The weakness of the Erdos-Moser theorem under arithmetic reduction

Ahmed MIMOUNI, joint work with Ludovic LEVY PATEY

Laboratoire d'Algorithmique, Complexité, et Logique (LACL) - Université Paris Est Créteil

10 septembre 2024

Almost every theorem is empirically equivalent to one of these five subsystems.

$$\Pi^1_1 - \mathsf{CA}_0 \longrightarrow \mathsf{ATR}_0 \longrightarrow \mathsf{ACA}_0 \longrightarrow \mathsf{WKL}_0 \longrightarrow \mathsf{RCA}_0.$$

We work over the weakest one, RCA₀ which is the fragment of second-order arithmetic whose axioms are the axioms of Robinson arithmetic, induction for Σ_1^0 , formulas, and comprehension for Δ_1^0 formulas.

Statement (Ramsey theorem RT_k^n)

For all coloring $f : [\mathbb{N}]^n \to k$, there exists an infinite set $H \subseteq \mathbb{N}$ such that f is constant over $[H]^n$.

First counter example of the aforementioned phenomen : $RCA_0 < RT_2^2 < ACA_0$. The hierarchy collapses after n = 3 and is equal to ACA_0 . Other versions of RT_k^n are studied.

The Erdős-Moser theorem

Definition

A *tournament* on a domain $D \subseteq \mathbb{N}$ is an irreflexive binary relation $R \subseteq D^2$ such that for every $a, b \in D$ with $a \neq b$, exactly one of R(a, b) and R(b, a) holds.

Alternative definition :

Definition

A *tournament* on a domain $D \subseteq \mathbb{N}$ is an orientation of the complete graph whose set of nodes is D.

Definition

A tournament is *transitive* if for all x, y, z, $R(x, y) \land R(y, z) \implies R(x, z)$.

Statement (Erdős-Moser theorem)

EM is the statement "Every infinite tournament admits an infinite transitive subtournament.".

EM and RT_2^2

- EM instances, tournaments, can be viewed as 2-colorings of pairs : $f(x,y) = (x < y \land R(x,y)) \lor (y < x \land R(y,x))$. As such, any *f*-homogeneous set is in particular a transitive subtournament.
- Jockusch proved that every computable instance of RT_2^2 admits a Π_2^0 solution, while there exists a computable instance of RT_2^2 with no Σ_2^0 solution. These bounds are the same for the Erdős-Moser theorem.

- Chong proved that the first-order part of Ramsey's theorem for pairs and the Erdős-Moser theorem coincide.
- Most of the known statements implied by RT_2^2 are known to follow from EM over RCA_0 .
- Whether EM implies RT₂² was open for a long time, before Lerman, Solomon and Towsner answered it negatively.

< ロ > < 同 > < 三 > < 三 >

Non computable instances make the behaviours vastly differ.

For every function $g: \mathbb{N} \to \mathbb{N}$, there exists an instance of RT_2^2 such that every solution to that instance computes a function dominating g.

Thus, by a theorem of Slaman and Groszek there exists a (non-computable) instance of RT_2^2 such that every solution computes every hyperarithmetic (or equivalently Δ_1^1) set.

Patey and Wang independently proved that for every non-computable set B and every instance of EM, there exists a solution which does not compute B.

This property of EM is shared with the infinite pigeonhole principle (RT_2^1) .

< ロ > < 同 > < 三 > < 三 >

э

Monin and Patey proved the following three propositions :

- If B is not arithmetic (resp. hyperarithmetic), then for every set A, there is an infinite subset H of A or \overline{A} such that B is not A-arithmetic (resp. A-hyperarithmetic).
- If B is not Σ_n^0 (resp. Δ_n^0), then for every set A, there is an infinite subset H of A or \overline{A} such that B is not $\Sigma_n^0(A)$ (resp. $\Delta_n^0(A)$).
- For every Δ_n^0 set A, there is an infinite subset H of A or \overline{A} of \log_n degree.

The weakness of the Erdős-Moser theorem under arithmetic reductions

Theorem

If B is not arithmetic, then for every tournament T, there is an infinite transitive subtournament H such that B is not H-arithmetic.

Theorem

Fix $n \ge 1$. If B is not Σ_n^0 , then for every tournament T, there is an infinite transitive subtournament H such that B is not $\Sigma_n^0(H)$.

Theorem

Fix $n \ge 1$. Every Δ_n^0 tournament T has an infinite transitive subtournament of low_{n+1} degree.

• • • • • • • • • • • •

A forcing notion

- A forcing notion, a condition : finite strings for Cohen, adding a reservoir for Mathias forcing, ...
- An order over those conditions : extension of finite strings, inclusion of sets, ...

Consider an infinite filter \mathcal{F} and a sufficiently generic set $G_{\mathcal{F}} = \bigcap_{c \in F} [c]$. For Cohen forcing, this is an infinite decreasing sequence of finite chains, and their union is the sufficiently generic set.

< ロ > < 同 > < 回 > < 回 >

- Wrong semantic relation : $c \Vdash \varphi(G)$ if $\varphi(G_F)$ holds for every filter containing c.
- Correct semantic relation c ⊨ φ(G) if φ(G_F) holds for every sufficiently generic filter containing c.
- Syntaxic relation : $(\sigma, X) \Vdash \exists x \psi_e^G(x)$ if $\exists x \psi_e^\sigma(x)$.

< □ > < 同 > < 三 > < 三 >

э

The forcing question $c \mathrel{?}\vdash \varphi(G)$ asks "does there exist a condition $d \leq c$ such that $d \Vdash \varphi(G)$.

Abstracts from $G_{\mathcal{F}}$ and only talks about conditions : can be simpler computational-wise. For example, for Cohen forcing, whose conditions are only chains, and whose order is computable, the forcing question for a Σ_n^0 formula is Σ_n^0 : it is *preserving*.

The forcing question needs to be complete : if $c \not \vdash \varphi(G)$, then there exists $d \leq c$ such that $d \Vdash \neg \varphi(G)$ ".

(日)

3

There is no canonical forcing question for a forcing relation, and one needs to construct one fit to force whatever property he wants. Here is an example of such property :

Proposition

Let (\mathbb{P}, \leq) be a notion of forcing with a uniformly Σ_n^0 -preserving forcing question. Then for every non- Σ_n^0 set B and every sufficiently generic set G for this notion of forcing, B is not $\Sigma_n^0(G)$.

Σ_n^0 -preserving questions

Démonstration.

Given a condition $c \in \mathbb{P}$, let $W = \{a \in \mathbb{N} : c ? \vdash \varphi(G, a)\}$. The forcing question is uniformly Σ_n^0 -preserving, hence $B \neq W$. Let $a \in B \setminus W \cup W \setminus B$.

- If $a \in W \setminus B$, then by definition, $c \mathrel{?}\vdash \varphi(G, a)$, so by property of the forcing question, there is an extension $d \leq c$ such that $d \Vdash \varphi(G, a)$.
- If $a \in B \setminus W$, then by definition, $c \not \cong \varphi(G, a)$. By property of the forcing question, $c \not \coloneqq \neg \varphi(G, a)$, and by property, there is an extension $d \leq c$ such that $d \Vdash \neg \varphi(G, a)$.

If \mathcal{F} is a sufficiently generic filter, it will contain a condition forcing $\varphi(G, x)$ for an $x \notin B$ or forcing $\neg \varphi(G, x)$ for an $x \in B$ for every Σ_n^0 formula $\varphi(G, x)$, hence, letting G be the set induced by \mathcal{F} , B will not be $\Sigma_n^0(G)$.

< □ > < 同 > < 三 > < 三 >

Definition

Fix a tournament T over a domain A.

- (1) The interval (a, b) between $a, b \in A \cup \{-\infty, +\infty\}$ is the set of points $x \in A$ such that T(a, x) and T(x, b) hold.
- (2) Given a finite T-transitive subset F ⊆ A and a, b ∈ F ∪ {-∞, +∞}, the interval (a, b) is minimal in F if (a, b) ∩ F = Ø.

Any finite T-transitive set F is not necessarily extendible into an infinite solution : suppose there exist some $a, b \in F$ such that T(a, b) holds, but T(b, x) and T(x, a)both hold for cofinitely many x. We shall therefore work with Mathias conditions with some extra structure which will guarantee that σ is extendible into an infinite solution.

Definition

An EM-condition for T is a Mathias condition (σ, X) such that

- for all $y \in X$, $\sigma \cup \{y\}$ is *T*-transitive;
- **2** X is included in a minimal T-interval of σ .

< ロ > < 同 > < 回 > < 回 >

Write $F \rightarrow_T E$ if for every $a \in F$ and $b \in E$, T(a, b) holds.

Lemma

Fix an EM-condition $c = (\sigma, X)$ for a tournament T, an infinite subset $Y \subseteq X$ and a finite T-transitive set $\rho \subseteq X$ such that $\max \rho < \min Y$ and $[\rho \rightarrow_T Y \lor Y \rightarrow_T \rho]$. Then $(\sigma \cup \rho, Y)$ is a valid extension of c.

• • • • • • • • • • • •

Naive forcing question for Σ_0^1 formulas

Definition

Let $c = (\sigma, X)$ be an EM-condition, n be an integer, and e be a Turing index. Let $c \mathrel{?}\vdash \Phi_e^G(n) \downarrow$ hold if there exists a finite f-homogeneous T-transitive set $\tau \subseteq X$ such that $\Phi_e^{\sigma \cup \tau}(n) \downarrow$.

The tournament T and its limit f have arbitrary complexities : this definition will not yield a preserving question.

Better forcing question for Σ_1^0 formulas

Definition

Let $c = (\sigma, X)$ be an EM-condition, n be an integer, and e be a Turing index. Let $c \mathrel{?}\vdash \Phi_e^G(n) \downarrow$ hold if for every tournament R and every function $g : \mathbb{N} \to 2$, there is a finite g-homogeneous R-transitive set $\tau \subseteq X$ such that $\Phi_e^{\sigma \cup \tau}(n) \downarrow$.

The over-approximation of the tournament and its limit actually reduce the complexity thanks to a compactness argument :

 $c \mathrel{?}\vdash \Phi_e^G(n) \downarrow$ if there exists some threshold t such that for every tournament R over $\{0, \ldots, t\}$ and every function $g : \{0, \ldots, t\} \to 2$, there is a finite g-homogeneous R-transitive set $\tau \subseteq X$ such that $\Phi_e^{\sigma \cup \tau}(n) \downarrow$.

< ロ > < 同 > < 回 > < 回 >

Not as easy : conditions do not strongly force now, but it is dense to force a collection of Σ^0_1 formulas.

Stating this density has varying complexity depending on the notion of forcing. It is simple enough for Cohen forcing, but not for Mathias forcing. The following lemma proves this approach fails for Mathias forcing :

Lemma (Folklore)

The set \emptyset'' is $\Pi_2^0(G_F)$ for every sufficiently generic filter \mathcal{F} for Mathias forcing with computable reservoirs.

The idea is that reservoirs are too sparse.

< ロ > < 同 > < 回 > < 回 >

Partition regular and large classes

Definition

A class $\mathcal{L} \subseteq 2^{\omega}$ is partition regular if :

- \mathcal{L} is non-empty,
- for all $X \in \mathcal{L}$, if $X \subseteq Y$, then $Y \in \mathcal{L}$,
- for every integer k, for every $X \in \mathcal{L}$, for every k-cover $Y_1, Y_2, \ldots Y_k$ of X, there exists $i \leq k$ such that $Y_i \in \mathcal{L}$.

Definition

A class $\mathcal{L} \subseteq 2^{\omega}$ is *large* if :

- for all $X \in \mathcal{L}$, if $X \subseteq Y$, then $Y \in \mathcal{L}$,
- for every integer k, for every k-cover $Y_1, Y_2, \ldots Y_k$ of ω , there exists $i \leq k$ such that $Y \in \mathcal{L}$.

< □ > < □ > < □ > < □ >

Partition regular and large classes

Lemma

Let $(\mathcal{P}_n)_{n \in \omega}$ be a decreasing sequence of large classes. Their intersection $\bigcap_{n \in \omega} \mathcal{P}_n$ is again large.

Lemma

Let \mathcal{A} be a Σ_1^0 class. The sentence " \mathcal{A} is large" is Π_2^0 .

Definition

For every large class \mathcal{P} , let $\mathcal{L}(\mathcal{P})$ denote the largest partition regular subclass of \mathcal{P} .

Lemma

For every set $C \subseteq \omega^2$, there exists $D \leq_T C$ such that $\mathcal{U}_D^{\mathcal{M}} = \mathcal{L}(\mathcal{U}_C^{\mathcal{M}})$.

< ロ > < 同 > < 三 > < 三 >

Theorem

If B is not arithmetic, then for every tournament T, there is an infinite transitive subtournament H such that B is not H-arithmetic.

The forcing question to decide $\Sigma_2^0(G)$ formulas is too big. However, since it is still arithmetic, this is not an issue and we make it work, since B is not arithmetic.

Theorem

Fix $n \ge 1$. If B is not Σ_n^0 , then for every tournament T, there is an infinite transitive subtournament H such that B is not $\Sigma_n^0(H)$.

An added difficulty is that now we have to find a way to reduce the complexity of the forcing question at the top level. We build a new forcing notion and a new forcing question to fix this issue.

< D > < P > < P > <</pre>

Theorem

Fix $n \ge 1$. Every Δ_n^0 tournament T has an infinite transitive subtournament of low_{n+1} degree.

We prove this result by constructing our set effectively. This comes with its fair share of technical difficulties but is quite standard.

• • • • • • • • • • •

Thank you for listening

Thank you for listening !

< □ > < □ > < □ > < □ > < □ >

2