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The Diophantine Problem for Addition and Divisibility

Theorem (A.P. Bel’tyukov 1976, L. Lipshitz 1978)
The existential theory of the structure ⟨Z; 1,+,−,≤, |⟩ is decidable.

Divisibility and GCD
We have ∃Def⟨Z; 1,+,−,≤, |⟩ = ∃Def⟨Z; 1,+,−,≤,GCD⟩

x | y ⇔ GCD(x , y) = x ∨ GCD(x , y) = −x

GCD(x , y) = z ⇔ 0 ≤ z ∧ z | x ∧ z | y ∧ ∃u (x | u ∧ y | u + z)

¬GCD(x , y) = z ⇔ z + 1 ≤ 0 ∨ ¬z | x ∨ ¬z | y ∨ ∃v (v | x ∧ v | y ∧ z + 1 ≤ v)

Lσ FOL of a signature σ. ⟨M;σ⟩ structure of a signature σ and domain M.

∃Lσ Existential Lσ-formulas: ∃yφ(x , y) for QFLσ-formula φ(x , y).

Def⟨M;σ⟩ the set of all Lσ-definable in M.

∃Def⟨M;σ⟩ and QFDef⟨M;σ⟩ for ∃Lσ- and quantifier-free definable relations,
respectively.
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Positive existential definability with divisibility

QF-formula φ(x) is positive (PQF-formula) if it is constructed from
atomic formulas with only logical connectives ∧ and ∨.
∃-formula ∃yφ(x , y) is positive if φ(x , y) is PQF-formula.

P∃Def⟨M;σ⟩ the set of all P∃-defibable in ⟨M;σ⟩.
PQFDef⟨M;σ⟩ positively QF-definable in ⟨M;σ⟩.

Example
We have ∃Def⟨Z; 1,+,−,≤, |⟩ = P∃Def⟨Z; 1,+,−,≤, |⟩

x ∤ y ⇔ x = 0 ∧ (1 ≤ y ∨ y ≤ −1) ∨ ∃z
(
1 ≤ z ∧ (z ≤ x − 1 ∨ z ≤ −x − 1) ∧ x | y + z

)
.

Corollary
Def⟨Z; 1,+,−,≤, |⟩ ̸= ∃Def⟨Z; 1,+,−,≤, |⟩, since the elementary theory is undecidable.

By Presburger’s quantifier-elimination algorithm:
P∃Def⟨Z; 1,+,−,≤⟩ = PQFDef⟨Z; 1,+,−,≤, 2 |, 3 |, 4 | ...⟩ = Def⟨Z; 1,+,−,≤⟩.
How can we describe P∃Def⟨Z; 1,+,−,≤, |⟩?
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Intermediate structures

Coprimeness relation: x ⊥ y ⇌ GCD(x , y) = 1.

P∃Def⟨Z; 1,+,−,≤⟩ ⊂P∃Def⟨Z; 1,+,−,≤,⊥⟩ ⊆P∃Def⟨Z; 1,+,−,≤, |⟩.

Questions

Set of non-squares is ∃-definable in ⟨Z; 1,+,−,≤, |⟩? [L. van den Dries and
A. Wilkie 2003]

Order ≤ is ∃-definable in ⟨Z; 1,+,−, |⟩? [M. Bozga and R. Iosif 2005]

Dis-coprimeness ̸⊥ is P∃-definable in ⟨Z; 1,+,−,≤,⊥⟩ or in ⟨Z; 1,+,−,⊥⟩?

Theorem (D. Richard 1989)
The elementary theory of the structure ⟨Z; 1,+,⊥⟩ is undecidable.

Quantifier elimination to describe P∃-definable sets in ⟨Z; 1,+,⊥⟩:
Extend the signature ⟨1,+,⊥⟩⇝ σ with some P∃-definable predicates.
For every ∃xφ(x , y), where φ(x , y) is PQFLσ-formula, construct an equivalent in
Z PQFLσ-formula ψ(y).
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P∃-definability in ⟨Z; 1,+,⊥⟩

Positive Existential Definitions
x = 0 ⇔ x + 1 ⊥ x + 1 ∧ 3 ⊥ x + 2

y = −x ⇔ x + y = 0 and x = y ⇔ ∃t(t = −y ∧ x + t = 0)

GCD(x , y) = d ⇔ ∃u∃v (x = du ∧ y = dv ∧ u ⊥ v)

x ̸= 0 ⇔ ∃t (x ⊥ t ∧ x ⊥ t + 4) and x ̸= y ⇔ ∃t(t = −y ∧ x + t ̸= 0)

t ≡ 1(mod 2) ∧ t ≡ 1(mod 3) ∧
∧

p∈Px\{2,3}

t ≡ 2(mod p),

where Px is the set of prime divisors of x .

x = y is PQF-definable in ⟨Z; 1,+,−,⊥⟩ and x ̸= y is PQF-definable in
⟨Z; 1,+,−, ̸= 0,⊥⟩

Proposition (PQF-undefinability of dis-equality)
The relation x ̸= 0 is not PQF-definable in the structure ⟨Z; 1,+,−,⊥⟩.
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Extension of the signature. The first main result.
PQF-undefinability of dis-equality proof.

Euclidean algorithm: (f (y) + ax , g(y) + bx)⇝ (f̃ (y), g̃(y) + cx) such that
GCD(f (y) + ax , g(y) + bx) = GCD(f̃ (y), g̃(y) + cx).

Suppose φ(x)⇌
∨
j∈J

(∧
i∈Ij

ai ⊥ bi + cix

)
defines x ̸= 0.

¬φ(0) is
∧
j∈J

(∨
i∈Ij

ai ̸⊥ bi

)
⇝ take such ij ∈ Ij that aij ̸⊥ bij .

1. All aij = 0 ⇝ large x . 2. Otherwise for A =
∏

j∈J∧aij
̸=0
aij > 0 we have ¬φ(A).

Proposition
Fix d ≥ 2. The relation GCD(x , y) = d is not PQF-definable in ⟨Z; 1,+,−, ̸=,⊥⟩.

Theorem
P∃Def⟨Z; 1,+,⊥⟩ = PQFDef⟨Z; 1,+,−, ̸=,⊥,GCD2,GCD3,GCD4, ...⟩.

Fix the signature σ = ⟨1,+,−, ̸=,⊥,GCD2,GCD3,GCD4, ...⟩.
Quantifier elimination algorithm
For every PQFLσ-formula φ(x , y) the algorithm assigns to ∃xφ(x , y) an equivalent in Z
PQFLσ-formula ψ(y).
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GCD-Lemma

∃x
∧

i∈[1..m]

GCD(ai , bi + x) = di . (1)

{
GCD(6, x) = 2
GCD(6, x) = 3

{
GCD(6, x) = 1
GCD(2, 1 + x) = 1

Lemma (GCD-Lemma)
For the system (1) with ai , bi , di ∈ Z, ai ̸= 0, di > 0 for every i ∈ [1..m], we define for
every prime p the integer Mp = max

i∈[1..m]
vp(di ) and the index sets

Jp = {i ∈ [1..m] : vp(di ) = Mp} and Ip = {i ∈ Jp : vp(ai ) > Mp}. Then (1) has a
solution in Z iff the following conditions simultaneously hold:

1
∧

i∈[1..m]

di | ai

2
∧

i,j∈[1..m]

GCD(di , dj) | bi − bj

3
∧

i,j∈[1..m]

GCD(ai , dj , bi − bj) | di

4 For every prime p ≤ m and every I ⊆ Ip such that |I | = p there are such i , j ∈ I ,
i ̸= j that vp(bi − bj) > Mp.
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Quantifier elimination algorithm (sketch)

∃x

( ∧
i∈[1..m]

GCD(fi (y), gi (y) + cix) = di ∧
∧

i∈[m+1..l ]
fi (y) ̸= cix

)

Case 1. For some i ∈ [1..m] we have fi (y) = 0.

⇝
∨

i∈[1..m]

(
fi (y) = 0 ∧

∨
s∈{−1,1}

φ(s · di − gi (y), y)

)
.

Case 2. For all i ∈ [1..m] we have fi (y) ̸= 0.
⇝ apply GCD-Lemma:

∧
i∈[1..m]

fi (y) ̸= 0 ∧ ψGCD(y).

Formula ψGCD(y) is a conjunction of conditions 1 – 4 of GCD-Lemma.
Consider condition 3:

For every i , j ∈ [1..m] we have GCD (GCD (fi (y), dj) , gi (y)− gj(y)) | di

⇝
∨
a|dj

(
GCD(fi (y), dj) = a ∧

∨
d|di

GCD(a, gi (y)− gj(y)) = d
)
.
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Quantifier elimination algorithm (sketch)

∃x

 ∧
i∈[1..m]

GCD(fi (y), gi (y) + x) = di ∧
∧

i∈[m+1..l ]

fi (y) ̸= x


︸ ︷︷ ︸

φ(x,y)

Case 1. For some i ∈ [1..m] we have fi (y) = 0.

⇝
∨

i∈[1..m]

(
fi (y) = 0 ∧

∨
s∈{−1,1}
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Corollaries

Theorem
P∃Def⟨Z; 1,+,⊥⟩ = PQFDef⟨Z; 1,+,−, ̸=,⊥,GCD2,GCD3,GCD4, ...⟩.

Corollary 1. Dis-coprimeness ̸⊥ is not P∃-definable in ⟨Z; 1,+,−,⊥⟩.
Proof

Assume ̸⊥ is P∃-definable.
¬GCD(x , y) = d ⇔ d ∤ x ∨ d ∤ y ∨ ∃u∃v (x = du ∧ y = dv ∧ u ̸⊥ v).
d ∤ x ⇔

∨
k=1..d−1

d | x + k ⇝ similar to PA case, we can eliminate all

the quantifiers and Th⟨Z; 1,+,⊥⟩ is decidable.
Corollary 2. The order relation ≤ is not P∃-definable in ⟨Z; 1,+,−,⊥⟩.
(consider x ≥ 0).
Consider ⟨N;S ,⊥⟩, where S is the successor function x 7→ x + 1.

Th⟨N; S ,⊥⟩ is undecidable. [A.R. Woods 1981, D. Richard 1982]
x ̸= 0 ⇔ ∃y(x ⊥ SSy) is not P∃-definable in ⟨N;S ,⊥⟩.

Theorem P∃Def⟨N; S ,⊥⟩ = PQFDef⟨N;S , ̸= 0,⊥⟩.
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Decidable ∀∃-fragment of LPAD-Theory of Z

We know: ∀∃-Theory of the structure ⟨Z; 1,+,−,≤, |⟩ is undecidable.

(DPRM-theorem + universal formula:
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Positive existential arithmetic with addition and coprimeness

Decidability of P∃Th⟨Z; 1,+,−,≤, |⟩ by [Bel’tyukov 1976, Lipshitz 1978]:

PQFLPAD -formula φ(x)

Constructing φj(yj ) is rather sophisticated⇝ more quantifier-elimination spirit
Decidability of P∃Th⟨Z; 1,+,−,≤,⊥⟩.
Step 1. Variable isolation: PQFLPAC -formula ϕ(x)⇝ equi-satisfiable

∨
j∈J

ϕj(yj ), where

Every list yj has at most the same size as x .

ϕj(yj ) has form zj ≥ 0∧ tj ≥ 0∧ φ̃(zj )∧
∧

i∈[1..mj ]

GCD(fi,j(zj ), gi,j(zj ) + ci,j tj) = di,j ,

where fi,j(zj ) has non-negative coefficients and positive constant terms.

Step 2. Quantifier elimination: Apply GCD-Lemma to eliminate each tj .

Mikhail R. Starchak (SPbU) quasi-QE for Addition and GCD October 25, 2021 11 / 16



Positive existential arithmetic with addition and coprimeness

Decidability of P∃Th⟨Z; 1,+,−,≤, |⟩ by [Bel’tyukov 1976, Lipshitz 1978]:

PQFLPAD -formula φ(x)

⇝ equi-satisfiable PQFLPAD -formula
∨
j∈J

φj(yj ) ∧ yj ≥ 0 without ≤ in φj(yj ).

⇝ for such φj(yj ) we can construct a constant νj such that ∃yjφj(yj ) in N iff
∃yjφj(yj ) in the p-adic integers for every prime p ≤ νj [Weispfenning 1988].

Constructing φj(yj ) is rather sophisticated⇝ more quantifier-elimination spirit
Decidability of P∃Th⟨Z; 1,+,−,≤,⊥⟩.
Step 1. Variable isolation: PQFLPAC -formula ϕ(x)⇝ equi-satisfiable

∨
j∈J

ϕj(yj ), where

Every list yj has at most the same size as x .

ϕj(yj ) has form zj ≥ 0∧ tj ≥ 0∧ φ̃(zj )∧
∧

i∈[1..mj ]

GCD(fi,j(zj ), gi,j(zj ) + ci,j tj) = di,j ,

where fi,j(zj ) has non-negative coefficients and positive constant terms.

Step 2. Quantifier elimination: Apply GCD-Lemma to eliminate each tj .

Mikhail R. Starchak (SPbU) quasi-QE for Addition and GCD October 25, 2021 11 / 16



Positive existential arithmetic with addition and coprimeness

Decidability of P∃Th⟨Z; 1,+,−,≤, |⟩ by [Bel’tyukov 1976, Lipshitz 1978]:

PQFLPAD -formula φ(x)

⇝ equi-satisfiable PQFLPAD -formula
∨
j∈J

φj(yj ) ∧ yj ≥ 0 without ≤ in φj(yj ).

⇝ for such φj(yj ) we can construct a constant νj such that ∃yjφj(yj ) in N iff
∃yjφj(yj ) in the p-adic integers for every prime p ≤ νj [Weispfenning 1988].

Constructing φj(yj ) is rather sophisticated⇝ more quantifier-elimination spirit
Decidability of P∃Th⟨Z; 1,+,−,≤,⊥⟩.
Step 1. Variable isolation: PQFLPAC -formula ϕ(x)⇝ equi-satisfiable

∨
j∈J

ϕj(yj ), where

Every list yj has at most the same size as x .

ϕj(yj ) has form zj ≥ 0∧ tj ≥ 0∧ φ̃(zj )∧
∧

i∈[1..mj ]

GCD(fi,j(zj ), gi,j(zj ) + ci,j tj) = di,j ,

where fi,j(zj ) has non-negative coefficients and positive constant terms.

Step 2. Quantifier elimination: Apply GCD-Lemma to eliminate each tj .

Mikhail R. Starchak (SPbU) quasi-QE for Addition and GCD October 25, 2021 11 / 16



Positive existential arithmetic with addition and coprimeness

Decidability of P∃Th⟨Z; 1,+,−,≤, |⟩ by [Bel’tyukov 1976, Lipshitz 1978]:

PQFLPAD -formula φ(x)

⇝ equi-satisfiable PQFLPAD -formula
∨
j∈J

φj(yj ) ∧ yj ≥ 0 without ≤ in φj(yj ).

⇝ for such φj(yj ) we can construct a constant νj such that ∃yjφj(yj ) in N iff
∃yjφj(yj ) in the p-adic integers for every prime p ≤ νj [Weispfenning 1988].

Constructing φj(yj ) is rather sophisticated

⇝ more quantifier-elimination spirit
Decidability of P∃Th⟨Z; 1,+,−,≤,⊥⟩.
Step 1. Variable isolation: PQFLPAC -formula ϕ(x)⇝ equi-satisfiable

∨
j∈J

ϕj(yj ), where

Every list yj has at most the same size as x .

ϕj(yj ) has form zj ≥ 0∧ tj ≥ 0∧ φ̃(zj )∧
∧

i∈[1..mj ]

GCD(fi,j(zj ), gi,j(zj ) + ci,j tj) = di,j ,

where fi,j(zj ) has non-negative coefficients and positive constant terms.

Step 2. Quantifier elimination: Apply GCD-Lemma to eliminate each tj .

Mikhail R. Starchak (SPbU) quasi-QE for Addition and GCD October 25, 2021 11 / 16



Positive existential arithmetic with addition and coprimeness

Decidability of P∃Th⟨Z; 1,+,−,≤, |⟩ by [Bel’tyukov 1976, Lipshitz 1978]:

PQFLPAD -formula φ(x)

⇝ equi-satisfiable PQFLPAD -formula
∨
j∈J

φj(yj ) ∧ yj ≥ 0 without ≤ in φj(yj ).

⇝ for such φj(yj ) we can construct a constant νj such that ∃yjφj(yj ) in N iff
∃yjφj(yj ) in the p-adic integers for every prime p ≤ νj [Weispfenning 1988].

Constructing φj(yj ) is rather sophisticated⇝ more quantifier-elimination spirit

Decidability of P∃Th⟨Z; 1,+,−,≤,⊥⟩.
Step 1. Variable isolation: PQFLPAC -formula ϕ(x)⇝ equi-satisfiable

∨
j∈J

ϕj(yj ), where

Every list yj has at most the same size as x .

ϕj(yj ) has form zj ≥ 0∧ tj ≥ 0∧ φ̃(zj )∧
∧

i∈[1..mj ]

GCD(fi,j(zj ), gi,j(zj ) + ci,j tj) = di,j ,

where fi,j(zj ) has non-negative coefficients and positive constant terms.

Step 2. Quantifier elimination: Apply GCD-Lemma to eliminate each tj .

Mikhail R. Starchak (SPbU) quasi-QE for Addition and GCD October 25, 2021 11 / 16



Positive existential arithmetic with addition and coprimeness

Decidability of P∃Th⟨Z; 1,+,−,≤, |⟩ by [Bel’tyukov 1976, Lipshitz 1978]:

PQFLPAD -formula φ(x)

⇝ equi-satisfiable PQFLPAD -formula
∨
j∈J

φj(yj ) ∧ yj ≥ 0 without ≤ in φj(yj ).

⇝ for such φj(yj ) we can construct a constant νj such that ∃yjφj(yj ) in N iff
∃yjφj(yj ) in the p-adic integers for every prime p ≤ νj [Weispfenning 1988].

Constructing φj(yj ) is rather sophisticated⇝ more quantifier-elimination spirit
Decidability of P∃Th⟨Z; 1,+,−,≤,⊥⟩.
Step 1. Variable isolation: PQFLPAC -formula ϕ(x)

⇝ equi-satisfiable
∨
j∈J

ϕj(yj ), where

Every list yj has at most the same size as x .

ϕj(yj ) has form zj ≥ 0∧ tj ≥ 0∧ φ̃(zj )∧
∧

i∈[1..mj ]

GCD(fi,j(zj ), gi,j(zj ) + ci,j tj) = di,j ,

where fi,j(zj ) has non-negative coefficients and positive constant terms.

Step 2. Quantifier elimination: Apply GCD-Lemma to eliminate each tj .

Mikhail R. Starchak (SPbU) quasi-QE for Addition and GCD October 25, 2021 11 / 16



Positive existential arithmetic with addition and coprimeness

Decidability of P∃Th⟨Z; 1,+,−,≤, |⟩ by [Bel’tyukov 1976, Lipshitz 1978]:

PQFLPAD -formula φ(x)

⇝ equi-satisfiable PQFLPAD -formula
∨
j∈J

φj(yj ) ∧ yj ≥ 0 without ≤ in φj(yj ).

⇝ for such φj(yj ) we can construct a constant νj such that ∃yjφj(yj ) in N iff
∃yjφj(yj ) in the p-adic integers for every prime p ≤ νj [Weispfenning 1988].

Constructing φj(yj ) is rather sophisticated⇝ more quantifier-elimination spirit
Decidability of P∃Th⟨Z; 1,+,−,≤,⊥⟩.
Step 1. Variable isolation: PQFLPAC -formula ϕ(x)⇝ equi-satisfiable

∨
j∈J

ϕj(yj ), where

Every list yj has at most the same size as x .

ϕj(yj ) has form zj ≥ 0∧ tj ≥ 0∧ φ̃(zj )∧
∧

i∈[1..mj ]

GCD(fi,j(zj ), gi,j(zj ) + ci,j tj) = di,j ,

where fi,j(zj ) has non-negative coefficients and positive constant terms.

Step 2. Quantifier elimination: Apply GCD-Lemma to eliminate each tj .

Mikhail R. Starchak (SPbU) quasi-QE for Addition and GCD October 25, 2021 11 / 16



Positive existential arithmetic with addition and coprimeness

Decidability of P∃Th⟨Z; 1,+,−,≤, |⟩ by [Bel’tyukov 1976, Lipshitz 1978]:

PQFLPAD -formula φ(x)

⇝ equi-satisfiable PQFLPAD -formula
∨
j∈J

φj(yj ) ∧ yj ≥ 0 without ≤ in φj(yj ).

⇝ for such φj(yj ) we can construct a constant νj such that ∃yjφj(yj ) in N iff
∃yjφj(yj ) in the p-adic integers for every prime p ≤ νj [Weispfenning 1988].

Constructing φj(yj ) is rather sophisticated⇝ more quantifier-elimination spirit
Decidability of P∃Th⟨Z; 1,+,−,≤,⊥⟩.
Step 1. Variable isolation: PQFLPAC -formula ϕ(x)⇝ equi-satisfiable

∨
j∈J

ϕj(yj ), where

Every list yj has at most the same size as x .

ϕj(yj ) has form zj ≥ 0∧ tj ≥ 0∧ φ̃(zj )∧
∧

i∈[1..mj ]

GCD(fi,j(zj ), gi,j(zj ) + ci,j tj) = di,j ,

where fi,j(zj ) has non-negative coefficients and positive constant terms.

Step 2. Quantifier elimination: Apply GCD-Lemma to eliminate each tj .

Mikhail R. Starchak (SPbU) quasi-QE for Addition and GCD October 25, 2021 11 / 16



Positive existential arithmetic with addition and coprimeness

Decidability of P∃Th⟨Z; 1,+,−,≤, |⟩ by [Bel’tyukov 1976, Lipshitz 1978]:

PQFLPAD -formula φ(x)

⇝ equi-satisfiable PQFLPAD -formula
∨
j∈J

φj(yj ) ∧ yj ≥ 0 without ≤ in φj(yj ).

⇝ for such φj(yj ) we can construct a constant νj such that ∃yjφj(yj ) in N iff
∃yjφj(yj ) in the p-adic integers for every prime p ≤ νj [Weispfenning 1988].

Constructing φj(yj ) is rather sophisticated⇝ more quantifier-elimination spirit
Decidability of P∃Th⟨Z; 1,+,−,≤,⊥⟩.
Step 1. Variable isolation: PQFLPAC -formula ϕ(x)⇝ equi-satisfiable

∨
j∈J

ϕj(yj ), where

Every list yj has at most the same size as x .

ϕj(yj ) has form zj ≥ 0∧ tj ≥ 0∧ φ̃(zj )∧
∧

i∈[1..mj ]

GCD(fi,j(zj ), gi,j(zj ) + ci,j tj) = di,j ,

where fi,j(zj ) has non-negative coefficients and positive constant terms.

Step 2. Quantifier elimination: Apply GCD-Lemma to eliminate each tj .

Mikhail R. Starchak (SPbU) quasi-QE for Addition and GCD October 25, 2021 11 / 16



Generalize this approach to prove the BL-Theorem?

Difficulties:
Every variable t ∈ y can appear in right-hand side polynomials

GCD(f (z), g(z) + ct) = h(z) + dt

with c , d > 0. ⇝ Lipshitz’s basic transformations (Lemma 2).

Application of GCD-Lemma to systems of the form∧
i∈[1..m]

GCD(fi (z), gi (z) + t) = hi (z)

requires introducing new variables.
Consider (2): GCD(hi (z), hj(z)) | gi (z)− gj(z)
for each (i , j), 1 ≤ i < j ≤ m, we introduce ζi ,j , such that

⇝ ∃ζi ,j (GCD(hi (z), hj(z)) = ζi ,j ∧ GCD(ζi ,j , gi (z)− gj(z)) = ζi ,j) .

Aim: eliminate all Latin variables ⇝
each linear polynomial is either aζ or a for some a > 0.
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with c , d > 0. ⇝ Lipshitz’s basic transformations (Lemma 2).
Application of GCD-Lemma to systems of the form∧

i∈[1..m]

GCD(fi (z), gi (z) + t) = hi (z)

requires introducing new variables.
Consider (2): GCD(hi (z), hj(z)) | gi (z)− gj(z)

for each (i , j), 1 ≤ i < j ≤ m, we introduce ζi ,j , such that

⇝ ∃ζi ,j (GCD(hi (z), hj(z)) = ζi ,j ∧ GCD(ζi ,j , gi (z)− gj(z)) = ζi ,j) .
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Quasi-quantifier elimination algorithms

Two disjoint sorts of variables: S1 (Latin letters) and S2 (Greek letters).

Structure ⟨M;σ⟩ and language Lσ with variables from S1 ∪ S2.

Language LA ⊂ Lσ; all occurrences of Latin variables are free and all
occurrences of Greek variables are bound.

Quasi-QE algorithm A for the language LA in the structure ⟨M;σ⟩:
(1) LA-formulas of elimination form: Lx

A ⊆ LA.
(2) Step 1: LA-formula ∃αφ(y ,α) ⇝ equi-satisfiable

∨
j∈J

∃αφ̃j(yj ,α) and for every

j ∈ J:
1 yj comprises at most the same number of variables as y .

2 There is a variable x̃j ∈ yj such that [∃αφ̃j(yj ,α)]x̃jx ∈ Lx
A.

(3) Step 2: ∃x∃αφ̃(x , z ,α) ⇝ equivalent LA-formula ∃α∃βψ̃(z ,α,β). Here
∃αφ̃(x , z ,α) is some Lx

A-formula.

A applies Step 1 and Step 2 to LA-formulas: φ(x)⇝ ... ⇝ ∃γψ(γ) such that

φ(x) is satisfiable in ⟨M;σ⟩ if and only if ∃γψ(γ) is true in ⟨M;σ⟩ .
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Quasi-quantifier elimination for addition and GCD

LR is the set of formulas ∃α
∨
j∈J

φj(yj ,α) for some finite index set J and formulas

φj(y ,α) of the form

α ≥ 1 ∧ y ≥ 0 ∧
∧

i∈[1..mj ]

GCD(fi,j(y ,α), gi,j(y ,α)) = hi,j(y ,α),

where every gcd-expression takes one of the forms:

1 GCD(f (y), g(y)) = h(y)

2 GCD(f (y), g(y)) = aζ
3 GCD(aζ, g(y)) = bη
4 GCD(aζ, bη) = cθ,

Lx
R ⊆ LR comprise formulas ∃α

∨
j∈J2

φ̃j(x , zj ,α) for some finite index set J2 and

formulas φ̃j(x , z ,α) of the form

α ≥ 1∧z ≥ 0∧x ≥ 0∧ ˜̃φj(z ,α)∧
∧

i∈[1..m̃j ]

GCD(f̃i,j(z ,α), g̃i,j(z)+ci,jx) = h̃i,j(z ,α),

GCD-Lemma at Step 2 of R to eliminate x and obtain an LR-formula.
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Reduction to a fragment of Skolem Arithmetic with
constants

Every LR-formula with only Greek variables is a P∃Lσ-formula for
σ =

〈
1, {a·}a∈Z>0 ,GCD

〉
.

Theorem
The decision problem for ∃Th⟨Z; 1,+,−,≤,GCD⟩ is reducible to the
decision problem for P∃Th

〈
Z>0; 1, {a·}a∈Z>0 ,GCD

〉
, where a· is a unary

functional symbol for multiplication by a positive integer a.

Skolem Arithmetic with constants Th
〈
Z>0; {a}a∈Z>0 , ·,=

〉
is

decidable [Barth D., Beck M., Dose T., Glaßer C., Michler L.,
Technau M. “Emptiness Problems for Integer Circuits” 2017].
The proof of the BL-Theorem now follows from

GCD(x , y) = z ⇔ z | x ∧ z | y ∧ ∀t(t | x ∧ t | y ⇒ t | z),

where x | y ⇌ ∃z(y = z · x).
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Skolem Arithmetic with constants Th
〈
Z>0; {a}a∈Z>0 , ·,=

〉
is

decidable [Barth D., Beck M., Dose T., Glaßer C., Michler L.,
Technau M. “Emptiness Problems for Integer Circuits” 2017].
The proof of the BL-Theorem now follows from

GCD(x , y) = z ⇔ z | x ∧ z | y ∧ ∀t(t | x ∧ t | y ⇒ t | z),

where x | y ⇌ ∃z(y = z · x).
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Questions

P∃-Definability in ⟨Z; 1,+,≤,⊥⟩
Dis-coprimeness ̸⊥ is P∃-definable?

More general decidable ∀∃-fragment of ⟨Z; 1,+,−,≤, |⟩?

Complexity of Ax = B ∧ Cx ≥ D ∧
∧

i∈[1..m]

GCD(fi (x), gi (x)) = di

Polynomial upper bound on small solutions?
Satisfiability check in polynomial time when size of x is fixed?
∃LPA-formulas : true and for ∃LPAD -formulas: false.

Thanks for your attention !

Mikhail R. Starchak (SPbU) quasi-QE for Addition and GCD October 25, 2021 16 / 16



Questions

P∃-Definability in ⟨Z; 1,+,≤,⊥⟩
Dis-coprimeness ̸⊥ is P∃-definable?
More general decidable ∀∃-fragment of ⟨Z; 1,+,−,≤, |⟩?

Complexity of Ax = B ∧ Cx ≥ D ∧
∧

i∈[1..m]

GCD(fi (x), gi (x)) = di

Polynomial upper bound on small solutions?
Satisfiability check in polynomial time when size of x is fixed?
∃LPA-formulas : true and for ∃LPAD -formulas: false.

Thanks for your attention !

Mikhail R. Starchak (SPbU) quasi-QE for Addition and GCD October 25, 2021 16 / 16



Questions

P∃-Definability in ⟨Z; 1,+,≤,⊥⟩
Dis-coprimeness ̸⊥ is P∃-definable?
More general decidable ∀∃-fragment of ⟨Z; 1,+,−,≤, |⟩?

Complexity of Ax = B ∧ Cx ≥ D ∧
∧

i∈[1..m]

GCD(fi (x), gi (x)) = di

Polynomial upper bound on small solutions?
Satisfiability check in polynomial time when size of x is fixed?
∃LPA-formulas : true and for ∃LPAD -formulas: false.

Thanks for your attention !

Mikhail R. Starchak (SPbU) quasi-QE for Addition and GCD October 25, 2021 16 / 16



Questions

P∃-Definability in ⟨Z; 1,+,≤,⊥⟩
Dis-coprimeness ̸⊥ is P∃-definable?
More general decidable ∀∃-fragment of ⟨Z; 1,+,−,≤, |⟩?

Complexity of Ax = B ∧ Cx ≥ D ∧
∧

i∈[1..m]

GCD(fi (x), gi (x)) = di

Polynomial upper bound on small solutions?

Satisfiability check in polynomial time when size of x is fixed?
∃LPA-formulas : true and for ∃LPAD -formulas: false.

Thanks for your attention !

Mikhail R. Starchak (SPbU) quasi-QE for Addition and GCD October 25, 2021 16 / 16



Questions

P∃-Definability in ⟨Z; 1,+,≤,⊥⟩
Dis-coprimeness ̸⊥ is P∃-definable?
More general decidable ∀∃-fragment of ⟨Z; 1,+,−,≤, |⟩?

Complexity of Ax = B ∧ Cx ≥ D ∧
∧

i∈[1..m]

GCD(fi (x), gi (x)) = di

Polynomial upper bound on small solutions?
Satisfiability check in polynomial time when size of x is fixed?

∃LPA-formulas : true and for ∃LPAD -formulas: false.

Thanks for your attention !

Mikhail R. Starchak (SPbU) quasi-QE for Addition and GCD October 25, 2021 16 / 16



Questions

P∃-Definability in ⟨Z; 1,+,≤,⊥⟩
Dis-coprimeness ̸⊥ is P∃-definable?
More general decidable ∀∃-fragment of ⟨Z; 1,+,−,≤, |⟩?

Complexity of Ax = B ∧ Cx ≥ D ∧
∧

i∈[1..m]

GCD(fi (x), gi (x)) = di

Polynomial upper bound on small solutions?
Satisfiability check in polynomial time when size of x is fixed?
∃LPA-formulas : true and for ∃LPAD -formulas: false.

Thanks for your attention !

Mikhail R. Starchak (SPbU) quasi-QE for Addition and GCD October 25, 2021 16 / 16



Questions

P∃-Definability in ⟨Z; 1,+,≤,⊥⟩
Dis-coprimeness ̸⊥ is P∃-definable?
More general decidable ∀∃-fragment of ⟨Z; 1,+,−,≤, |⟩?

Complexity of Ax = B ∧ Cx ≥ D ∧
∧

i∈[1..m]

GCD(fi (x), gi (x)) = di

Polynomial upper bound on small solutions?
Satisfiability check in polynomial time when size of x is fixed?
∃LPA-formulas : true and for ∃LPAD -formulas: false.

Thanks for your attention !

Mikhail R. Starchak (SPbU) quasi-QE for Addition and GCD October 25, 2021 16 / 16


