-4$ of GCD-Lemma.
Consider condition 3:
For every $i, j \in[1 . . m]$ we have $\underline{\operatorname{GCD}\left(\operatorname{GCD}\left(f_{i}(\boldsymbol{y}), d_{j}\right), g_{i}(\boldsymbol{y})-g_{j}(\boldsymbol{y})\right) \mid d_{i}}$

$$
\rightsquigarrow \bigvee_{a \mid d_{j}}\left(\operatorname{GCD}\left(f_{i}(\boldsymbol{y}), d_{j}\right)=a \wedge \bigvee_{d \mid d_{i}} \operatorname{GCD}\left(a, g_{i}(\boldsymbol{y})-g_{j}(\boldsymbol{y})\right)=d\right) .
$$

Corollaries

> Theorem
> $\operatorname{P\exists Def}\langle\mathbb{Z} ; 1,+, \perp\rangle=\operatorname{PQFDef}\left\langle\mathbb{Z} ; 1,+,-, \neq, \perp, \mathrm{GCD}_{2}, \mathrm{GCD}_{3}, \mathrm{GCD}_{4}, \ldots\right\rangle$.

Corollaries

Theorem
 $\mathrm{P} \exists \operatorname{Def}\langle\mathbb{Z} ; 1,+, \perp\rangle=\operatorname{PQFDef}\left\langle\mathbb{Z} ; 1,+,-, \neq, \perp, \mathrm{GCD}_{2}, \mathrm{GCD}_{3}, \mathrm{GCD}_{4}, \ldots\right\rangle$.

Corollary 1. Dis-coprimeness $\not \perp$ is not $\mathrm{P} \exists$-definable in $\langle\mathbb{Z} ; 1,+,-, \perp\rangle$.

Corollaries

Theorem

Corollary 1. Dis-coprimeness $\not \perp$ is not $\mathrm{P} \exists$-definable in $\langle\mathbb{Z} ; 1,+,-, \perp\rangle$. Proof

- Assume $\not \perp$ is $\mathrm{P} \exists$-definable.
- $\neg \operatorname{GCD}(x, y)=d \Leftrightarrow d \nmid x \vee d \nmid y \vee \exists u \exists v(x=d u \wedge y=d v \wedge u \not 又 v)$.

Corollaries

Theorem

Corollary 1. Dis-coprimeness $\not \perp$ is not $\mathrm{P} \exists$-definable in $\langle\mathbb{Z} ; 1,+,-, \perp\rangle$. Proof

- Assume $\not \perp$ is $\mathrm{P} \exists$-definable.
- $\neg \operatorname{GCD}(x, y)=d \Leftrightarrow d \nmid x \vee d \nmid y \vee \exists u \exists v(x=d u \wedge y=d v \wedge u \not 又 v)$.
- $d \nmid x \Leftrightarrow \underset{k=1 . . d-1}{ } d \mid x+k \rightsquigarrow$ similar to PA case, we can eliminate all the quantifiers

Corollaries

Theorem

$\operatorname{P\exists } \operatorname{Def}\langle\mathbb{Z} ; 1,+, \perp\rangle=\operatorname{PQFDef}\left\langle\mathbb{Z} ; 1,+,-, \neq, \perp, \mathrm{GCD}_{2}, \mathrm{GCD}_{3}, \mathrm{GCD}_{4}, \ldots\right\rangle$.
Corollary 1. Dis-coprimeness $\not \perp$ is not $\mathrm{P} \exists$-definable in $\langle\mathbb{Z} ; 1,+,-, \perp\rangle$. Proof

- Assume $\not \perp$ is $\mathrm{P} \exists$-definable.
- $\neg \mathrm{GCD}(x, y)=d \Leftrightarrow d \nmid x \vee d \nmid y \vee \exists u \exists v(x=d u \wedge y=d v \wedge u \not 又 v)$.
- $d \nmid x \Leftrightarrow \bigvee d \mid x+k \rightsquigarrow$ similar to PA case, we can eliminate all $k=1 . . d-1$
the quantifiers and $\underline{\operatorname{Th}\langle\mathbb{Z} ; 1,+, \perp\rangle}$ is decidable.

Corollaries

Theorem

$\operatorname{P\exists } \operatorname{Def}\langle\mathbb{Z} ; 1,+, \perp\rangle=\operatorname{PQFDef}\left\langle\mathbb{Z} ; 1,+,-, \neq, \perp, \mathrm{GCD}_{2}, \mathrm{GCD}_{3}, \mathrm{GCD}_{4}, \ldots\right\rangle$.

Corollary 1. Dis-coprimeness $\not \perp$ is not $\mathrm{P} \exists$-definable in $\langle\mathbb{Z} ; 1,+,-, \perp\rangle$. Proof

- Assume $\not \perp$ is $\mathrm{P} \exists$-definable.
- $\neg \mathrm{GCD}(x, y)=d \Leftrightarrow d \nmid x \vee d \nmid y \vee \exists u \exists v(x=d u \wedge y=d v \wedge u \not \perp v)$.
- $d \nmid x \Leftrightarrow \bigvee d \mid x+k \rightsquigarrow$ similar to PA case, we can eliminate all $k=1 . . d-1$
the quantifiers and $\operatorname{Th}\langle\mathbb{Z} ; 1,+, \perp\rangle$ is decidable.
Corollary 2. The order relation \leq is not $\mathrm{P} \exists$-definable in $\langle\mathbb{Z} ; 1,+,-, \perp\rangle$. (consider $x \geq 0$).

Corollaries

Theorem

$\operatorname{P\exists } \exists \operatorname{Def}\langle\mathbb{Z} ; 1,+, \perp\rangle=\operatorname{PQFDef}\left\langle\mathbb{Z} ; 1,+,-, \neq, \perp, \mathrm{GCD}_{2}, \mathrm{GCD}_{3}, \mathrm{GCD}_{4}, \ldots\right\rangle$.

Corollary 1. Dis-coprimeness $\not \perp$ is not $\mathrm{P} \exists$-definable in $\langle\mathbb{Z} ; 1,+,-, \perp\rangle$. Proof

- Assume $\not \perp$ is $\mathrm{P} \exists$-definable.
- $\neg \mathrm{GCD}(x, y)=d \Leftrightarrow d \nmid x \vee d \nmid y \vee \exists u \exists v(x=d u \wedge y=d v \wedge u \not 又 v)$.
- $d \nmid x \Leftrightarrow \bigvee d \mid x+k \rightsquigarrow$ similar to PA case, we can eliminate all $k=1 . . d-1$
the quantifiers and $\operatorname{Th}\langle\mathbb{Z} ; 1,+, \perp\rangle$ is decidable.
Corollary 2. The order relation \leq is not $\mathrm{P} \exists$-definable in $\langle\mathbb{Z} ; 1,+,-, \perp\rangle$. (consider $x \geq 0$).
Consider $\langle\mathbb{N} ; S, \perp\rangle$, where S is the successor function $x \mapsto x+1$.
- $\operatorname{Th}\langle\mathbb{N} ; S, \perp\rangle$ is undecidable. [A.R. Woods 1981, D. Richard 1982]

Corollaries

Theorem

$\operatorname{P\exists } \exists \operatorname{Def}\langle\mathbb{Z} ; 1,+, \perp\rangle=\operatorname{PQFDef}\left\langle\mathbb{Z} ; 1,+,-, \neq, \perp, \mathrm{GCD}_{2}, \mathrm{GCD}_{3}, \mathrm{GCD}_{4}, \ldots\right\rangle$.

Corollary 1. Dis-coprimeness $\not \perp$ is not $\mathrm{P} \exists$-definable in $\langle\mathbb{Z} ; 1,+,-, \perp\rangle$. Proof

- Assume $\not \perp$ is $\mathrm{P} \exists$-definable.
- $\neg \mathrm{GCD}(x, y)=d \Leftrightarrow d \nmid x \vee d \nmid y \vee \exists u \exists v(x=d u \wedge y=d v \wedge u \not 又 v)$.
- $d \nmid x \Leftrightarrow \bigvee d \mid x+k \rightsquigarrow$ similar to PA case, we can eliminate all $k=1 . . d-1$
the quantifiers and $\operatorname{Th}\langle\mathbb{Z} ; 1,+, \perp\rangle$ is decidable.
Corollary 2. The order relation \leq is not $\mathrm{P} \exists$-definable in $\langle\mathbb{Z} ; 1,+,-, \perp\rangle$. (consider $x \geq 0$).
Consider $\langle\mathbb{N} ; S, \perp\rangle$, where S is the successor function $x \mapsto x+1$.
- $\operatorname{Th}\langle\mathbb{N} ; S, \perp\rangle$ is undecidable. [A.R. Woods 1981, D. Richard 1982]
- $x \neq 0 \Leftrightarrow \exists y(x \perp S S y)$ is not $\mathrm{P} \exists$-definable in $\langle\mathbb{N} ; S, \perp\rangle$.

Corollaries

Theorem

$\operatorname{P\exists } \exists \operatorname{Def}\langle\mathbb{Z} ; 1,+, \perp\rangle=\operatorname{PQFDef}\left\langle\mathbb{Z} ; 1,+,-, \neq, \perp, \mathrm{GCD}_{2}, \mathrm{GCD}_{3}, \mathrm{GCD}_{4}, \ldots\right\rangle$.

Corollary 1. Dis-coprimeness $\not \perp$ is not $\mathrm{P} \exists$-definable in $\langle\mathbb{Z} ; 1,+,-, \perp\rangle$. Proof

- Assume $\not \perp$ is $\mathrm{P} \exists$-definable.
- $\neg \operatorname{GCD}(x, y)=d \Leftrightarrow d \nmid x \vee d \nmid y \vee \exists u \exists v(x=d u \wedge y=d v \wedge u \not \perp v)$.
- $d \nmid x \Leftrightarrow \bigvee d \mid x+k \rightsquigarrow$ similar to PA case, we can eliminate all $k=1 . . d-1$
the quantifiers and $\operatorname{Th}\langle\mathbb{Z} ; 1,+, \perp\rangle$ is decidable.
Corollary 2. The order relation \leq is not $\mathrm{P} \exists$-definable in $\langle\mathbb{Z} ; 1,+,-, \perp\rangle$. (consider $x \geq 0$).
Consider $\langle\mathbb{N} ; S, \perp\rangle$, where S is the successor function $x \mapsto x+1$.
- $\operatorname{Th}\langle\mathbb{N} ; S, \perp\rangle$ is undecidable. [A.R. Woods 1981, D. Richard 1982]
- $x \neq 0 \Leftrightarrow \exists y(x \perp S S y)$ is not $\mathrm{P} \exists$-definable in $\langle\mathbb{N} ; S, \perp\rangle$.

Theorem $\operatorname{P} \exists \operatorname{Def}\langle\mathbb{N} ; S, \perp\rangle=\operatorname{PQFDef}\langle\mathbb{N} ; S, \neq 0, \perp\rangle_{\text {. }}$

Decidable $\forall \exists$-fragment of $L_{P A D}$-Theory of \mathbb{Z}

We know: $\forall \exists$-Theory of the structure $\langle\mathbb{Z} ; 1,+,-, \leq, \mid\rangle$ is undecidable.

Decidable $\forall \exists$-fragment of $L_{P A D}$-Theory of \mathbb{Z}

We know: $\forall \exists$-Theory of the structure $\langle\mathbb{Z} ; 1,+,-, \leq, \mid\rangle$ is undecidable. (DPRM-theorem + universal formula:

$$
\left.y=x^{2} \Leftrightarrow x|y \wedge x+1| x+y \wedge \forall z(x|z \wedge x+1| x+z \Rightarrow x+y \mid x+z)\right)
$$

Decidable $\forall \exists$-fragment of $L_{P A D}$-Theory of \mathbb{Z}

We know: $\forall \exists$-Theory of the structure $\langle\mathbb{Z} ; 1,+,-, \leq, \mid\rangle$ is undecidable. (DPRM-theorem + universal formula:
$\left.y=x^{2} \Leftrightarrow x|y \wedge x+1| x+y \wedge \forall z(x|z \wedge x+1| x+z \Rightarrow x+y \mid x+z)\right)$

Decidable Fragments

Here $\underline{\varphi_{i}(\boldsymbol{x})}$ will be some QF $L_{P A D}$-formulas

Decidable $\forall \exists$-fragment of $L_{P A D}$-Theory of \mathbb{Z}

We know: $\forall \exists$-Theory of the structure $\langle\mathbb{Z} ; 1,+,-, \leq, \mid\rangle$ is undecidable. (DPRM-theorem + universal formula:
$\left.y=x^{2} \Leftrightarrow x|y \wedge x+1| x+y \wedge \forall z(x|z \wedge x+1| x+z \Rightarrow x+y \mid x+z)\right)$

Decidable Fragments

Here $\underline{\varphi_{i}(\boldsymbol{x})}$ will be some QF $L_{P A D}$-formulas

- By G.A. Pérez and R. Raha (2020).

$$
\left.\forall x \exists y \bigvee_{i \in I j \in J_{i}}\left(f_{j}(x) \mid g_{j}(x, y) \wedge f_{j}(x) \geq 0\right)\right) \wedge \underline{\varphi_{i}(x)} \wedge x \geq 0 \wedge y \geq 0
$$

Decidable $\forall \exists$-fragment of $L_{P A D}$-Theory of \mathbb{Z}

We know: $\forall \exists$-Theory of the structure $\langle\mathbb{Z} ; 1,+,-, \leq, \mid\rangle$ is undecidable. (DPRM-theorem + universal formula:
$\left.y=x^{2} \Leftrightarrow x|y \wedge x+1| x+y \wedge \forall z(x|z \wedge x+1| x+z \Rightarrow x+y \mid x+z)\right)$

Decidable Fragments

Here $\underline{\varphi_{i}(\boldsymbol{x})}$ will be some QF $L_{P A D}$-formulas

- By G.A. Pérez and R. Raha (2020).

$$
\left.\forall x \exists y \bigvee_{i \in I j \in J_{i}}\left(f_{j}(x) \mid g_{j}(x, y) \wedge f_{j}(x) \geq 0\right)\right) \wedge \underline{\varphi_{i}(x)} \wedge x \geq 0 \wedge y \geq 0
$$

- Our result.

$$
\forall x \exists y \bigvee_{i \in l j \in J_{i}}\left(\operatorname{GCD}\left(f_{j}(x, y), g_{j}(x, y)\right)=d_{j}\right) \wedge \underline{\varphi_{i}(x)}
$$

Decidable $\forall \exists$-fragment of $L_{P A D}$-Theory of \mathbb{Z}

We know: $\forall \exists$-Theory of the structure $\langle\mathbb{Z} ; 1,+,-, \leq, \mid\rangle$ is undecidable. (DPRM-theorem + universal formula:
$\left.y=x^{2} \Leftrightarrow x|y \wedge x+1| x+y \wedge \forall z(x|z \wedge x+1| x+z \Rightarrow x+y \mid x+z)\right)$

Decidable Fragments

Here $\underline{\varphi_{i}(\boldsymbol{x})}$ will be some QF $L_{P A D}$-formulas

- By G.A. Pérez and R. Raha (2020). Divisibility.

$$
\forall x \exists y \bigvee_{i \in I j \in J_{i}}\left(\underline{\operatorname{GCD}\left(f_{j}(x), g_{j}(x, y)\right)=f_{j}(x)} \wedge f_{j}(x) \geq 0\right) \wedge \underline{\varphi_{i}(x)} \wedge x \geq 0 \wedge y \geq 0
$$

- Our result. Coprimeness.

$$
\forall x \exists y \bigvee_{i \in l_{j \in J_{i}}}\left(\underline{\operatorname{GCD}\left(f_{j}(x, y), g_{j}(x, y)\right)=d_{j}}\right) \wedge \underline{\varphi_{i}(x)}
$$

Decidable $\forall \exists$-fragment of $L_{P A D}$-Theory of \mathbb{Z}

We know: $\forall \exists$-Theory of the structure $\langle\mathbb{Z} ; 1,+,-, \leq, \mid\rangle$ is undecidable. (DPRM-theorem + universal formula:
$\left.y=x^{2} \Leftrightarrow x|y \wedge x+1| x+y \wedge \forall z(x|z \wedge x+1| x+z \Rightarrow x+y \mid x+z)\right)$

Decidable Fragments

Here $\underline{\varphi_{i}(\boldsymbol{x})}$ will be some QF $L_{P A D}$-formulas

- By G.A. Pérez and R. Raha (2020). Divisibility.

$$
\forall x \exists y \bigvee_{i \in I j \in J_{i}}\left(\underline{\operatorname{GCD}\left(f_{j}(x), g_{j}(x, y)\right)=f_{j}(x)} \wedge f_{j}(x) \geq 0\right) \wedge \underline{\varphi_{i}(x)} \wedge x \geq 0 \wedge y \geq 0
$$

- Our result. Coprimeness.

$$
\forall x \exists y \bigvee_{i \in l_{j \in J_{i}}}\left(\underline{\operatorname{GCD}\left(f_{j}(x, y), g_{j}(x, y)\right)=d_{j}}\right) \wedge \underline{\varphi_{i}(x)}
$$

Proof sketch: isolate $y_{i} \in \boldsymbol{y}$

Decidable $\forall \exists$-fragment of $L_{P A D}$-Theory of \mathbb{Z}

We know: $\forall \exists$-Theory of the structure $\langle\mathbb{Z} ; 1,+,-, \leq, \mid\rangle$ is undecidable. (DPRM-theorem + universal formula:
$\left.y=x^{2} \Leftrightarrow x|y \wedge x+1| x+y \wedge \forall z(x|z \wedge x+1| x+z \Rightarrow x+y \mid x+z)\right)$

Decidable Fragments

Here $\underline{\varphi_{i}(\boldsymbol{x})}$ will be some QF $L_{P A D}$-formulas

- By G.A. Pérez and R. Raha (2020). Divisibility.

$$
\forall x \exists y \bigvee_{i \in I j \in J_{i}}\left(\underline{\operatorname{GCD}\left(f_{j}(x), g_{j}(x, y)\right)=f_{j}(x)} \wedge f_{j}(x) \geq 0\right) \wedge \underline{\varphi_{i}(x)} \wedge x \geq 0 \wedge y \geq 0
$$

- Our result. Coprimeness.

$$
\forall x \exists y \bigvee_{i \in I j \in J_{i}}\left(\underline{\operatorname{GCD}\left(f_{j}(x, y), g_{j}(x, y)\right)=d_{j}}\right) \wedge \underline{\varphi_{i}(x)}
$$

Proof sketch: isolate $y_{i} \in \boldsymbol{y} \rightsquigarrow$ eliminate $\exists y_{i}$

Decidable $\forall \exists$-fragment of $L_{P A D}$-Theory of \mathbb{Z}

We know: $\forall \exists$-Theory of the structure $\langle\mathbb{Z} ; 1,+,-, \leq, \mid\rangle$ is undecidable. (DPRM-theorem + universal formula:
$\left.y=x^{2} \Leftrightarrow x|y \wedge x+1| x+y \wedge \forall z(x|z \wedge x+1| x+z \Rightarrow x+y \mid x+z)\right)$

Decidable Fragments

Here $\underline{\varphi_{i}(\boldsymbol{x})}$ will be some QF $L_{P A D}$-formulas

- By G.A. Pérez and R. Raha (2020). Divisibility.

$$
\forall x \exists y \bigvee_{i \in I j \in J_{i}}\left(\underline{\operatorname{GCD}\left(f_{j}(x), g_{j}(x, y)\right)=f_{j}(x)} \wedge f_{j}(x) \geq 0\right) \wedge \underline{\varphi_{i}(x)} \wedge x \geq 0 \wedge y \geq 0
$$

- Our result. Coprimeness.

$$
\forall x \exists y \bigvee_{i \in l_{j \in J_{i}}}\left(\underline{\operatorname{GCD}\left(f_{j}(x, y), g_{j}(x, y)\right)=d_{j}}\right) \wedge \underline{\varphi_{i}(x)}
$$

Proof sketch: isolate $y_{i} \in \boldsymbol{y} \rightsquigarrow$ eliminate $\exists y_{i} \rightsquigarrow$ rewrite GCD using universal quantifiers

Decidable $\forall \exists$-fragment of $L_{P A D}$-Theory of \mathbb{Z}

We know: $\forall \exists$-Theory of the structure $\langle\mathbb{Z} ; 1,+,-, \leq, \mid\rangle$ is undecidable. (DPRM-theorem + universal formula:
$\left.y=x^{2} \Leftrightarrow x|y \wedge x+1| x+y \wedge \forall z(x|z \wedge x+1| x+z \Rightarrow x+y \mid x+z)\right)$

Decidable Fragments

Here $\underline{\varphi_{i}(\boldsymbol{x})}$ will be some QF $L_{P A D}$-formulas

- By G.A. Pérez and R. Raha (2020). Divisibility.

$$
\forall x \exists y \bigvee_{i \in I j \in J_{i}}\left(\underline{\operatorname{GCD}\left(f_{j}(x), g_{j}(x, y)\right)=f_{j}(x)} \wedge f_{j}(x) \geq 0\right) \wedge \underline{\varphi_{i}(x)} \wedge x \geq 0 \wedge y \geq 0
$$

- Our result. Coprimeness.

$$
\forall x \exists y \bigvee_{i \in l_{j \in J_{i}}}\left(\underline{\operatorname{GCD}\left(f_{j}(x, y), g_{j}(x, y)\right)=d_{j}}\right) \wedge \underline{\varphi_{i}(x)} .
$$

Proof sketch: isolate $y_{i} \in \boldsymbol{y} \rightsquigarrow$ eliminate $\exists y_{i} \rightsquigarrow$ rewrite GCD using universal quantifiers $\rightsquigarrow \forall$-Theory of $\langle\mathbb{Z} ; 1,+,-, \leq, \mid\rangle$ is decidable since \exists-Theory is decidable.

Positive existential arithmetic with addition and coprimeness

Decidability of $\mathrm{P} \exists \mathrm{Th}\langle\mathbb{Z} ; 1,+,-, \leq, \mid\rangle$ by [Bel'tyukov 1976, Lipshitz 1978]:
PQF $L_{P A D}$-formula $\varphi(\boldsymbol{x})$

Positive existential arithmetic with addition and coprimeness

Decidability of $\mathrm{P} \exists \mathrm{Th}\langle\mathbb{Z} ; 1,+,-, \leq, \mid\rangle$ by [Bel'tyukov 1976, Lipshitz 1978]:
PQF $L_{\text {PAD }}$-formula $\varphi(\boldsymbol{x})$
\rightsquigarrow equi-satisfiable PQFL $L_{P A D}$-formula $\bigvee_{j \in J} \varphi_{j}\left(\boldsymbol{y}_{\boldsymbol{j}}\right) \wedge \boldsymbol{y}_{\boldsymbol{j}} \geq 0$ without \leq in $\varphi_{j}\left(\boldsymbol{y}_{\boldsymbol{j}}\right)$.

Positive existential arithmetic with addition and coprimeness

Decidability of $\mathrm{P} \exists \mathrm{Th}\langle\mathbb{Z} ; 1,+,-, \leq, \mid\rangle$ by [Bel'tyukov 1976, Lipshitz 1978]:
PQF $L_{\text {PAD }}$-formula $\varphi(\boldsymbol{x})$
\rightsquigarrow equi-satisfiable PQFL $L_{P A D}$-formula $\bigvee_{j \in J} \varphi_{j}\left(\boldsymbol{y}_{\boldsymbol{j}}\right) \wedge \boldsymbol{y}_{\boldsymbol{j}} \geq 0$ without \leq in $\varphi_{j}\left(\boldsymbol{y}_{\boldsymbol{j}}\right)$.
\rightsquigarrow for such $\varphi_{j}\left(\boldsymbol{y}_{\boldsymbol{j}}\right)$ we can construct a constant ν_{j} such that $\exists \boldsymbol{y}_{\boldsymbol{j}} \varphi_{j}\left(\boldsymbol{y}_{\boldsymbol{j}}\right)$ in \mathbb{N} iff $\exists \boldsymbol{y}_{\boldsymbol{j}} \varphi_{j}\left(\boldsymbol{y}_{\boldsymbol{j}}\right)$ in the p-adic integers for every prime $p \leq \nu_{j}$ [Weispfenning 1988].

Positive existential arithmetic with addition and coprimeness

Decidability of $\operatorname{P~} \exists \mathrm{Th}\langle\mathbb{Z} ; 1,+,-, \leq, \mid\rangle$ by [Bel'tyukov 1976, Lipshitz 1978]:
PQF $L_{P A D}$-formula $\varphi(\boldsymbol{x})$
\rightsquigarrow equi-satisfiable PQFL ${ }_{P A D}$-formula $\bigvee_{j \in J} \varphi_{j}\left(\boldsymbol{y}_{\boldsymbol{j}}\right) \wedge \boldsymbol{y}_{\boldsymbol{j}} \geq 0$ without $\leq \operatorname{in} \varphi_{j}\left(\boldsymbol{y}_{\boldsymbol{j}}\right)$.
\rightsquigarrow for such $\varphi_{j}\left(\boldsymbol{y}_{\boldsymbol{j}}\right)$ we can construct a constant ν_{j} such that $\exists \boldsymbol{y}_{\boldsymbol{j}} \varphi_{j}\left(\boldsymbol{y}_{\boldsymbol{j}}\right)$ in \mathbb{N} iff $\exists \boldsymbol{y}_{\boldsymbol{j}} \varphi_{j}\left(\boldsymbol{y}_{\boldsymbol{j}}\right)$ in the p-adic integers for every prime $p \leq \nu_{j}$ [Weispfenning 1988].

Constructing $\varphi_{j}\left(\boldsymbol{y}_{\boldsymbol{j}}\right)$ is rather sophisticated

Positive existential arithmetic with addition and coprimeness

Decidability of $\operatorname{P~} \exists \mathrm{Th}\langle\mathbb{Z} ; 1,+,-, \leq, \mid\rangle$ by [Bel'tyukov 1976, Lipshitz 1978]:
PQF $L_{\text {PAD }}$-formula $\varphi(\boldsymbol{x})$
\rightsquigarrow equi-satisfiable PQFL ${ }_{P A D}$-formula $\bigvee_{j \in J} \varphi_{j}\left(\boldsymbol{y}_{\boldsymbol{j}}\right) \wedge \boldsymbol{y}_{\boldsymbol{j}} \geq 0$ without $\leq \operatorname{in} \varphi_{j}\left(\boldsymbol{y}_{\boldsymbol{j}}\right)$. \rightsquigarrow for such $\varphi_{j}\left(\boldsymbol{y}_{\boldsymbol{j}}\right)$ we can construct a constant ν_{j} such that $\exists \boldsymbol{y}_{\boldsymbol{j}} \varphi_{j}\left(\boldsymbol{y}_{\boldsymbol{j}}\right)$ in \mathbb{N} iff $\exists \boldsymbol{y}_{\boldsymbol{j}} \varphi_{j}\left(\boldsymbol{y}_{\boldsymbol{j}}\right)$ in the p-adic integers for every prime $p \leq \nu_{j}$ [Weispfenning 1988].

Constructing $\varphi_{j}\left(\boldsymbol{y}_{\boldsymbol{j}}\right)$ is rather sophisticated \rightsquigarrow more quantifier-elimination spirit

Positive existential arithmetic with addition and coprimeness

Decidability of $\mathrm{P} \exists \mathrm{Th}\langle\mathbb{Z} ; 1,+,-, \leq, \mid\rangle$ by [Bel'tyukov 1976, Lipshitz 1978]:
PQF $L_{P A D}$-formula $\varphi(\boldsymbol{x})$
\rightsquigarrow equi-satisfiable PQFL ${ }_{P A D}$-formula $\bigvee_{j \in J} \varphi_{j}\left(\boldsymbol{y}_{\boldsymbol{j}}\right) \wedge \boldsymbol{y}_{\boldsymbol{j}} \geq 0$ without $\leq \operatorname{in} \varphi_{j}\left(\boldsymbol{y}_{\boldsymbol{j}}\right)$. \rightsquigarrow for such $\varphi_{j}\left(\boldsymbol{y}_{\boldsymbol{j}}\right)$ we can construct a constant ν_{j} such that $\exists \boldsymbol{y}_{\boldsymbol{j}} \varphi_{j}\left(\boldsymbol{y}_{\boldsymbol{j}}\right)$ in \mathbb{N} iff $\exists \boldsymbol{y}_{\boldsymbol{j}} \varphi_{j}\left(\boldsymbol{y}_{\boldsymbol{j}}\right)$ in the p-adic integers for every prime $p \leq \nu_{j}$ [Weispfenning 1988].

Constructing $\varphi_{j}\left(\boldsymbol{y}_{\boldsymbol{j}}\right)$ is rather sophisticated \rightsquigarrow more quantifier-elimination spirit Decidability of $\mathrm{P} \exists \mathrm{Th}\langle\mathbb{Z} ; 1,+,-, \leq, \perp\rangle$.
Step 1. Variable isolation: $\mathrm{PQF} L_{P A C}-$ formula $\phi(x)$

Positive existential arithmetic with addition and coprimeness

Decidability of $\mathrm{P} \exists \mathrm{Th}\langle\mathbb{Z} ; 1,+,-, \leq, \mid\rangle$ by [Bel'tyukov 1976, Lipshitz 1978]:
PQF $L_{\text {PAD }}$-formula $\varphi(\boldsymbol{x})$
\rightsquigarrow equi-satisfiable PQFL ${ }_{P A D}$-formula $\bigvee_{j \in J} \varphi_{j}\left(\boldsymbol{y}_{\boldsymbol{j}}\right) \wedge \boldsymbol{y}_{\boldsymbol{j}} \geq 0$ without $\leq \operatorname{in} \varphi_{j}\left(\boldsymbol{y}_{\boldsymbol{j}}\right)$. \rightsquigarrow for such $\varphi_{j}\left(\boldsymbol{y}_{\boldsymbol{j}}\right)$ we can construct a constant ν_{j} such that $\exists \boldsymbol{y}_{\boldsymbol{j}} \varphi_{j}\left(\boldsymbol{y}_{\boldsymbol{j}}\right)$ in \mathbb{N} iff $\exists \boldsymbol{y}_{\boldsymbol{j}} \varphi_{j}\left(\boldsymbol{y}_{\boldsymbol{j}}\right)$ in the p-adic integers for every prime $p \leq \nu_{j}$ [Weispfenning 1988].

Constructing $\varphi_{j}\left(\boldsymbol{y}_{\boldsymbol{j}}\right)$ is rather sophisticated \rightsquigarrow more quantifier-elimination spirit Decidability of $\mathrm{P} \exists \mathrm{Th}\langle\mathbb{Z} ; 1,+,-, \leq, \perp\rangle$.
Step 1. Variable isolation: PQF $L_{P A C}$-formula $\phi(\boldsymbol{x}) \rightsquigarrow$ equi-satisfiable $\bigvee_{j \in J} \phi_{j}\left(\boldsymbol{y}_{j}\right)$, where

- Every list $\boldsymbol{y}_{\boldsymbol{j}}$ has at most the same size as \boldsymbol{x}.

Positive existential arithmetic with addition and coprimeness

Decidability of $\mathrm{P} \exists \mathrm{Th}\langle\mathbb{Z} ; 1,+,-, \leq, \mid\rangle$ by [Bel'tyukov 1976, Lipshitz 1978]:
PQF $L_{\text {PAD }}$-formula $\varphi(\boldsymbol{x})$
\rightsquigarrow equi-satisfiable PQFL $L_{P A D}$-formula $\bigvee_{j \in J} \varphi_{j}\left(\boldsymbol{y}_{\boldsymbol{j}}\right) \wedge \boldsymbol{y}_{\boldsymbol{j}} \geq 0$ without \leq in $\varphi_{j}\left(\boldsymbol{y}_{\boldsymbol{j}}\right)$. \rightsquigarrow for such $\varphi_{j}\left(\boldsymbol{y}_{\boldsymbol{j}}\right)$ we can construct a constant ν_{j} such that $\exists \boldsymbol{y}_{\boldsymbol{j}} \varphi_{j}\left(\boldsymbol{y}_{\boldsymbol{j}}\right)$ in \mathbb{N} iff $\exists \boldsymbol{y}_{\boldsymbol{j}} \varphi_{j}\left(\boldsymbol{y}_{\boldsymbol{j}}\right)$ in the p-adic integers for every prime $p \leq \nu_{j}$ [Weispfenning 1988].

Constructing $\varphi_{j}\left(\boldsymbol{y}_{\boldsymbol{j}}\right)$ is rather sophisticated \rightsquigarrow more quantifier-elimination spirit Decidability of $\mathrm{P} \exists \mathrm{Th}\langle\mathbb{Z} ; 1,+,-, \leq, \perp\rangle$.
Step 1. Variable isolation: PQF $L_{P A C}$-formula $\phi(\boldsymbol{x}) \rightsquigarrow$ equi-satisfiable $\bigvee_{j \in J} \phi_{j}\left(\boldsymbol{y}_{j}\right)$, where

- Every list $\boldsymbol{y}_{\boldsymbol{j}}$ has at most the same size as \boldsymbol{x}.
- $\phi_{j}\left(\boldsymbol{y}_{\boldsymbol{j}}\right)$ has form $z_{\boldsymbol{j}} \geq 0 \wedge t_{j} \geq 0 \wedge \widetilde{\varphi}\left(z_{j}\right) \wedge \bigwedge_{i \in\left[1 . . m_{j}\right]} \operatorname{GCD}\left(f_{i, j}\left(z_{j}\right), g_{i, j}\left(z_{j}\right)+c_{i, j} t_{j}\right)=d_{i, j}$, where $f_{i, j}\left(z_{j}\right)$ has non-negative coefficients and positive constant terms.

Positive existential arithmetic with addition and coprimeness

Decidability of $\mathrm{P} \exists \mathrm{Th}\langle\mathbb{Z} ; 1,+,-, \leq, \mid\rangle$ by [Bel'tyukov 1976, Lipshitz 1978]:
PQF $L_{\text {PAD }}$-formula $\varphi(\boldsymbol{x})$
\rightsquigarrow equi-satisfiable PQFL $L_{P A D}$-formula $\bigvee_{j \in J} \varphi_{j}\left(\boldsymbol{y}_{\boldsymbol{j}}\right) \wedge \boldsymbol{y}_{\boldsymbol{j}} \geq 0$ without \leq in $\varphi_{j}\left(\boldsymbol{y}_{\boldsymbol{j}}\right)$. \rightsquigarrow for such $\varphi_{j}\left(\boldsymbol{y}_{\boldsymbol{j}}\right)$ we can construct a constant ν_{j} such that $\exists \boldsymbol{y}_{\boldsymbol{j}} \varphi_{j}\left(\boldsymbol{y}_{\boldsymbol{j}}\right)$ in \mathbb{N} iff $\exists \boldsymbol{y}_{\boldsymbol{j}} \varphi_{j}\left(\boldsymbol{y}_{\boldsymbol{j}}\right)$ in the p-adic integers for every prime $p \leq \nu_{j}$ [Weispfenning 1988].

Constructing $\varphi_{j}\left(\boldsymbol{y}_{\boldsymbol{j}}\right)$ is rather sophisticated \rightsquigarrow more quantifier-elimination spirit Decidability of $\mathrm{P} \exists \mathrm{Th}\langle\mathbb{Z} ; 1,+,-, \leq, \perp\rangle$.
Step 1. Variable isolation: PQF $L_{P A C}$-formula $\phi(\boldsymbol{x}) \rightsquigarrow$ equi-satisfiable $\underset{j \in J}{ } \phi_{j}\left(\boldsymbol{y}_{j}\right)$, where

- Every list $\boldsymbol{y}_{\boldsymbol{j}}$ has at most the same size as \boldsymbol{x}.
- $\phi_{j}\left(\boldsymbol{y}_{\boldsymbol{j}}\right)$ has form $z_{\boldsymbol{j}} \geq 0 \wedge t_{j} \geq 0 \wedge \widetilde{\varphi}\left(z_{j}\right) \wedge \bigwedge_{i \in\left[1 . . m_{j}\right]} \operatorname{GCD}\left(f_{i, j}\left(z_{j}\right), g_{i, j}\left(z_{j}\right)+c_{i, j} t_{j}\right)=d_{i, j}$, where $f_{i, j}\left(z_{j}\right)$ has non-negative coefficients and positive constant terms.
Step 2. Quantifier elimination: Apply GCD-Lemma to eliminate each t_{j}.

Generalize this approach to prove the BL-Theorem?

Difficulties:

- Every variable $t \in \boldsymbol{y}$ can appear in right-hand side polynomials

$$
\operatorname{GCD}(f(z), g(z)+c t)=h(z)+d t
$$ with $c, d>0$. \rightsquigarrow Lipshitz's basic transformations (Lemma 2).

Generalize this approach to prove the BL-Theorem?

Difficulties:

- Every variable $t \in \boldsymbol{y}$ can appear in right-hand side polynomials

$$
\operatorname{GCD}(f(z), g(z)+c t)=h(z)+d t
$$

with $c, d>0$. \rightsquigarrow Lipshitz's basic transformations (Lemma 2).

- Application of GCD-Lemma to systems of the form

$$
\bigwedge_{i \in[1 . . m]} \mathrm{GCD}\left(f_{i}(\boldsymbol{z}), g_{i}(\boldsymbol{z})+t\right)=h_{i}(\boldsymbol{z})
$$

requires introducing new variables.

Generalize this approach to prove the BL-Theorem?

Difficulties:

- Every variable $t \in \boldsymbol{y}$ can appear in right-hand side polynomials

$$
\operatorname{GCD}(f(z), g(z)+c t)=h(z)+d t
$$

with $c, d>0$. \rightsquigarrow Lipshitz's basic transformations (Lemma 2).

- Application of GCD-Lemma to systems of the form

$$
\bigwedge_{i \in[1 . . m]} \mathrm{GCD}\left(f_{i}(\boldsymbol{z}), g_{i}(\boldsymbol{z})+t\right)=h_{i}(\boldsymbol{z})
$$

requires introducing new variables.
Consider (2): $\underline{\operatorname{GCD}\left(h_{i}(\boldsymbol{z}), h_{j}(\boldsymbol{z})\right) \mid g_{i}(\boldsymbol{z})-g_{j}(\boldsymbol{z})}$

Generalize this approach to prove the BL-Theorem?

Difficulties:

- Every variable $t \in \boldsymbol{y}$ can appear in right-hand side polynomials

$$
\operatorname{GCD}(f(z), g(z)+c t)=h(z)+d t
$$

with $c, d>0$. \rightsquigarrow Lipshitz's basic transformations (Lemma 2).

- Application of GCD-Lemma to systems of the form

$$
\bigwedge_{i \in[1 . . m]} \mathrm{GCD}\left(f_{i}(z), g_{i}(z)+t\right)=h_{i}(z)
$$

requires introducing new variables.
Consider (2): $\operatorname{GCD}\left(h_{i}(\boldsymbol{z}), h_{j}(\boldsymbol{z})\right) \mid g_{i}(\boldsymbol{z})-g_{j}(\boldsymbol{z})$
for each $(i, j), \overline{1 \leq i<j \leq m}$, we introduce $\zeta_{i, j}$, such that

$$
\rightsquigarrow \exists \zeta_{i, j}\left(\operatorname{GCD}\left(h_{i}(\mathbf{z}), h_{j}(\boldsymbol{z})\right)=\zeta_{i, j} \wedge \operatorname{GCD}\left(\zeta_{i, j}, g_{i}(\boldsymbol{z})-g_{j}(\boldsymbol{z})\right)=\zeta_{i, j}\right) .
$$

Generalize this approach to prove the BL-Theorem?

Difficulties:

- Every variable $t \in \boldsymbol{y}$ can appear in right-hand side polynomials

$$
\operatorname{GCD}(f(z), g(z)+c t)=h(z)+d t
$$

with $c, d>0$. \rightsquigarrow Lipshitz's basic transformations (Lemma 2).

- Application of GCD-Lemma to systems of the form

$$
\bigwedge_{i \in[1 . . m]} \mathrm{GCD}\left(f_{i}(z), g_{i}(z)+t\right)=h_{i}(z)
$$

requires introducing new variables.
Consider (2): $\operatorname{GCD}\left(h_{i}(\boldsymbol{z}), h_{j}(\boldsymbol{z})\right) \mid g_{i}(\boldsymbol{z})-g_{j}(\boldsymbol{z})$
for each $(i, j), \overline{1 \leq i<j \leq m}$, we introduce $\zeta_{i, j}$, such that

$$
\rightsquigarrow \exists \zeta_{i, j}\left(\operatorname{GCD}\left(h_{i}(\boldsymbol{z}), h_{j}(\boldsymbol{z})\right)=\zeta_{i, j} \wedge \operatorname{GCD}\left(\zeta_{i, j}, g_{i}(\boldsymbol{z})-g_{j}(\boldsymbol{z})\right)=\zeta_{i, j}\right)
$$

Aim: eliminate all Latin variables \rightsquigarrow each linear polynomial is either $a \zeta$ or a for some $a>0$.

Quasi-quantifier elimination algorithms

- Two disjoint sorts of variables: S_{1} (Latin letters) and S_{2} (Greek letters).

Quasi-quantifier elimination algorithms

- Two disjoint sorts of variables: S_{1} (Latin letters) and S_{2} (Greek letters).
- Structure $\langle M ; \sigma\rangle$ and language L_{σ} with variables from $S_{1} \cup S_{2}$.

Quasi-quantifier elimination algorithms

- Two disjoint sorts of variables: S_{1} (Latin letters) and S_{2} (Greek letters).
- Structure $\langle M ; \sigma\rangle$ and language L_{σ} with variables from $S_{1} \cup S_{2}$.
- Language $L_{\mathcal{A}} \subset L_{\sigma}$; all occurrences of Latin variables are free and all occurrences of Greek variables are bound.

Quasi-quantifier elimination algorithms

- Two disjoint sorts of variables: S_{1} (Latin letters) and S_{2} (Greek letters).
- Structure $\langle M ; \sigma\rangle$ and language L_{σ} with variables from $S_{1} \cup S_{2}$.
- Language $L_{\mathcal{A}} \subset L_{\sigma}$; all occurrences of Latin variables are free and all occurrences of Greek variables are bound.
Quasi-QE algorithm \mathcal{A} for the language $L_{\mathcal{A}}$ in the structure $\langle M ; \sigma\rangle$:

Quasi-quantifier elimination algorithms

- Two disjoint sorts of variables: S_{1} (Latin letters) and S_{2} (Greek letters).
- Structure $\langle M ; \sigma\rangle$ and language L_{σ} with variables from $S_{1} \cup S_{2}$.
- Language $L_{\mathcal{A}} \subset L_{\sigma}$; all occurrences of Latin variables are free and all occurrences of Greek variables are bound.
Quasi-QE algorithm \mathcal{A} for the language $L_{\mathcal{A}}$ in the structure $\langle M ; \sigma\rangle$: (1) $L_{\mathcal{A}}$-formulas of elimination form: $L_{\mathcal{A}}^{x} \subseteq L_{\mathcal{A}}$.

Quasi-quantifier elimination algorithms

- Two disjoint sorts of variables: S_{1} (Latin letters) and S_{2} (Greek letters).
- Structure $\langle M ; \sigma\rangle$ and language L_{σ} with variables from $S_{1} \cup S_{2}$.
- Language $L_{\mathcal{A}} \subset L_{\sigma}$; all occurrences of Latin variables are free and all occurrences of Greek variables are bound.
Quasi-QE algorithm \mathcal{A} for the language $L_{\mathcal{A}}$ in the structure $\langle M ; \sigma\rangle$:
(1) $L_{\mathcal{A}}$-formulas of elimination form: $L_{\mathcal{A}}^{X} \subseteq L_{\mathcal{A}}$.
(2) Step 1: $L_{\mathcal{A}}$-formula $\exists \boldsymbol{\alpha} \varphi(\boldsymbol{y}, \boldsymbol{\alpha}) \rightsquigarrow$ equi-satisfiable $\bigvee_{j \in J} \exists \boldsymbol{\alpha} \widetilde{\varphi_{j}}\left(\boldsymbol{y}_{j}, \boldsymbol{\alpha}\right)$ and for every $j \in J$:

Quasi-quantifier elimination algorithms

- Two disjoint sorts of variables: S_{1} (Latin letters) and S_{2} (Greek letters).
- Structure $\langle M ; \sigma\rangle$ and language L_{σ} with variables from $S_{1} \cup S_{2}$.
- Language $L_{\mathcal{A}} \subset L_{\sigma}$; all occurrences of Latin variables are free and all occurrences of Greek variables are bound.
Quasi-QE algorithm \mathcal{A} for the language $L_{\mathcal{A}}$ in the structure $\langle M ; \sigma\rangle$:
(1) $L_{\mathcal{A}}$-formulas of elimination form: $L_{\mathcal{A}}^{x} \subseteq L_{\mathcal{A}}$.
(2) Step 1: $L_{\mathcal{A}}$-formula $\exists \boldsymbol{\alpha} \varphi(\boldsymbol{y}, \boldsymbol{\alpha}) \rightsquigarrow \underline{\text { equi-satisfiable }} \bigvee_{j \in J} \exists \boldsymbol{\alpha} \widetilde{\varphi}_{j}\left(\boldsymbol{y}_{j}, \boldsymbol{\alpha}\right)$ and for every $j \in J$:
(1) y_{j} comprises at most the same number of variables as \boldsymbol{y}.

Quasi-quantifier elimination algorithms

- Two disjoint sorts of variables: S_{1} (Latin letters) and S_{2} (Greek letters).
- Structure $\langle M ; \sigma\rangle$ and language L_{σ} with variables from $S_{1} \cup S_{2}$.
- Language $L_{\mathcal{A}} \subset L_{\sigma}$; all occurrences of Latin variables are free and all occurrences of Greek variables are bound.
Quasi-QE algorithm \mathcal{A} for the language $L_{\mathcal{A}}$ in the structure $\langle M ; \sigma\rangle$:
(1) $L_{\mathcal{A}}$-formulas of elimination form: $L_{\mathcal{A}}^{x} \subseteq L_{\mathcal{A}}$.
(2) Step 1: $L_{\mathcal{A}}$-formula $\exists \boldsymbol{\alpha} \varphi(\boldsymbol{y}, \boldsymbol{\alpha}) \rightsquigarrow \underline{\text { equi-satisfiable }} \bigvee_{j \in J} \exists \boldsymbol{\alpha} \widetilde{\varphi}_{j}\left(\boldsymbol{y}_{j}, \boldsymbol{\alpha}\right)$ and for every $j \in J$:
(1) y_{j} comprises at most the same number of variables as \boldsymbol{y}.
(2) There is a variable $\widetilde{x}_{j} \in \boldsymbol{y}_{j}$ such that $\left[\exists \boldsymbol{\alpha} \widetilde{\varphi}_{j}\left(\boldsymbol{y}_{j}, \boldsymbol{\alpha}\right)\right]_{x}^{\widetilde{x}_{j}} \in L_{\mathcal{A}}^{x}$.

Quasi-quantifier elimination algorithms

- Two disjoint sorts of variables: S_{1} (Latin letters) and S_{2} (Greek letters).
- Structure $\langle M ; \sigma\rangle$ and language L_{σ} with variables from $S_{1} \cup S_{2}$.
- Language $L_{\mathcal{A}} \subset L_{\sigma}$; all occurrences of Latin variables are free and all occurrences of Greek variables are bound.
Quasi-QE algorithm \mathcal{A} for the language $L_{\mathcal{A}}$ in the structure $\langle M ; \sigma\rangle$:
(1) $L_{\mathcal{A}}$-formulas of elimination form: $L_{\mathcal{A}}^{x} \subseteq L_{\mathcal{A}}$.
(2) Step 1: $L_{\mathcal{A}}$-formula $\exists \boldsymbol{\alpha} \varphi(\boldsymbol{y}, \boldsymbol{\alpha}) \rightsquigarrow \underline{\text { equi-satisfiable }} \bigvee_{j \in J} \exists \boldsymbol{\alpha} \widetilde{\varphi}_{j}\left(\boldsymbol{y}_{j}, \boldsymbol{\alpha}\right)$ and for every $j \in J$:
(1) y_{j} comprises at most the same number of variables as \boldsymbol{y}.
(2) There is a variable $\widetilde{x}_{j} \in \boldsymbol{y}_{j}$ such that $\left[\exists \boldsymbol{\alpha} \widetilde{\varphi}_{j}\left(\boldsymbol{y}_{j}, \boldsymbol{\alpha}\right)\right]_{x}^{\widetilde{x}_{j}} \in L_{\mathcal{A}}^{x}$.
(3) Step 2: $\exists x \exists \boldsymbol{\alpha} \widetilde{\varphi}(x, \boldsymbol{z}, \boldsymbol{\alpha}) \rightsquigarrow$ equivalent $L_{\mathcal{A}}$-formula $\exists \boldsymbol{\alpha} \exists \boldsymbol{\beta} \widetilde{\psi}(\boldsymbol{z}, \boldsymbol{\alpha}, \boldsymbol{\beta})$. Here $\exists \boldsymbol{\alpha} \widetilde{\varphi}(x, \boldsymbol{z}, \boldsymbol{\alpha})$ is some $L_{\mathcal{A}}^{x}$-formula.

Quasi-quantifier elimination algorithms

- Two disjoint sorts of variables: S_{1} (Latin letters) and S_{2} (Greek letters).
- Structure $\langle M ; \sigma\rangle$ and language L_{σ} with variables from $S_{1} \cup S_{2}$.
- Language $L_{\mathcal{A}} \subset L_{\sigma}$; all occurrences of Latin variables are free and all occurrences of Greek variables are bound.
Quasi-QE algorithm \mathcal{A} for the language $L_{\mathcal{A}}$ in the structure $\langle M ; \sigma\rangle$:
(1) $L_{\mathcal{A}}$-formulas of elimination form: $L_{\mathcal{A}}^{x} \subseteq L_{\mathcal{A}}$.
(2) Step 1: $L_{\mathcal{A}}$-formula $\exists \boldsymbol{\alpha} \varphi(\boldsymbol{y}, \boldsymbol{\alpha}) \rightsquigarrow \underline{\text { equi-satisfiable }} \bigvee_{j \in J} \exists \boldsymbol{\alpha} \widetilde{\varphi}_{j}\left(\boldsymbol{y}_{j}, \boldsymbol{\alpha}\right)$ and for every $j \in J$:
(1) y_{j} comprises at most the same number of variables as \boldsymbol{y}.
(2) There is a variable $\widetilde{x}_{j} \in \boldsymbol{y}_{j}$ such that $\left[\exists \boldsymbol{\alpha} \widetilde{\varphi}_{j}\left(\boldsymbol{y}_{j}, \boldsymbol{\alpha}\right)\right]_{x}^{\widetilde{x}_{j}} \in L_{\mathcal{A}}^{x}$.
(3) Step 2: $\exists x \exists \boldsymbol{\alpha} \widetilde{\varphi}(x, \boldsymbol{z}, \boldsymbol{\alpha}) \rightsquigarrow$ equivalent $L_{\mathcal{A}}$-formula $\exists \boldsymbol{\alpha} \exists \boldsymbol{\beta} \widetilde{\psi}(\boldsymbol{z}, \boldsymbol{\alpha}, \boldsymbol{\beta})$. Here $\exists \boldsymbol{\alpha} \widetilde{\varphi}(x, z, \boldsymbol{\alpha})$ is some $L_{\mathcal{A}}^{x}$-formula.

$\varphi(\boldsymbol{x})$ is satisfiable in $\langle M ; \sigma\rangle$ if and only if $\exists \gamma \psi(\gamma)$ is true in $\langle M ; \sigma\rangle$.

Quasi-quantifier elimination for addition and GCD

- $L_{\mathcal{R}}$ is the set of formulas $\exists \boldsymbol{\alpha} \bigvee_{j \in J} \varphi_{j}\left(\boldsymbol{y}_{\boldsymbol{j}}, \boldsymbol{\alpha}\right)$ for some finite index set J and formulas $\varphi_{j}(\boldsymbol{y}, \boldsymbol{\alpha})$ of the form

$$
\boldsymbol{\alpha} \geq 1 \wedge \boldsymbol{y} \geq 0 \wedge \bigwedge_{i \in\left[1 . . m_{j}\right]} \operatorname{GCD}\left(f_{i, j}(\boldsymbol{y}, \boldsymbol{\alpha}), g_{i, j}(\boldsymbol{y}, \boldsymbol{\alpha})\right)=h_{i, j}(\boldsymbol{y}, \boldsymbol{\alpha})
$$

where every gcd-expression takes one of the forms:
(1) $\operatorname{GCD}(f(\boldsymbol{y}), g(\boldsymbol{y}))=h(\boldsymbol{y})$

Quasi-quantifier elimination for addition and GCD

- $L_{\mathcal{R}}$ is the set of formulas $\exists \boldsymbol{\alpha} \bigvee_{j \in J} \varphi_{j}\left(\boldsymbol{y}_{\boldsymbol{j}}, \boldsymbol{\alpha}\right)$ for some finite index set J and formulas $\varphi_{j}(\boldsymbol{y}, \boldsymbol{\alpha})$ of the form

$$
\boldsymbol{\alpha} \geq 1 \wedge \boldsymbol{y} \geq 0 \wedge \bigwedge_{i \in\left[1 . . m_{j}\right]} \operatorname{GCD}\left(f_{i, j}(\boldsymbol{y}, \boldsymbol{\alpha}), g_{i, j}(\boldsymbol{y}, \boldsymbol{\alpha})\right)=h_{i, j}(\boldsymbol{y}, \boldsymbol{\alpha})
$$

where every gcd-expression takes one of the forms:
(1) $\operatorname{GCD}(f(\boldsymbol{y}), g(\boldsymbol{y}))=h(\boldsymbol{y})$
(2) $\operatorname{GCD}(f(\boldsymbol{y}), g(\boldsymbol{y}))=a \zeta$
(3) $\operatorname{GCD}(a \zeta, g(y))=b \eta$
(4) $\operatorname{GCD}(a \zeta, b \eta)=c \theta$,

Quasi-quantifier elimination for addition and GCD

- $L_{\mathcal{R}}$ is the set of formulas $\exists \boldsymbol{\alpha} \bigvee_{j \in J} \varphi_{j}\left(\boldsymbol{y}_{\boldsymbol{j}}, \boldsymbol{\alpha}\right)$ for some finite index set J and formulas $\varphi_{j}(\boldsymbol{y}, \boldsymbol{\alpha})$ of the form

$$
\boldsymbol{\alpha} \geq 1 \wedge \boldsymbol{y} \geq 0 \wedge \bigwedge_{i \in\left[1 . . m_{j}\right]} \operatorname{GCD}\left(f_{i, j}(\boldsymbol{y}, \boldsymbol{\alpha}), g_{i, j}(\boldsymbol{y}, \boldsymbol{\alpha})\right)=h_{i, j}(\boldsymbol{y}, \boldsymbol{\alpha}),
$$

where every gcd-expression takes one of the forms:
(1) $\operatorname{GCD}(f(\boldsymbol{y}), g(\boldsymbol{y}))=h(\boldsymbol{y})$
(2) $\operatorname{GCD}(f(\boldsymbol{y}), g(\boldsymbol{y}))=a \zeta$
(3) $\operatorname{GCD}(a \zeta, g(\boldsymbol{y}))=b \eta$
(4) $\mathrm{GCD}(a \zeta, b \eta)=c \theta$,

- $L_{\mathcal{R}}^{\times} \subseteq L_{\mathcal{R}}$ comprise formulas $\exists \boldsymbol{\alpha} \bigvee_{j \in J_{2}} \widetilde{\varphi}_{j}\left(x, \boldsymbol{z}_{\boldsymbol{j}}, \boldsymbol{\alpha}\right)$ for some finite index set J_{2} and formulas $\widetilde{\varphi}_{j}(x, \boldsymbol{z}, \boldsymbol{\alpha})$ of the form

$$
\boldsymbol{\alpha} \geq 1 \wedge \boldsymbol{z} \geq 0 \wedge x \geq 0 \wedge \widetilde{\widetilde{\varphi}}_{j}(\boldsymbol{z}, \boldsymbol{\alpha}) \wedge \bigwedge_{i \in\left[1 . . \widetilde{m}_{j}\right]} \operatorname{GCD}\left(\widetilde{f}_{i, j}(z, \alpha), \widetilde{g}_{i, j}(z)+c_{i, j} x\right)=\widetilde{h}_{i, j}(z, \alpha)
$$

Quasi-quantifier elimination for addition and GCD

- $L_{\mathcal{R}}$ is the set of formulas $\exists \boldsymbol{\alpha} \bigvee_{j \in J} \varphi_{j}\left(\boldsymbol{y}_{\boldsymbol{j}}, \boldsymbol{\alpha}\right)$ for some finite index set J and formulas $\varphi_{j}(\boldsymbol{y}, \boldsymbol{\alpha})$ of the form

$$
\boldsymbol{\alpha} \geq 1 \wedge \boldsymbol{y} \geq 0 \wedge \bigwedge_{i \in\left[1 . . m_{j}\right]} \operatorname{GCD}\left(f_{i, j}(\boldsymbol{y}, \boldsymbol{\alpha}), g_{i, j}(\boldsymbol{y}, \boldsymbol{\alpha})\right)=h_{i, j}(\boldsymbol{y}, \boldsymbol{\alpha}),
$$

where every gcd-expression takes one of the forms:
(1) $\operatorname{GCD}(f(\boldsymbol{y}), g(\boldsymbol{y}))=h(\boldsymbol{y})$
(2) $\operatorname{GCD}(f(\boldsymbol{y}), g(\boldsymbol{y}))=a \zeta$
(3) $\operatorname{GCD}(a \zeta, g(\boldsymbol{y}))=b \eta$
(4) $\operatorname{GCD}(a \zeta, b \eta)=c \theta$,

- $L_{\mathcal{R}}^{\times} \subseteq L_{\mathcal{R}}$ comprise formulas $\exists \boldsymbol{\alpha} \bigvee_{j \in J_{\mathbf{2}}} \widetilde{\varphi}_{j}\left(x, \boldsymbol{z}_{\boldsymbol{j}}, \boldsymbol{\alpha}\right)$ for some finite index set J_{2} and formulas $\widetilde{\varphi}_{j}(x, \boldsymbol{z}, \boldsymbol{\alpha})$ of the form

$$
\boldsymbol{\alpha} \geq 1 \wedge \boldsymbol{z} \geq 0 \wedge x \geq 0 \wedge \widetilde{\widetilde{\varphi}}_{j}(z, \boldsymbol{\alpha}) \wedge \bigwedge_{i \in\left[1 . . \widetilde{m}_{j}\right]} \operatorname{GCD}\left(\widetilde{f}_{i, j}(z, \alpha), \widetilde{g}_{i, j}(z)+c_{i, j} x\right)=\widetilde{h}_{i, j}(z, \alpha)
$$

- GCD-Lemma at Step 2 of \mathcal{R} to eliminate x and obtain an $L_{\mathcal{R}}$-formula.

Reduction to a fragment of Skolem Arithmetic with constants

Every $L_{\mathcal{R}}$-formula with only Greek variables is a $\mathrm{P} \exists L_{\sigma}$-formula for $\sigma=\left\langle 1,\{a \cdot\}_{a \in \mathbb{Z}>0}, G C D\right\rangle$.

Reduction to a fragment of Skolem Arithmetic with constants

Every $L_{\mathcal{R}}$-formula with only Greek variables is a $\mathrm{P} \exists L_{\sigma}$-formula for $\sigma=\left\langle 1,\{a \cdot\}_{a \in \mathbb{Z}_{>0}}, G C D\right\rangle$.

Theorem

The decision problem for $\exists \mathrm{Th}\langle\mathbb{Z} ; 1,+,-, \leq, \mathrm{GCD}\rangle$ is reducible to the decision problem for $\mathrm{P} \exists \mathrm{Th}\left\langle\mathbb{Z}_{>0} ; 1,\{a \cdot\}_{a \in \mathbb{Z}_{>0}}, \mathrm{GCD}\right\rangle$, where $a \cdot$ is a unary functional symbol for multiplication by a positive integer a.

Reduction to a fragment of Skolem Arithmetic with constants

Every $L_{\mathcal{R}}$-formula with only Greek variables is a $\mathrm{P} \exists L_{\sigma}$-formula for $\sigma=\left\langle 1,\{a \cdot\}_{a \in \mathbb{Z}}^{>0}, ~ G C D\right\rangle$.

Theorem

The decision problem for $\exists \mathrm{Th}\langle\mathbb{Z} ; 1,+,-, \leq, \mathrm{GCD}\rangle$ is reducible to the decision problem for $\mathrm{P} \mathrm{\exists} \operatorname{Th}\left\langle\mathbb{Z}_{>0} ; 1,\{a \cdot\}_{a \in \mathbb{Z}_{>0}}, \mathrm{GCD}\right\rangle$, where $a \cdot$ is a unary functional symbol for multiplication by a positive integer a.

- Skolem Arithmetic with constants $\operatorname{Th}\left\langle\mathbb{Z}_{>0} ;\{a\}_{a \in \mathbb{Z}_{>0}}, \cdot,=\right\rangle$ is decidable [Barth D., Beck M., Dose T., Glaßer C., Michler L., Technau M. "Emptiness Problems for Integer Circuits" 2017].

Reduction to a fragment of Skolem Arithmetic with constants

Every $L_{\mathcal{R}}$-formula with only Greek variables is a $\mathrm{P} \exists L_{\sigma}$-formula for $\sigma=\left\langle 1,\{a \cdot\}_{a \in \mathbb{Z}}^{>0}, ~ G C D\right\rangle$.

Theorem

The decision problem for $\exists \mathrm{Th}\langle\mathbb{Z} ; 1,+,-, \leq, \mathrm{GCD}\rangle$ is reducible to the decision problem for $\mathrm{P} \mathrm{\exists} \operatorname{Th}\left\langle\mathbb{Z}_{>0} ; 1,\{a \cdot\}_{a \in \mathbb{Z}_{>0}}, \mathrm{GCD}\right\rangle$, where $a \cdot$ is a unary functional symbol for multiplication by a positive integer a.

- Skolem Arithmetic with constants $\operatorname{Th}\left\langle\mathbb{Z}_{>0} ;\{a\}_{a \in \mathbb{Z}_{>0}}, \cdot,=\right\rangle$ is decidable [Barth D., Beck M., Dose T., Glaßer C., Michler L., Technau M. "Emptiness Problems for Integer Circuits" 2017].
- The proof of the BL-Theorem now follows from

$$
\operatorname{GCD}(x, y)=z \Leftrightarrow z|x \wedge z| y \wedge \forall t(t|x \wedge t| y \Rightarrow t \mid z)
$$

where $x \mid y \rightleftharpoons \exists z(y=z \cdot x)$.

Questions

$\mathrm{P} \exists$-Definability in $\langle\mathbb{Z} ; 1,+, \leq, \perp\rangle$

- Dis-coprimeness $\not \perp$ is $\mathrm{P} \exists$-definable?

Questions

$\mathrm{P} \exists$-Definability in $\langle\mathbb{Z} ; 1,+, \leq, \perp\rangle$

- Dis-coprimeness $\not \perp$ is $\mathrm{P} \exists$-definable?
- More general decidable $\forall \exists$-fragment of $\langle\mathbb{Z} ; 1,+,-, \leq, \mid\rangle$?

Questions

$\mathrm{P} \exists$-Definability in $\langle\mathbb{Z} ; 1,+, \leq, \perp\rangle$

- Dis-coprimeness $\not \perp$ is $\mathrm{P} \exists$-definable?
- More general decidable $\forall \exists$-fragment of $\langle\mathbb{Z} ; 1,+,-, \leq, \mid\rangle$?

Complexity of $A \boldsymbol{x}=B \wedge C \boldsymbol{x} \geq D \wedge \bigwedge_{i \in[1 . . m]} \operatorname{GCD}\left(f_{i}(\boldsymbol{x}), g_{i}(\boldsymbol{x})\right)=d_{i}$

Questions

$\mathrm{P} \exists$-Definability in $\langle\mathbb{Z} ; 1,+, \leq, \perp\rangle$

- Dis-coprimeness $\not \perp$ is $\mathrm{P} \exists$-definable?
- More general decidable $\forall \exists$-fragment of $\langle\mathbb{Z} ; 1,+,-, \leq, \mid\rangle$?

Complexity of $A \boldsymbol{x}=B \wedge C \boldsymbol{x} \geq D \wedge \bigwedge_{i \in[1 . . m]} \operatorname{GCD}\left(f_{i}(\boldsymbol{x}), g_{i}(\boldsymbol{x})\right)=d_{i}$

- Polynomial upper bound on small solutions?

Questions

$\mathrm{P} \exists$-Definability in $\langle\mathbb{Z} ; 1,+, \leq, \perp\rangle$

- Dis-coprimeness $\not \perp$ is $\mathrm{P} \exists$-definable?
- More general decidable $\forall \exists$-fragment of $\langle\mathbb{Z} ; 1,+,-, \leq, \mid\rangle$?

Complexity of $A \boldsymbol{x}=B \wedge C \boldsymbol{x} \geq D \wedge \bigwedge_{i \in[1 . . m]} \operatorname{GCD}\left(f_{i}(\boldsymbol{x}), g_{i}(\boldsymbol{x})\right)=d_{i}$

- Polynomial upper bound on small solutions?
- Satisfiability check in polynomial time when size of \boldsymbol{x} is fixed?

Questions

$\mathrm{P} \exists$-Definability in $\langle\mathbb{Z} ; 1,+, \leq, \perp\rangle$

- Dis-coprimeness $\not \perp$ is $\mathrm{P} \exists$-definable?
- More general decidable $\forall \exists$-fragment of $\langle\mathbb{Z} ; 1,+,-, \leq, \mid\rangle$?

Complexity of $A \boldsymbol{x}=B \wedge C \boldsymbol{x} \geq D \wedge \bigwedge_{i \in[1 . . m]} \operatorname{GCD}\left(f_{i}(\boldsymbol{x}), g_{i}(\boldsymbol{x})\right)=d_{i}$

- Polynomial upper bound on small solutions?
- Satisfiability check in polynomial time when size of \boldsymbol{x} is fixed?
- $\exists L_{P A}-$ formulas : true and for $\exists L_{P A D}$-formulas: false.

Questions

$\mathrm{P} \exists$-Definability in $\langle\mathbb{Z} ; 1,+, \leq, \perp\rangle$

- Dis-coprimeness $\not \perp$ is $\mathrm{P} \exists$-definable?
- More general decidable $\forall \exists$-fragment of $\langle\mathbb{Z} ; 1,+,-, \leq, \mid\rangle$?

Complexity of $A \boldsymbol{x}=B \wedge C \boldsymbol{x} \geq D \wedge \bigwedge_{i \in[1 . . m]} \operatorname{GCD}\left(f_{i}(\boldsymbol{x}), g_{i}(\boldsymbol{x})\right)=d_{i}$

- Polynomial upper bound on small solutions?
- Satisfiability check in polynomial time when size of \boldsymbol{x} is fixed?
- $\exists L_{P A}-$ formulas : true and for $\exists L_{P A D}$-formulas: false.

Thanks for your attention!

