

Π_4^0 conservation of Ramsey's theorem for pairs

Quentin Le Houérou Université Paris-Est-Créteil-Val-de-Marne

September 11, 2024

Joint work with Ludovic Levy Patey and Keita Yokoyama

Quentin Le Houérou Π_{0}^{0} conservation of RT²

Introduction

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ = 臣 = めんの

Motivations: Hilbert's program

Objective: Justify the use of the actual infinity in mathematics.

- Conservation: Every theorem about finite objects proved using infinite objects can be proven without them.
- Consistency: Finitary mathematics can prove that infinitary mathematics doesn't lead to a contradiction.
- Gödel (1931) : Both of these goals are unattainable.
- Partial results still possible.

Motivations: Hilbert's program

Objective: Justify the use of the actual infinity in mathematics.

- Conservation: Every theorem about finite objects proved using infinite objects can be proven without them.
- Consistency: Finitary mathematics can prove that infinitary mathematics doesn't lead to a contradiction.
- Gödel (1931) : Both of these goals are unattainable.
- Partial results still possible.

Reverse mathematics

Reverse mathematics : Framework

Framework : second-order arithmetic.

- Easy distinction between finite and infinite objects.
- Allow the use of computability theory tools.
- Most of everyday mathematics is still formalizable.

Reverse mathematics

Base theory: RCA₀

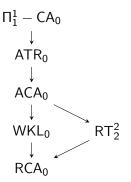
- Robinson's arithmetic Q
- Δ_1^0 -comprehension (The computable sets exists)
- Σ_1^0 -induction (Every set of finite cardinality is bounded)

 RCA_0 is conservative over $\Sigma_1\mathchar`-PA$ (Friedman) and Π_2 conservative over PRA (Parsons, Harrington)

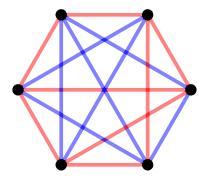
Modulo RCA_0 , most theorems of ordinary mathematics are equivalent to one the following theories (from weakest to strongest):

- **1** RCA₀: constructive mathematics.
- **2** WKL₀: compactness arguments.
- **3** ACA₀: second-order version of Peano arithmetics.
- 4 ATR₀: transfinite recursion.
- **5** Π_1^1 -CA: impredicativism.

Ramsey's theorem for pairs and two colors escape this phenomenon.



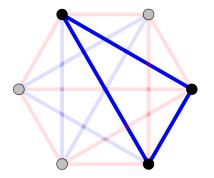
Finite Ramsey's theorem



For every 2-coloring of the edges of K_6

Proof 0000000000000000

Finite Ramsey's theorem



There exists some monochromatic copy of K_3

Ramsey's theorem

Infinite Ramsey's theorem

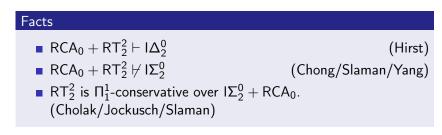
Let $[X]^2$ be the set of all subsets of X of cardinality 2.

Definition (Ramsey's theorem for pairs and two colors)

 RT_2^2 is the statement: "For every coloring $f : [\mathbb{N}]^2 \to 2$ there is an infinite set $H \subseteq \mathbb{N}$ such that $|f([H]^2)| = 1$ ".

Ramsey's theorem

First-order consequences of RT_2^2



The first-order consequences of RT_2^2 therefore lies between those of $Q + I\Delta_2$ and $Q + I\Sigma_2$. It is still open whether RT_2^2 is Π_1^1 -conservative over $RCA_0 + I\Delta_2^0$

Ramsey's theorem

First-order consequences of RT_2^2

A
$$\forall \Pi_3^0$$
 formula is a formula of the form
 $(\forall X)(\forall x)(\exists y)(\forall z)\theta(X, x, y, z)$ with $\theta \Delta_0^0$.

Theorem (Patey/Yokoyama)

 $RCA_0 + RT_2^2$ is a $\forall \Pi_3^0$ -conservative extension of RCA_0 .

Furthermore, the proof is formalizable in PRA, hence $PRA \vdash Con(Q + |\Sigma_1) \rightarrow Con(RCA_0 + RT_2^2)$

イロン イロン イヨン イヨン

Main theorem (Le Houérou/Levy Patey/Yokoyama)

 $RCA_0 + RT_2^2$ is a $\forall \Pi_4^0$ -conservative extension of $RCA_0 + I\Delta_2^0$.

Outline of the proof

Theorem

 RT_2^2 is $\forall \Pi_4^0$ conservative over $\mathsf{RCA}_0 + \mathsf{I}\Delta_2^0$.

Proof:

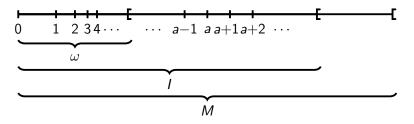
- Assume RCA₀ + $I\Delta_2^0 \not\vdash \forall X \forall x \phi(X, x)$ for $\phi(X, x) := \exists y \forall z \exists t \theta(X, x, y, z, t) \text{ a } \Sigma_3^0 \text{ statement.}$
- By completeness, compactness and the Löwenheim-Skolem theorem, there exists $\mathcal{M} = (M, S) \models \text{RCA}_0 + I\Delta_2^0 + \neg \phi(A, a)$ be a countable model with M nonstandard, and $a \in M$, $A \in S$
- From \mathcal{M} , build a model $\mathcal{M}' \models \mathsf{RCA}_0 + \mathsf{I}\Delta_2^0 + \mathsf{RT}_2^2 + \neg \phi(A, a)$
- Therefore $\mathsf{RCA}_0 + \mathsf{I}\Delta_2^0 + \mathsf{RT}_2^2 \not\vdash \forall X \forall x \phi(X)$

∃ 990

<ロ> <四> <四> <三</p>

Cuts

An initial segment $I \subseteq M$ closed under successor is called a *cut*.



Preserving RCA₀

From a cut $I \subsetneq M$, consider the model $(I, \operatorname{Cod}(M/I))$ where $\operatorname{Cod}(M/I) = \{F \cap I : F \text{ finite set of } \mathcal{M}\}$

- If I is stable by multiplication then $I \models Q$.
- $(I, \operatorname{Cod}(M/I)) \models \Delta_1^0$ -comprehension.
- For (I, Cod(M/I)) to be a model of IΣ₁⁰, we want every M-finite set F of cardinality ∈ I to not be cofinal in I. A cut verifying that is called *semi-regular*.

Preserving RCA₀

From a cut $I \subsetneq M$, consider the model $(I, \operatorname{Cod}(M/I))$ where $\operatorname{Cod}(M/I) = \{F \cap I : F \text{ finite set of } \mathcal{M}\}$

- If I is stable by multiplication then $I \models Q$.
- $(I, \operatorname{Cod}(M/I)) \models \Delta_1^0$ -comprehension.
- For (I, Cod(M/I)) to be a model of IΣ₁⁰, we want every M-finite set F of cardinality ∈ I to not be cofinal in I. A cut verifying that is called *semi-regular*.

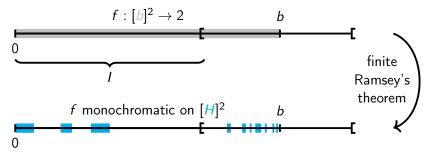
Preserving RCA₀

From a cut $I \subsetneq M$, consider the model $(I, \operatorname{Cod}(M/I))$ where

 $\operatorname{Cod}(M/I) = \{F \cap I : F \text{ finite set of } \mathcal{M}\}$

- If I is stable by multiplication then $I \models Q$.
- $(I, \operatorname{Cod}(M/I)) \models \Delta_1^0$ -comprehension.
- For $(I, \operatorname{Cod}(M/I))$ to be a model of $I\Sigma_1^0$, we want every M-finite set F of cardinality $\in I$ to not be cofinal in I. A cut verifying that is called *semi-regular*.

Every instance of RT_2^2 in $(I, \operatorname{Cod}(M/I))$ is obtained from a finite instance $f : [b]^2 \to 2$ that is restricted to $[I]^2$.



Problem : It may be impossible to have $H \cap I$ cofinal in IWe need a stronger version of Ramsey's theorem that put more weight on small elements.

$$\alpha$$
-largeness

Definition : α -large sets

A set
$$X \subseteq_{fin} \mathbb{N}$$
 is
• ω^0 -large if $X \neq \emptyset$.
• $\omega^{(n+1)}$ -large if $X \setminus \min X$ is $(\omega^n \cdot \min X)$ -large
• $\omega^n \cdot k$ -large if there are $k \omega^n$ -large subsets of

$$X_0 < X_1 < \cdots < X_{k-1}$$

where A < B means that for all $a \in A$ and $b \in B$, a < b.

X

Theorem: Kołodziejczyk/Yokoyama

Let X be ω^{300n} -large and $f : [X]^2 \to 2$ a coloring. There exists some ω^n -large subset Y of X such that f is homogeneous on $[Y]^2$.

Parson's theorem

If for some Δ_0^0 formula ψ we have:

 $\mathsf{RCA}_0 \vdash \forall X(X \text{ is infinite } \rightarrow (\exists F \subseteq_{\texttt{fin}} X) \exists y \psi(y, F))$

Then there exists some $n \in \omega$ such that:

$$\mathsf{I}\Sigma^0_1 \vdash \forall Z(Z \text{ is } \omega^n\text{-}\mathsf{large} \to \exists F \subseteq Z \exists y < \mathsf{max}\, Z\psi(y,F))$$

Proposition

 $\mathsf{RCA}_0 \vdash (\forall a)(WF(\omega^a) \rightarrow$ every infinite set contains some ω^a -large subset)

▲□▶ ▲□▶ ▲目▶ ▲目▶ = 目 - のへで

Preserving a Π_2^0 formula

Assume $(M, S) \models (\forall y)(\exists z)\theta(y, z)$.

By Δ_1^0 -comprehension, let $X = \{x_0 < x_1 < ...\}$ infinite such that $(\forall y < x_i)(\exists z < x_{i+1})\theta(y, z)$ for every *i*.

By overflow, let *a* non-standard such that $(M, S) \models WF(\omega^{300^a})$ By RCA₀, let $Y \subseteq X$ be ω^{300^a} -large.

I will be defined as $\bigcup_{n \in \omega} [0, \min Y_n]$ for $Y = Y_0 \supseteq Y_1 \supseteq ...$ with $Y_i \ \omega^{300^{a-i}}$ -large and $\min Y_{i+1} > \min Y_i$. Finally, $(I, \operatorname{Cod}(M/I)) \models (\forall y)(\exists z)\theta(y, z)$

Preserving a Π_3^0 formula

Assume $(M, S) \models (\forall y)(\exists z)(\forall t)\theta(y, z, t)$. Not possible to build $X = \{x_0 < x_1 < ...\}$ infinite such that $(\forall y < x_i)(\exists z < x_{i+1})(\forall t)\theta(y, z, t)$: this requires Σ_1^0 -comprehension.

Definition: θ -apart

Two finite sets A < B are θ -apart if:

 $(\forall y < \max A)(\exists z < \min B)(\forall t < \max B)\theta(y, z, t)$

Definition : α -large(θ) sets

A set $X \subseteq_{fin} \mathbb{N}$ is $\omega^{0}-large(\theta) \text{ if } X \neq \emptyset.$ $\omega^{(n+1)}-large(\theta) \text{ if } X \setminus \min X \text{ is } (\omega^{n} \cdot \min X)\text{-large}(\theta)$ $\omega^{n} \cdot k\text{-large}(\theta) \text{ if there are } k \ \omega^{n}\text{-large}(\theta) \text{ subsets of } X \text{ that are pairwise } \theta\text{-apart.}$

$$X_0 < X_1 < \cdots < X_{k-1}$$

For every standard *n*, $\text{RCA}_0 + I\Delta_2^0 + (\forall y)(\exists z)(\forall t)\theta(y, z, t)$ proves that every infinite set contain some ω^n -large(θ) set.

Proposition

Let X be $\omega^{(16^6+1)^n}$ -large(θ) and $f : [X]^2 \to 2$ a coloring. There exists some ω^n -large(θ) subset Y of X such that f is homogeneous on $[Y]^2$.

伺 と く ヨ と く ヨ と

э

References

 Ludovic Patey and Keita Yokoyama. The proof-theoretic strength of Ramsey's theorem for pairs and two colors. *Adv. Math.*, 330:1034–1070, 2018.
 Leszek Aleksander Koł odziejczyk and Keita Yokoyama. Some upper bounds on ordinal-valued Ramsey numbers for

colourings of pairs.

Selecta Math. (N.S.), 26(4):Paper No. 56, 18, 2020.

Quentin Le Houérou, Ludovic Levy Patey, and Keita Yokoyama.

 Π^0_4 conservation of ramsey's theorem for pairs, 2024.

Proposition: Kołodziejczyk/Yokoyama

If Y is ω^{n+1} -large and $Y = Y_0 \cup Y_1$, then there exists some i < 2 such that Y_i is ω^n -large.

Proposition: Le Houérou/Levy Patey/Yokoyama

For every *n*, there is a Δ_0^0 formula θ , a set *Y* that is ω^{2n-1} -large(θ) and a partition $Y = Y_0 \cup Y_1$ such that Y_0 and Y_1 are not ω^n -large(θ).