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Reverse mathematics

Almost every theorem is empirically equivalent to one of these five subsystems.

Π1
1 − CA0 −→ ATR0 −→ ACA0 −→ WKL0 −→ RCA0.

We work over the weakest one, RCA0 which is the fragment of second-order
arithmetic whose axioms are the axioms of Robinson arithmetic, induction for Σ0

1,
formulas, and comprehension for ∆0

1 formulas.
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Ramsey theory : RTnk

Statement (Ramsey theorem RTn
k )

For all coloring f : [N]n → k, there exists an infinite set H ⊆ N such that f is
constant over [H]n.

First counter example of the aforementioned phenomen : RCA0 <RT
2
2 <ACA0.

The hierarchy collapses after n = 3 and is equal to ACA0. Other versions of RT
n
k

are studied.
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The Erdős-Moser theorem

Definition

A tournament on a domain D ⊆ N is an irreflexive binary relation R ⊆ D2 such
that for every a, b ∈ D with a ̸= b, exactly one of R(a, b) and R(b, a) holds.

Alternative definition :

Definition

A tournament on a domain D ⊆ N is an orientation of the complete graph whose
set of nodes is D.

Definition

A tournament is transitive if for all x, y, z, R(x, y) ∧R(y, z) =⇒ R(x, z).

Statement (Erdős-Moser theorem)

EM is the statement “Every infinite tournament admits an infinite transitive
subtournament.”.
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EM and RT2
2

EM instances, tournaments, can be viewed as 2-colorings of pairs :
f(x, y) = (x < y ∧R(x, y)) ∨ (y < x ∧R(y, x)). As such, any
f -homogeneous set is in particular a transitive subtournament.

Jockusch proved that every computable instance of RT2
2 admits a Π0

2

solution, while there exists a computable instance of RT2
2 with no Σ0

2

solution. These bounds are the same for the Erdős-Moser theorem.
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EM and RT2
2

Chong proved that the first-order part of Ramsey’s theorem for pairs and the
Erdős-Moser theorem coincide.

Most of the known statements implied by RT2
2 are known to follow from EM

over RCA0.

Whether EM implies RT2
2 was open for a long time, before Lerman, Solomon

and Towsner answered it negatively.
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EM and RT2
2

Non computable instances make the behaviours vastly differ.

For every function g : N → N, there exists an instance of RT2
2 such that every

solution to that instance computes a function dominating g.

Thus, by a theorem of Slaman and Groszek there exists a (non-computable)
instance of RT2

2 such that every solution computes every hyperarithmetic (or
equivalently ∆1

1) set.
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EM and RT2
2

Patey and Wang independently proved that for every non-computable set B and
every instance of EM, there exists a solution which does not compute B.

This property of EM is shared with the infinite pigeonhole principle (RT1
2).
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EM is closer to RT1
2

Monin and Patey proved the following three propositions :

If B is not arithmetic (resp. hyperarithmetic), then for every set A, there is
an infinite subset H of A or A such that B is not A-arithmetic (resp.
A-hyperarithmetic).

If B is not Σ0
n (resp. ∆0

n), then for every set A, there is an infinite subset H
of A or A such that B is not Σ0

n(A) (resp. ∆
0
n(A)).

For every ∆0
n set A, there is an infinite subset H of A or A of lown degree.
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The weakness of the Erdős-Moser theorem
under arithmetic reductions

Theorem

If B is not arithmetic, then for every tournament T , there is an infinite transitive
subtournament H such that B is not H-arithmetic.

Theorem

Fix n ≥ 1. If B is not Σ0
n, then for every tournament T , there is an infinite

transitive subtournament H such that B is not Σ0
n(H).

Theorem

Fix n ≥ 1. Every ∆0
n tournament T has an infinite transitive subtournament of

lown+1 degree.
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Forcing

A forcing notion

A forcing notion, a condition : finite strings for Cohen, adding a reservoir for
Mathias forcing, ...

An order over those conditions : extension of finite strings, inclusion of sets,
...

Consider an infinite filter F and a sufficiently generic set GF =
⋂

c∈F [c].
For Cohen forcing, this is an infinite decreasing sequence of finite chains, and their
union is the sufficiently generic set.
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The forcing relation

Wrong semantic relation : c ⊩ φ(G) if φ(GF ) holds for every filter containing
c.

Correct semantic relation c ⊩ φ(G) if φ(GF ) holds for every sufficiently
generic filter containing c.

Syntaxic relation : (σ,X) ⊩ ∃xψG
e (x) if ∃xψσ

e (x).
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The forcing question

The forcing question c ?⊢φ(G) asks ”does there exist a condition d ≤ c such that
d ⊩ φ(G).

Abstracts from GF and only talks about conditions : can be simpler
computational-wise. For example, for Cohen forcing, whose conditions are only
chains, and whose order is computable, the forcing question for a Σ0

n formula is
Σ0

n : it is preserving.

The forcing question needs to be complete : if c ?⊬φ(G), then there exists d ≤ c
such that d ⊩ ¬φ(G)”.
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Σ0
n-preserving questions

There is no canonical forcing question for a forcing relation, and one needs to
construct one fit to force whatever property he wants. Here is an example of such
property :

Proposition

Let (P,≤) be a notion of forcing with a uniformly Σ0
n-preserving forcing question.

Then for every non-Σ0
n set B and every sufficiently generic set G for this notion of

forcing, B is not Σ0
n(G).
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Σ0
n-preserving questions

Démonstration.

Given a condition c ∈ P, let W = {a ∈ N : c ?⊢φ(G, a)}. The forcing question is
uniformly Σ0

n-preserving, hence B ̸=W . Let a ∈ B \W ∪W \B.

If a ∈W \B, then by definition, c ?⊢φ(G, a), so by property of the forcing
question, there is an extension d ≤ c such that d ⊩ φ(G, a).

If a ∈ B \W , then by definition, c ?⊬φ(G, a). By property of the forcing
question, c ?⊢¬φ(G, a), and by property, there is an extension d ≤ c such
that d ⊩ ¬φ(G, a).

If F is a sufficiently generic filter, it will contain a condition forcing φ(G, x) for an
x ̸∈ B or forcing ¬φ(G, x) for an x ∈ B for every Σ0

n formula φ(G, x), hence,
letting G be the set induced by F , B will not be Σ0

n(G).
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Combinatorics of EM

Definition

Fix a tournament T over a domain A.

(1) The interval (a, b) between a, b ∈ A ∪ {−∞,+∞} is the set of points x ∈ A
such that T (a, x) and T (x, b) hold.

(2) Given a finite T -transitive subset F ⊆ A and a, b ∈ F ∪ {−∞,+∞}, the
interval (a, b) is minimal in F if (a, b) ∩ F = ∅.
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EM forcing

Any finite T -transitive set F is not necessarily extendible into an infinite solution :
suppose there exist some a, b ∈ F such that T (a, b) holds, but T (b, x) and T (x, a)
both hold for cofinitely many x. We shall therefore work with Mathias conditions
with some extra structure which will guarantee that σ is extendible into an infinite
solution.

Definition

An EM-condition for T is a Mathias condition (σ,X) such that

1 for all y ∈ X, σ ∪ {y} is T -transitive ;

2 X is included in a minimal T -interval of σ.
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EM forcing

Write F →T E if for every a ∈ F and b ∈ E, T (a, b) holds.

Lemma

Fix an EM-condition c = (σ,X) for a tournament T , an infinite subset Y ⊆ X
and a finite T -transitive set ρ ⊆ X such that max ρ < minY and
[ρ→T Y ∨ Y →T ρ]. Then (σ ∪ ρ, Y ) is a valid extension of c.
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Naive forcing question for Σ1
0 formulas

Definition

Let c = (σ,X) be an EM-condition, n be an integer, and e be a Turing index. Let
c ?⊢ΦG

e (n) ↓ hold if there exists a finite f -homogeneous T -transitive set τ ⊆ X
such that Φσ∪τ

e (n) ↓.

The tournament T and its limit f have arbitrary complexities : this definition will
not yield a preserving question.
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Better forcing question for Σ0
1 formulas

Definition

Let c = (σ,X) be an EM-condition, n be an integer, and e be a Turing index. Let
c ?⊢ΦG

e (n) ↓ hold if for every tournament R and every function g : N → 2, there
is a finite g-homogeneous R-transitive set τ ⊆ X such that Φσ∪τ

e (n) ↓.

The over-approximation of the tournament and its limit actually reduce the
complexity thanks to a compactness argument :

c ?⊢ΦG
e (n) ↓ if there exists some threshold t such that for every tournament R

over {0, . . . , t} and every function g : {0, . . . , t} → 2, there is a finite
g-homogeneous R-transitive set τ ⊆ X such that Φσ∪τ

e (n) ↓.
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Forcing Π2
0 formulas

Not as easy : conditions do not strongly force now, but it is dense to force a
collection of Σ0

1 formulas.

Stating this density has varying complexity depending on the notion of forcing. It
is simple enough for Cohen forcing, but not for Mathias forcing. The following
lemma proves this approach fails for Mathias forcing :

Lemma (Folklore)

The set ∅′′ is Π0
2(GF ) for every sufficiently generic filter F for Mathias forcing

with computable reservoirs.

The idea is that reservoirs are too sparse.
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Partition regular and large classes

Definition

A class L ⊆ 2ω is partition regular if :

L is non-empty,

for all X ∈ L, if X ⊆ Y , then Y ∈ L,
for every integer k, for every X ∈ L, for every k-cover Y1, Y2, . . . Yk of X,
there exists i ≤ k such that Yi ∈ L.

Definition

A class L ⊆ 2ω is large if :

for all X ∈ L, if X ⊆ Y , then Y ∈ L,
for every integer k, for every k-cover Y1, Y2, . . . Yk of ω, there exists i ≤ k
such that Y ∈ L.
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Partition regular and large classes

Lemma

Let (Pn)n∈ω be a decreasing sequence of large classes. Their intersection⋂
n∈ω Pn is again large.

Lemma

Let A be a Σ0
1 class. The sentence “A is large” is Π0

2.

Definition

For every large class P, let L(P) denote the largest partition regular subclass of P.

Lemma

For every set C ⊆ ω2, there exists D ≤T C such that UM
D = L(UM

C ).
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First theorem

Theorem

If B is not arithmetic, then for every tournament T , there is an infinite transitive
subtournament H such that B is not H-arithmetic.

The forcing question to decide Σ0
2(G) formulas is too big. However, since it is still

arithmetic, this is not an issue and we make it work, since B is not arithmetic.
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Proving second theorem

Theorem

Fix n ≥ 1. If B is not Σ0
n, then for every tournament T , there is an infinite

transitive subtournament H such that B is not Σ0
n(H).

An added difficulty is that now we have to find a way to reduce the complexity of
the forcing question at the top level. We build a new forcing notion and a new
forcing question to fix this issue.
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Proving third theorem

Theorem

Fix n ≥ 1. Every ∆0
n tournament T has an infinite transitive subtournament of

lown+1 degree.

We prove this result by constructing our set effectively. This comes with its fair
share of technical difficulties but is quite standard.
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Thank you for listening

Thank you for listening !
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