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By UTB−

(“Uniform Tarski Biconditionals”) we mean a theory extending
PA with a fresh predicate T (x) (“x is a true arithmetical sentence”) and
the following axiom scheme:

∀t1 . . . tn
(
Tϕ(t1, . . . , tn) ≡ ϕ(val(t1), . . . , val(tn))

)
,

where ϕ is an arithmetical formula. If we add the full induction scheme for
formulae containing T , the resulting theory is called UTB.
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Notice that if (M,S) |= UTB and M ̸= N,

then there exists T ⊂ M and
c ∈ M such that S satisfies Tarski compositional conditions for formulae of
syntactic depth ≤ c. I.e., the following holds

∀s, t ∈ ClTermPA T (s = t) ≡ (val(s) = val(t)).

∀ϕ ∈ SentPA
(
dpt(¬ϕ) ≤ c → T¬ϕ ≡ ¬Tϕ

)
.

∀ϕ, ψ ∈ SentPA
(
dpt(ϕ ∨ ψ) ≤ c → T (ϕ ∨ ψ) ≡ Tϕ ∨ Tψ

)
.

∀v ∈ Var∀ϕ ∈ Form≤1
PA

(
dpt(∃vϕ) ≤ c → T∃vϕ ≡ ∃xTϕ[x/v ]

)
.

∀s̄, t̄ ∈ ClTermSeqPA∀ϕ ∈ FormPA val(s̄) = val(t̄) → Tϕ(t̄) ≡ Tϕ(s̄).

We also call a theory with axioms above CT ↾ c (Compositional Truth).
We can also consider the variant without induction, called CT− ↾ c,
restrict compositional axioms to a cut or not restrict them at all.
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Why does a truth predicate affect models?

Proposition
Suppose that (M,T ) |= UTB and M is nonstandard. Then M is
recursively saturated.

Fix a recursive type
ϕ0(x), ϕ1(x), . . .

Since this is a type and (M,T ) |= UTB, for every n ∈ ω, we have:

(M,T ) |= ∃x∀i ≤ n Tϕi(x).

By overspill, there exists c ∈ M \ ω such that

(M,T ) |= ∃x∀i ≤ c Tϕi(x).

By UTB, the witness realises our type.
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(M,T ) |= ∃x∀i ≤ c Tϕi(x).

By UTB, the witness realises our type.
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Another example.

Proposition
If (M,T ) ⊆ (N, S) are models of UTB−, then M ⪯ N

Suppose that (M,T ) |= ϕ(a1, . . . , an) for some ϕ ∈ LPA. Then, by UTB−,

(M,T ) |= Tϕ(a1, . . . , an).

Since, (M,T ) is a submodel of (N, S), we also have:

(N, S) |= Sϕ(a1, . . . , an)

and by UTB−,
(N, S) |= ϕ(a1, . . . , an).

.
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There are also other similar properties which would take some more time
to explain.

The general question which we are trying to answer: suppose some theory
U extending (some portion of) PA imposes some truth-related properties
on models. Does it define a truth predicate.
The things that can be varied:

What is the underlying arithmetical theory?
What truth-like property we consider?
What truth-theoretic axioms we mean?
What kind of definability we mean?

In this talk, we focus on recursive saturation.
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Theorem (Kossak)
Suppose that U is a theory

in a countable language extending PA and
featuring the full induction scheme for the extended language. Suppose
that for any model M |= U, the arithmetical reduct of M is recursively
saturated. Then in every model M of U, we can define (with parametres)
a predicate T such that (M,T ) |= UTB.

The key fact:

Theorem (MacDowell–Specker)
Suppose that U is a theory in a countable language with the full induction
scheme. Then for any model M |= U, there exists an elementary
conservative end extension

M ≺e M ′.

An extension M ⊆ N is conservative iff for any A definable in N, the set

A ∩ M

is definable in M.
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Let M |= U.

Since U satisfies assumptions of MacDowell–Specker
Theorem, there exists a conservative end-extension M ⪯ N.
Let τ(x , y) be the following type:

∀t1, . . . , tn ≤ x ϕ(t1, . . . , tn) ∈ y ≡ ϕ(val(t1), . . . , val(tn)),

where ϕ is an arithmetical formula. Pick any c ∈ N \ M. Since N |= U, it
realises the type τ(c, y). Let d be the element realising this type and let

A = {x ∈ N | N |= x ∈ d}.

By conservativity, A ∩ M is definable in M. We check that A ∩ M satisfies
UTB.
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What can be modified in Kossak’s result?

Proposition
There exists a theory in U in a countable language which extends PA and
such that for every M |= U, the arithmetical reduct of M is recursively
saturated which has a model N that cannot be expanded to a model of
UTB.

Theorem (Kaufmann–Shelah)
There exists a recursively saturated model M of PA which is rather
classless, i.e., for any X ⊂ M if X is piecewise coded, then X is definable.

By “piecewise coded,” we mean that for every c, the set X ∩ c is coded as
a finite set in the sense of PA.
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Let URS be a theory extending PA with the following axioms for any
n ∈ ω and any recursive type p = ϕ0, ϕ1, . . . , where ϕi arithmetic:

∀ȳ
(
∃x

∧
i≤n

ϕi(x , ȳ) →
∧
i≤n

ϕi(cp(ȳ , ȳ))
)
.

We verify that a model M |= PA expands to URS iff it is recursively
saturated. In particular, if M is a rather classless recursively saturated
model of PA, then it expands to URS but not to UTB.
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Proposition
There exists a theory U in a countable language

with full induction such
that for every model M of U, the arithmetical reduct of M is recursively
saturated, but U does not define a predicate provably satisfying UTB.

Indeed, let (ϕi) be a primitive recursive enumeration of arithmetical
formulae and let U be a theory extending PA with fresh predicates
T0,T1, . . . ,Tω, full induction for the extended language and the following
axioms for each i , j ∈ ω:

¬∀t1 . . . tn
(
Tjϕi(t1, . . . , tn) ≡ ϕi(val(t1), . . . , val(tn))

)
−→

−→ ∀t1 . . . tn
(
Tωϕj(t1, . . . , tn) ≡ ϕj(val(t1), . . . , val(tn))

)
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In every model of U, there is a predicate satisfying UTB.

Since if no Ti
satisfies UTB, then Tω satisfies all instances of UTB−.
On the other hand, suppose that a predicate satisfying UTB is definable in
U. Then it is definable with a formula ϕ using only predicates
T0,T1, . . . ,TN ,Tω for some N. Consider the following model of U:

Ti = ∅, for i ≤ N.
Ti is the set of true arithmetical sentences for i > N.
Tω is a partial arithmetical truth predicate which works fine for
ϕ0, . . . , ϕN .

In this model, T0,T1, . . . ,TN ,Tω are all definable, so ϕ defines an
arithmetical set, so it cannot define a predicate satisfying UTB.
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In particular, we see that th definability of UTB given by Kossak’s result
cannot be fully uniform.

Theorem
Suppose that U is a theory in a countable language extending PA. Assume
that for any M |= U, the arithmetical reduct of U is recursively saturated.
Then in every model M |= U, we can define (with parametres) a set T
such that (M,T ) |= UTB−.
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Let U be as in the assumptions. We inductively define a sequence of sets
of formulae Aα and a sequence of theories Uα in a language LU with an
extra constant a.

Let U0 = U. Let Aα be the set of ψ ∈ LU such that there exists ϕ ∈ LU
for which:

Uα ⊢
(
ψ(a) → ∃yϕ(a, y)

)
∧ ∀y

(
ϕ(a, y) → τ(a, y)

)
.

Recall that τ(a, y) is the type: “y codes the part of elementary diagram
with terms up to a.” It makes sense to write a type in such a context. Let

Uα+1 := Uα ∪ {¬ψ | ψ ∈ Aα}.
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Claim
If Uα is consistent, then Aα ⊈ Uα.

The claim is proved in a way analogous to Omitting Types Theorem using
the fact that Uα entails recursive saturation. (Here we are using the
countability of the language).

Lemma
For each α, if Uα is consistent, then Uα+1 ⊋ Uα.
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Using Lemma, we obtain that for some α, Uα+1 is inconsistent.

Since it is inconsistent, there exists a finite set of formulae
ψ1, . . . , ψn ∈ Aα such that

Uα + ¬ψ1(a) + . . .+ ¬ψn(a)

is inconsistent. In particular,

Uα ⊢ ψ1(a) ∨ . . . ∨ ψn(a).
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Now, let M |= U be any model.

Let M∗ ⪰ M be a countably saturated
elementary extension. Let α be the least such that there exists ψ ∈ Aα for
which ψ(a) holds for cofinally many a ∈ M∗.
Such an α exists. Suppose otherwise. Then by saturation, for each α,
there exists bα such that Uα is satisfied for all a > bα (with a being the
interpretation of the fresh constant). In, for some α, there exists b ∈ M∗

and a finite collection ψ1, . . . , ψn of formulae such that one of ψi(a) holds
for each a > bα.
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Let γ be this least ordinal and let ψ ∈ Aγ be a formula which holds
cofinally.

Let ϕ be a formula witnessing that ψ ∈ Aα. Notice that, by
minimality and countable saturation, there exists b such that all elements
a > b satisfy Uγ . In particular, if a > b and M∗ |= ψ(a), then there exists
b such that M∗ |= ϕ(a, b) and

M∗ |= τ(a, b).
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Let T ∗ be defined as the set of all ϕ(t̄) ∈ SentPA(M∗) such that

for an
arbitrarily large a such that ψ(a) and ϕ(a, b) hold, ϕ(t̄) ∈ b. One can
verify that (M∗,T ∗) |= UTB−.
The definition of T ∗ uses a parameter b, so it need not carry over to M.
Let us denote the formula defining it, with b made explicitly a parameter
T ∗(b).
Now, notice that T ⊂ M∗ defined as the set of those ϕ(t̄) ∈ SentPA(M∗)
such that for some d

dpt(ϕ) ≤ d
For large enough b, T ∗

b satisfies CT− ↾ d .

Notice that this definition does not use parametres, so it carries over to
M.
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A few remarks:

If U is a complete theory in a countable language which entails
recursive saturation, then it defines a predicate satisfying UTB−

provably in U.
In the theorem, the predicate satisfying UTB− is defined in every
model without parametres.
If, on the other hand, U is not complete, then the dependence on the
theory of the model is not uniform.
The formulae defining the UTB− predicate in general do not have
some bounded complexity.
A predicate provably satisfying UTB− need not be definable in U,
even if we assume that the language is finite.

Wcisło (UG) Characterising truth October 26, 2021, Athens 21 / 22



A few remarks:
If U is a complete theory in a countable language which entails
recursive saturation, then it defines a predicate satisfying UTB−

provably in U.

In the theorem, the predicate satisfying UTB− is defined in every
model without parametres.
If, on the other hand, U is not complete, then the dependence on the
theory of the model is not uniform.
The formulae defining the UTB− predicate in general do not have
some bounded complexity.
A predicate provably satisfying UTB− need not be definable in U,
even if we assume that the language is finite.

Wcisło (UG) Characterising truth October 26, 2021, Athens 21 / 22



A few remarks:
If U is a complete theory in a countable language which entails
recursive saturation, then it defines a predicate satisfying UTB−

provably in U.
In the theorem, the predicate satisfying UTB− is defined in every
model without parametres.

If, on the other hand, U is not complete, then the dependence on the
theory of the model is not uniform.
The formulae defining the UTB− predicate in general do not have
some bounded complexity.
A predicate provably satisfying UTB− need not be definable in U,
even if we assume that the language is finite.

Wcisło (UG) Characterising truth October 26, 2021, Athens 21 / 22



A few remarks:
If U is a complete theory in a countable language which entails
recursive saturation, then it defines a predicate satisfying UTB−

provably in U.
In the theorem, the predicate satisfying UTB− is defined in every
model without parametres.
If, on the other hand, U is not complete, then the dependence on the
theory of the model is not uniform.

The formulae defining the UTB− predicate in general do not have
some bounded complexity.
A predicate provably satisfying UTB− need not be definable in U,
even if we assume that the language is finite.

Wcisło (UG) Characterising truth October 26, 2021, Athens 21 / 22



A few remarks:
If U is a complete theory in a countable language which entails
recursive saturation, then it defines a predicate satisfying UTB−

provably in U.
In the theorem, the predicate satisfying UTB− is defined in every
model without parametres.
If, on the other hand, U is not complete, then the dependence on the
theory of the model is not uniform.
The formulae defining the UTB− predicate in general do not have
some bounded complexity.

A predicate provably satisfying UTB− need not be definable in U,
even if we assume that the language is finite.

Wcisło (UG) Characterising truth October 26, 2021, Athens 21 / 22



A few remarks:
If U is a complete theory in a countable language which entails
recursive saturation, then it defines a predicate satisfying UTB−

provably in U.
In the theorem, the predicate satisfying UTB− is defined in every
model without parametres.
If, on the other hand, U is not complete, then the dependence on the
theory of the model is not uniform.
The formulae defining the UTB− predicate in general do not have
some bounded complexity.
A predicate provably satisfying UTB− need not be definable in U,
even if we assume that the language is finite.

Wcisło (UG) Characterising truth October 26, 2021, Athens 21 / 22



Thank you for your attention!
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