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Definition

A number p ∈ N is called a prime if p > 1 and p has no nontrivial divisors.

Exercise

Can you use this definition to determine if the following number is a prime?

21068007328335977063071957054744694249261368731123264581047456877703201640799267894005487927576951–

60182176700381388230369515448598972850709446097655499688629864762785080773240281624476856471973223–

76640146656216905597408550180933733592457062514337257294614470154101330655846095385800022098866108–

71903419290125695818346158092427531483779576986269072164214670529517108261879191845413891334363110–

07027363042643313218499754174613318740688584796965300679069680461759675166500285723780556636551681–

03838982686272379117379047901639778647758897736887525872909712212673506403504493673031272507562025–

13603651678062849278654188931
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Primality tests

(200 BC) Sieve of Eratosthenes – essentially trial division

(1976–1980) Miller–Rabin Probabilistic polynomial-time algorithm.

▶ Used in practice!
▶ Returns no for the number from the exercise.

(2002) [Agrawal, Kayal, Saxena] The AKS Algorithm; The first
deterministic polynomial-time algorithm.

▶ Of theoretical value, not used in practice.

Polynomial-time algorithm ≈ fast ≈ feasible
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Onďrej Ježil (Department of algebra, Charles University, Prague Based on joint work with Raheleh Jalali Institute of Computer Science, Czech Academy of Sciences, Prague)Primes, feasible computations and reasoning September 9, 2024 4 / 23



Primality tests

(200 BC) Sieve of Eratosthenes – essentially trial division

(1976–1980) Miller–Rabin Probabilistic polynomial-time algorithm.
▶ Used in practice!
▶ Returns no for the number from the exercise.

(2002) [Agrawal, Kayal, Saxena] The AKS Algorithm; The first
deterministic polynomial-time algorithm.

▶ Of theoretical value, not used in practice.

Polynomial-time algorithm ≈ fast ≈ feasible
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Primality is a feasible property.
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ZFC ⊢ Primality is a feasible property.
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π : ZFC ⊢ Primality is a feasible property.
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π : ZFC ⊢ Primality is a feasible property.

Problem

But is π itself feasible?
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Complexity theory: What is feasibility?

Complexity theory collects problems into complexity classes depending
on what kind of ‘algorithm’ can solve them.

Theorem

P is the set of all subsets of N which are recognized by some polynomial
time algorithm.

OddNumbers,PerfectSquares,SolvableLinearSystems,SolvableDiophantineLinearSystems ∈ P

AKS: Primes ∈ P

Cobham’s Thesis: P is exactly the set of all feasible
problems/properties.
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Complexity theory II

Theorem

NP is the set of all subsets of N which are recognized by some polynomial
time nondeterministic algorithm.

Nondeterministic algorithm: Can guess information leading to a ‘yes’
answer.

SAT,CLIQUE ∈ NP
Expected to differ from P and generally considered infeasible.

Theorem

coNP is the set of all subsets of N which are recognized by some
polynomial time co-nondeterministic algorithm.

Co-nondeterministic algorithm: Can guess information leading to a
‘no’ answer.

Primes ∈ coNP
Expected to differ from both P and NP and generally considered
infeasible.
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Onďrej Ježil (Department of algebra, Charles University, Prague Based on joint work with Raheleh Jalali Institute of Computer Science, Czech Academy of Sciences, Prague)Primes, feasible computations and reasoning September 9, 2024 10 / 23



Complexity theory II

Theorem

NP is the set of all subsets of N which are recognized by some polynomial
time nondeterministic algorithm.

Nondeterministic algorithm: Can guess information leading to a ‘yes’
answer.

SAT,CLIQUE ∈ NP
Expected to differ from P and generally considered infeasible.

Theorem

coNP is the set of all subsets of N which are recognized by some
polynomial time co-nondeterministic algorithm.

Co-nondeterministic algorithm: Can guess information leading to a
‘no’ answer.

Primes ∈ coNP

Expected to differ from both P and NP and generally considered
infeasible.
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Complexity theory III

Theorem

PH is the set of all subsets of N which are recognized by some algorithm
from the polynomial hierarchy.

Algorithm from the polynomial hierarchy: Can alternate between
guessing information leading to ‘yes’ and ‘no’ finitely many times.

The problem: [Can a given circuit be simplified?] ∈ PH

P,NP, coNP ⊆ PH, expected to be strict, considered infeasible

Set ↔ Property ↔ Problem to decide if an input satisfies the property

Central question: Does P = NP?

That is, does ‘magically’ guessing
positive information add power to short computations?
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Bounded arithmetic: Feasibility of proofs

The field of bounded arithmetic describes axiomatizations of
mathematics which intuitively correspond to reasoning with a given
complexity class.

Some literature:

▶ Kraj́ıček (1995): Bounded Arithmetic, Propositional Logic
and Complexity Theory

▶ Cook and Nguyen (2010): Logical foundation of proof complexity

Nonexample:

▶ ZFC ⊢ “There is a function f : N → N which is not computed by any
algorithm.”

▶ While true, this function is not only infeasible, but truly uncomputable.
▶ However, similar theorems can be used to prove a statement, which

itself talks about feasible concepts.
▶ ZFC ⊢ Con(PA), that is ZFC ⊢ “finite mathematics is consistent′′.
▶ But by Gödel’s theorem, PA ⊬ Con(PA).
▶ So we can gain provability of feasible statements from infeasible ones.
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▶ Kraj́ıček (1995): Bounded Arithmetic, Propositional Logic

and Complexity Theory

▶ Cook and Nguyen (2010): Logical foundation of proof complexity

Nonexample:

▶ ZFC ⊢ “There is a function f : N → N which is not computed by any
algorithm.”

▶ While true, this function is not only infeasible, but truly uncomputable.
▶ However, similar theorems can be used to prove a statement, which

itself talks about feasible concepts.
▶ ZFC ⊢ Con(PA), that is ZFC ⊢ “finite mathematics is consistent′′.
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Bounded arithmetic II
The field of bounded arithmetic describes axiomatizations of
mathematics which intuitivelly correspond to reasoning with a given
complexity class.

Cook’s PV1 is a theory having function symbols for every
polynomial-time algorithm, and induction for every polynomial-time
property. That is, if p ∈ P, then there is an axiom

[(p(0) ∧ (∀x)(p(x) → p(x + 1))) → (∀x)(p(x))] ∈ PV1.

Theorem

If for p ∈ P:
PV1 ⊢ (∀x)(∃y)p(x , y),

then there is a function computable in polynomial-time function f
computing for each x a y such that p(x , f (x)).

There are many other bounded arithmetic theories for different
complexity classes.
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What do we gain by studying feasible proofs?
Bounded reverse mathematics:

▶ Understanding the strength of reasoning with a concrete complexity
class, and relationship of different axioms.

Meta-complexity

▶ PV1 can formulate a large part of contemporary complexity theory.
▶ Is it possible to show that PV1 ⊬ P = NP?
▶ This would imply the existence of a structure M |= PV1 which behaves

very much like N but M |= [P ̸= NP].
▶ Possibly easier than P ̸= NP but still wide open!

Proof complexity

▶ It’s not hard to prove that NP ̸= coNP =⇒ P ̸= NP.
▶ “If guessing negative and positive information have different powers

then guessing positive information adds power.”
▶ Showing (strong) unprovability in a bounded arithmetic gives lower

bounds for propositional proof systems.
▶ Lower bounds for all p.p.s. =⇒ NP ̸= coNP.

Complexity: If PV1 ⊢ “the AKS algorithm is correct”, then factoring
integers is easy.

Then cryptography is broken.
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Onďrej Ježil (Department of algebra, Charles University, Prague Based on joint work with Raheleh Jalali Institute of Computer Science, Czech Academy of Sciences, Prague)Primes, feasible computations and reasoning September 9, 2024 14 / 23



What do we gain by studying feasible proofs?
Bounded reverse mathematics:

▶ Understanding the strength of reasoning with a concrete complexity
class, and relationship of different axioms.

Meta-complexity
▶ PV1 can formulate a large part of contemporary complexity theory.
▶ Is it possible to show that PV1 ⊬ P = NP?
▶ This would imply the existence of a structure M |= PV1 which behaves

very much like N but M |= [P ̸= NP].
▶ Possibly easier than P ̸= NP but still wide open!

Proof complexity

▶ It’s not hard to prove that NP ̸= coNP =⇒ P ̸= NP.
▶ “If guessing negative and positive information have different powers

then guessing positive information adds power.”
▶ Showing (strong) unprovability in a bounded arithmetic gives lower

bounds for propositional proof systems.
▶ Lower bounds for all p.p.s. =⇒ NP ̸= coNP.

Complexity: If PV1 ⊢ “the AKS algorithm is correct”, then factoring
integers is easy.

Then cryptography is broken.
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Onďrej Ježil (Department of algebra, Charles University, Prague Based on joint work with Raheleh Jalali Institute of Computer Science, Czech Academy of Sciences, Prague)Primes, feasible computations and reasoning September 9, 2024 14 / 23



What do we gain by studying feasible proofs?
Bounded reverse mathematics:

▶ Understanding the strength of reasoning with a concrete complexity
class, and relationship of different axioms.

Meta-complexity
▶ PV1 can formulate a large part of contemporary complexity theory.
▶ Is it possible to show that PV1 ⊬ P = NP?
▶ This would imply the existence of a structure M |= PV1 which behaves

very much like N but M |= [P ̸= NP].
▶ Possibly easier than P ̸= NP but still wide open!

Proof complexity
▶ It’s not hard to prove that NP ̸= coNP =⇒ P ̸= NP.
▶ “If guessing negative and positive information have different powers

then guessing positive information adds power.”
▶ Showing (strong) unprovability in a bounded arithmetic gives lower

bounds for propositional proof systems.
▶ Lower bounds for all p.p.s. =⇒ NP ̸= coNP.

Complexity: If PV1 ⊢ “the AKS algorithm is correct”, then factoring
integers is easy.

Then cryptography is broken.
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AKS and the generalized Fermat’s Little Theorem

Theorem

If a ∈ Z, n ∈ N, n ≥ 2 and gcd(a, n) = 1, then

n is a prime ⇐⇒ (X + a)n ≡ X n + a (mod n).

Takes too long!

AKS show that:

▶ If we find r such that ordr (n) > log2(n) and for enough a:

(X + a)n ≡ X n + a (mod n,X r − 1),

then n is a power of a prime.

The proof mostly involves elementary results about finite fields
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The AKS algorithm
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Our work

Motivating question: What is the weakest possible theory of bounded
arithmetic, which can prove the correctness of the AKS algorithm?

PV1-formalization of the correctness ought to be hard or impossible –
it gives polynomial-time factoring algorithm.

S1
2 is a stronger theory of bounded arithmetic, which includes ‘short

NP induction’.

Still would result in a polynomial-time factoring
algorithm.

The axiom iWPHP(PV) is a well-studied axiom stating non-existence
of polynomial-time injective function f : {1, . . . , 2n} → {1, . . . , n}.
Unprovable in both PV1 and S1

2 unless cryptographic hashes can be
broken.

S1
2 + iWPHP(PV) is likely still not enough to naturally formalize the

original proof of correctness — we introduce two new algebraic
axioms, such that with their addition the original proof can be
formalized.
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Our work II – New algebraic axioms, GFLT

The simpler axiom to state is at the heart of the AKS algorithm:

Definition (Generalized Fermat’s little Theorem)

Let p be a prime and f a polynomial coded by a sequence of coefficients of
length equal to its degree. Then for every a ≤ p we have:

(X + a)p ≡ X p + a (mod p, f ).

Where the exponentiation is computed by iterated squaring modulo f .
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Our work III – New algebraic axioms, DLB

The other axiom prohibits polynomials coded by a list of monomials
to have more roots than its degree.

As sets of this size cannot be enumerated in S1
2 , then we claim a new

function symbol ι provides an injective function from the roots

Definition (Degree lower bound)

Let F be a finite field coded by a tuple of boolean circuits computing its
operations and f ∈ F [X ] a polynomial coded by a list of monomials. Then
the function ι(F , f ,−) is an injective map:

ι(F , f ,−) : {F - roots of f} → {1, . . . , deg f }.

The function symbol ι is then allowed to appear in the induction of
S1
2 and in the iWPHP instances.
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Our work IV – The Main Theorem

Definition

We define the sentence AKSCorrect as

(∀x)(AKSPrime(x) ↔ Prime(x)).

Theorem

S1
2 + iWPHP + DLB + GFLT ⊢ AKSCorrect

Lemma

VTC 0
2 ⊢ ι-free consequences of S1

2 + iWPHP + DLB + GFLT

Corollary (Main Theorem)

VTC 0
2 ⊢ AKSCorrect
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Onďrej Ježil (Department of algebra, Charles University, Prague Based on joint work with Raheleh Jalali Institute of Computer Science, Czech Academy of Sciences, Prague)Primes, feasible computations and reasoning September 9, 2024 20 / 23



Our work IV – The Main Theorem

Definition

We define the sentence AKSCorrect as

(∀x)(AKSPrime(x) ↔ Prime(x)).

Theorem

S1
2 + iWPHP + DLB + GFLT ⊢ AKSCorrect

Lemma

VTC 0
2 ⊢ ι-free consequences of S1

2 + iWPHP + DLB + GFLT

Corollary (Main Theorem)

VTC 0
2 ⊢ AKSCorrect
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Overview of our results

Theory Axioms Theorems

VTC 0
2 PH induction and counting Division of large polynomials

the DLB axiom
the GFLT axiom
AKSCorrect

S1
2 short NP induction 2⌊m/2⌋ ≤ lcm(1, . . . ,m)

Cyclotomic extensions

PV1 P induction Legendre’s formula
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Problems

Problem

Can this be improved? Can we discard the counting and just use the
strong pigeonhole principle? That is, does

T2 + PHP ⊢ AKSCorrect?

Problem

Can we show DLB and GFLT are hard for PV1 or S1
2 under some hardness

assumptions?
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VTC 0
2 ⊢ “Thank you for your attention!”
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