I. Guessarian

Affine completeness of some free binary algebras

Irène Guessarian

Joint work with André Arnold & Patrick Cégielski LABRI & LACL

JAF2024	I. Gues	sarian
Outline		
 Congruences, congruence preservation, affine 		
completeness		
2 Contributions of the present work		
	E> E	~ ~ ~
		2/18

JAF2024		I. Guessarian
Out	line	
 Congruences, congruence 	preservation, attine	
completeness		
1		
2 Contributions of the prese	ent work	
Congruences, congruence preservation, affine completeness	로 > 《로 > 《집 > 《□ > 키 기	▶ ≡ ∽へで 3/18
		-/

Congruences

I. Guessarian

A **CONGRUENCE** on algebra $\mathcal{A} = \langle A, \star \rangle$ algebra with operation \star . is an equivalence relation \sim on A which is compatible with the operation, i.e.,

 $a \sim a' \ and \ b \sim b' \implies a \star b \sim a' \star b'$

Congruences, congruence preservation, affine completeness	1 1 1 1	4/18

Congruence preserving functions

Definition

 $f: A^{n} \to A \text{ is congruence preserving iff, for any} \\ \text{congruence } \sim \text{ on } A, \forall x_{1}, \dots, x_{n}, y_{1}, \dots, y_{n} \in A \\ \bigwedge_{i=1}^{i=n} x_{i} \sim y_{i} \implies f(x_{1}, \dots, x_{n}) \sim f(y_{1}, \dots, y_{n}) \end{cases}$

Example: Polynomial functions are CP (congruence preserving).

 $P = \{ \text{polynomials with variables } x_1, \ldots, x_n \} \text{ is defined by }$

 $-A \cup \{x_1,\ldots,x_n\} \in P$

 $-t, t' \in P \Longrightarrow (t \star t') \in P$

Not all CP functions are polynomial ,,,,

	▲□▶ ▲@▶ ▲필▶ ▲필▶ _ 필	$\mathcal{O}\mathcal{Q}$
Congruences, congruence preservation, affine completeness		5/18

Affine completeness

CP= congruence preserving. Non polynomial CP functions on $\langle \mathbb{N}, + \rangle$:

$$g(x) = \frac{\Gamma(1/2)}{2 \times 4^{x} \times x!} \int_{1}^{\infty} e^{-t/2} (t^{2} - 1)^{x} dt$$

[CGG15] Newton representation of functions over natural integers having integral difference ratios, Int. Jour. Numb. Th., (2015).

Definition (affine complete algebra)

An algebra is affine complete iff: for all $f: f CP \iff f$ polynomial.

Hence: $\langle a^*, \cdot \rangle \approx \langle \mathbb{N}, + \rangle$ is **not** affine complete.

	・ロト ・合ト ・言ト ・言ト	
Congruences, congruence preservation, affine completeness	I [I] F	6/18

I. Guessarian

Affine completeness in a non-commutative algebra

On the algebra of words with concatenation, $S = \langle \Sigma^*, \cdot \rangle$, for f unary

Theorem (In the Free monoid -CGG)

If $|\Sigma| \ge 3$: $f \ CP \iff f : x \mapsto w_0 x w_1 x w_2 \cdots x w_k$, $k \in \mathbb{N}, \ w_0, w_1, \ldots, w_k \in \Sigma^*$.

Similar Theorem for *n*-ary functions.

[CGG] CP functions on free monoids, Alg.Univ. (2017).

Summary: The free monoid $\langle \Sigma^*, \cdot \rangle$ is not affine complete if $|\Sigma| = 1$ and is affine complete if $|\Sigma| \ge 3$.

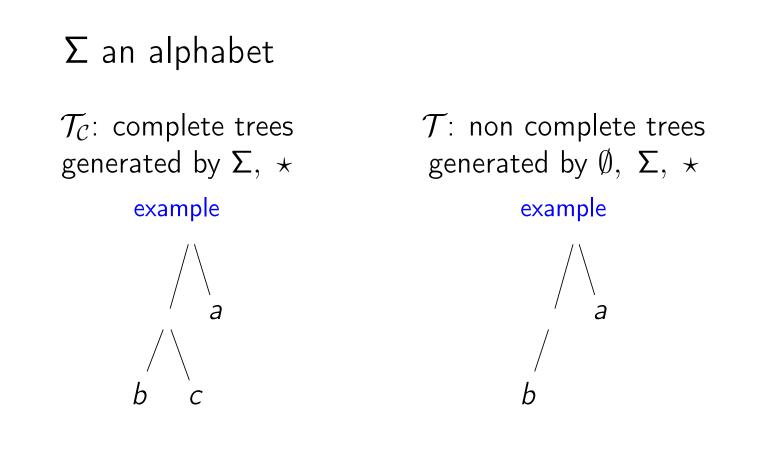
 $|\Sigma| = 2 ??$

	◆□▶ ◆郡▶ ◆臣▶ ◆臣▶ []	$\mathcal{O} \mathcal{Q} \mathcal{O}$
Congruences, congruence preservation, affine completeness	111	7/18

JAF2024	I. Guessarian
Outline	
Congruences, congruence preservation, affine completeness	
2 Contributions of the present work	
	▲ 重 ▶ 重 ♡ Q (や)
Contributions of the present work	8/18

I. Guessarian

Algebras of binary trees with labelled leaves



	$= \mathcal{O} \mathcal{Q} \mathcal{O}$
Contributions of the present work	9/18

New results of the present work

Theorem

The algebras of trees \mathcal{T} (or complete trees $\mathcal{T}_{\mathcal{C}}$) are affine complete if $|\Sigma| \ge 1$.

Theorem

The algebra of words with concatenation, $S = \langle \Sigma^*, \cdot \rangle$, $|\Sigma| \ge 2$ is affine complete.

Similar proofs: by induction on arity n of f. Case n = 0 obvious. Will sketch proof for n = 1. Going from n to n + 1: identical. We use only some special "magic" congruences. From now on f unary CP on $\Sigma^* = \{a, b\}^*$

Contributions of the present work	1 1 1 1	10/18

I. Guessarian

Proof idea for *f* **unary on** $\Sigma^* = \{a, b\}^*$

$$f \ \mathsf{CP} \xrightarrow{!!} \exists k \in \mathbb{N}, w_0, w_1, \ldots, w_k \in \Sigma^*: \ f(x) = w_0 x w_1 x w_2 \cdots x w_k.$$

- length of u = |u| = number of letters in u: e.g., |axbxa| = 5
 u ~ v iff |u| = |v| is a congruence.
- degree of polynomial P: = number of "x" in P(x) P(x) = axbxa, degree(P(x))=2, |P(u)| = |aubua| = 2|u| + 3 hence |P(u)| is an affine function of |u|.
- for all CP functions is |f(u)| is an affine function of |u| ??

Lemma (Degree of a CP function)

If $f: \Sigma^* \longrightarrow \Sigma^*$ is CP then $\exists k$ called the degree of f such that:

$$|f(u)| = k|u| + |f(\varepsilon)|$$

Contributions of the present work

▲□▶ ▲@▶ ▲ ≧▶ ▲ ≧▶ ≧ ∽ Q (~
 ▶ ▲ 圖▶ ▲ ≧▶ ▲ ≧▶ ≧ ∽ Q (~
 ▶ ▲ 圖▶ ▲ ≧▶ ▲ ≧▶ ≧ ∽ Q (~

12/18

Special congruences on Σ^*

 $u, v \in \Sigma^* \sim_{u,v} \text{ congruence generated by } u \sim_{u,v} v$ $|u| > |v|, w \in \Sigma^* \text{ is } \sim_{u,v} \text{-reducible iff } u \text{ occurs in } w.$ Define reduct $Red_{u,v}(w)$ by replacing u by v in w as much as possible: $w \xrightarrow{Red_{u,v}} Red_{u,v}(w).$ Example: $u = aa, v = b, w = aaa, aa \xrightarrow{Red_{u,v}} b$ ba $Red_{u,v}$ $aaa \xrightarrow{Red_{u,v}} ab$ Reduct non-unique: because u self-overlaps in w to be avoided

1 Г 1 Р

Magic congruences on Σ^*

$$\sim_{\tau, v}$$
 with $\tau \in \mathcal{T} = \{a^n bab^n \mid n > 1\}, \text{and } |v| < |\tau|$

Each congruence class has a unique canonical shortest representative, i.e.,

 $u \sim_{\tau,v} u' \iff u \overset{Red_{\tau,v}}{\leadsto} w \overset{Red_{\tau,v}}{\lll} u'$ Magic congruences: Each *u* has a unique decomposition with *u_i*'s τ -irreducible $u = u_0 \tau u_1 \tau \dots \tau \dots \tau u_m$. Apply to $u = f(\tau)$: $f(\tau) = u_0 \tau u_1 \tau \dots \tau \dots \tau u_m$. Define a Polynomial $P_{f,\tau}(x) = Red_{\tau,x}(f(\tau)) = u_0 x u_1 x \dots x \dots x u_m$

	《曰》《卽》《言》《言》 []	E
Contributions of the present work		13/18

I. Guessarian

Partial polynomiality of CP functions

Lemma (Lem $P_{f,\tau}$)

The polynomial
$$P_{f,\tau}(x) = \operatorname{Red}_{\tau,x}(f(\tau))$$
 satisfies:
 $P_{f,\tau}(\tau) = f(\tau)$, degree($P_{f,\tau}$) \leq degree(f) and
 $\forall v: |f(v)| < |\tau| \Longrightarrow f(v) = \operatorname{Red}_{\tau,v}(P_{f,\tau}(v))$

$$\begin{array}{ll} \underline{\operatorname{Proof}} |f(v)| < |\tau| \text{ implies } f(v) = \operatorname{Red}_{\tau,v}(f(v)) \\ f(v) \sim_{\tau,v} f(\tau) = P_{f,\tau}(\tau) \sim_{\tau,v} P_{f,\tau}(v) \\ & & & & \\ \operatorname{Red}_{\tau,v} \\ f(v) = \operatorname{Red}_{\tau,v}(P_{f,\tau}(v)) \end{array}$$

Theorem

$$\begin{aligned} & If \ degree(P_{f,\tau}) = \ degree(f) \ then \ \forall v \ with \ |f(v)| < |\tau|, \\ & f(v) = P_{f,\tau}(v). \end{aligned}$$

$$\underbrace{Proof \ Same \ degree \Rightarrow \ same \ length \Rightarrow |P_{f,\tau}(v)| = |f(v)| < |\tau| \Rightarrow P_{f,\tau}(v) = \underbrace{Red}_{\tau,v}(P_{f,\tau}(v)). \\ & \exists \quad 0 \in \mathbb{C} \end{aligned}$$

$$\underbrace{I \ |I|}_{T} \qquad 14/18$$

I. Guessarian

Fundamental lemma

f CP of degree k. Goal : $degree(P_{f,\tau}) = degree(f) = k$

Lemma (LemF)

Let $|\tau| > |f(a)|$. If degree($P_{f,\tau}$) < k there exists $\ell \in \{a, b\}$ such that $|\text{Red}_{\tau,\ell}(P_{f,\tau}(\ell))| > |\tau|$.

Consequence of Lemma

$$|f(\ell)| = |f(a)| < |\tau|$$

By Lem $P_{f,\tau}$: $f(\ell) = Red_{\tau,\ell}(P_{f,\tau}(\ell))$
By Lem F: $degree(P_{f,\tau}) < k \Longrightarrow |Red_{\tau,\ell}(P_{f,\tau}(\ell))| > |\tau|$ $ighter black$

$$| au| > |f(a)| \Longrightarrow degree(P_{f, au}) = degree(f) \Longrightarrow$$

if $|f(v)| < | au|$, $f(v) = P_{f, au}(v)$ polynomial

	∢□▶∢⊡▶∢≧▶∢	■ ● ■ うくぐ
Contributions of the present work		15/18

I. Guessarian

Example for proof of fundamental Lemma

The proof relies on combinatorial properties of words in \mathcal{T} . If |f(u)| = 2|u|, $\tau = a^2bab^2$, $|\tau| = 6$, and $degree(P_{f,\tau}) = 1$, then degree(f) = 2, $P_{f,\tau}(x) = wxw'$, $w, w' \tau$ -irreducible, $ww' = \tau$. Hence 5 possibilities for $P_{f,\tau}$.

$P_{f,\tau}(x)$	axabab ²	a²xbab²	a² bxab²	a² baxb²	a² babxb
$P_{f,\tau}(a)$	a ³ bab ²	a ³ bab ²	a² ba² b²	a² ba² b²	a² babab
	= a au	= a $ au$	au-irred.	au-irred.	au-irred.
$P_{f,\tau}(b)$	ababab ²	$a^2b^2ab^2$	a²b²ab²	a²bab³	a²bab³
	au-irred.	au-irred.	au-irred.	= au b	$= au \mathbf{b}$

For each of these five possibilities, at least one of the two words $P_{f,\tau}(a)$, $P_{f,\tau}(b)$ is of length 7> 6 = $|\tau|$ and is $|\tau|$ -irreducible.

Contributions of the present work		16/18

Polynomiality of CP functions

Consequence of the fundamental lemma:

Theorem

For any v, $\exists n \text{ such that }: |\tau| > n \Longrightarrow f(v) = P_{f,\tau}(v)$.

Moreover

Lemma

P, Q polynomials such that: P(a) = Q(a) and P(b) = Q(b)then P = Q.

Consequence: All $P_{f,\tau}$ are equal for τ large enough and their common value P satisfies f = P. Hence any unary CP function is polynomial. The *n*-ary case is done by a simple induction, and $\{a, b\}^*$ is affine complete.

	▲□▶ ▲圖▶ ▲壹▶ ▲	
Contributions of the present work		17/18

CONCLUSION

Simpler proof for tree algebras: because of the unique decomposition of trees, there are no overlapping problems and any tree can play the role of τ .

Problems

- What about labelled non binary trees
- Characterize affine complete binary free algebras

	<pre>< I > < I > < E > < E ></pre>	
Contributions of the present work	111	18/18