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∆0-TRUTH
Input: n ∈ N in unary and a ∆0-formula ϕ(x) with n >> |ϕ|.
Problem: is ϕ(n) true?
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Input: n ∈ N in unary and a ∆0-formula ϕ(x).
Problem: is ϕ(n) true?
Parameter: k := |ϕ|.

eventually efficient ?

there exist computable h : N→ N and efficient A
that solves ∆0-TRUTH on instances with n > h(k).

Examples

eventually P iff decidable in time f(k) · nO(1)

for some computable f : N→ N.

eventually L iff decidable in space f(k) +O(logn)

for some computable f : N→ N.
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- classical problem Q ⊆ {0,1}∗
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paraL det. space f(k) +O(log(n)) for some computable f

paraNL nondet. space f(k) +O(log(n)) for some computable f

FPT det. time f(k) · nO(1) for some computable f

paraNP nondet. time f(k) · nO(1) for some computable f

paraL ⊆ paraNL ⊆ FPT ⊆ paraNP
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∆0 truth

p-∆0-TRUTH
Input: n ∈ N in unary and a ∆0-formula ϕ(x).
Problem: is ϕ(n) true?
Parameter: k := |ϕ|.

• decidable in det. space f(k) log(n) for some computable f : N→ N

Theorem

1: p-∆0-TRUTH ∈ paraL ⇒ LINSPACE 6⊆ LINH

2: p-∆0-TRUTH ∈ paraNL ⇒ NLINSPACE 6⊆ LINH

3: p-∆0-TRUTH ∈ FPT ⇒ E 6⊆ LINH

4: p-∆0-TRUTH ∈ paraNP ⇒ NE 6⊆ LINH

LINH ⊆ LINSPACE ⊆ NLINSPACE ⊆ E ⊆ NE



Proof outline

Two ingredients:

An analysis of the parameterized halting problem

p-HALT
Input: n ∈ N in unary and a NTM M.
Problem: does M accept the empty input in at most n steps?
Parameter: k := |M|.
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Proof outline

Two ingredients:

An analysis of the parameterized halting problem

p-HALT=

Input: n ∈ N in unary and a NTM M.
Problem: does M accept the empty input in exactly n steps?
Parameter: k := |M|.

Theorem

(a) p-HALT= ∈ paraAC0 iff NE ⊆ LINH

(b) p-HALT= is the hardest almost tally problem in paraNP.

A lower bound

Theorem p-∆0-TRUTH 6∈ paraAC0.
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Background on parameterized halting

Conjecture

p-HALT
Input: n ∈ N in unary and a NTM M.
Problem: does M accept the empty input in at most n steps?
Parameter: k := |M|.

is not decidable in time nf(k) for some f : N→ N.

Chen, Flum 2009/10

. . . iff LFPinv is not a logic for PTIME.

. . . iff there are no p-optimal propositional proof systems.

Open p-HALT 6∈ paraAC0 ?



paraAC0

Barrington, Immerman, Straubing 1990

(Q, κ) ∈ paraAC0

iff Q is eventually FO:

there are a first-order sentence ϕ and a computable h : N→ N such that

for all x ∈ {0,1}∗ with |x| ≥ h(κ(x)): x ∈ Q ⇐⇒ S(x) |= ϕ.

String structure Let x = x0 · · ·xn−1 ∈ {0,1}n for n > 1.

S(x) =
(
[n],+n,×n, <n,0,1,ONEn

)
ONEn =

{
i ∈ [n] | xi = 1

}
+n =

{
(i, j, k) ∈ [n]3 | i+ j = k

}
etc.

Lr
ar = {+,×,0,1, <} with ternary relation symbols +,×.
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p-HALT= ∈ paraAC0 ⇐⇒ NE ⊆ LINH

For x ∈ {0,1}∗ let

num(x) := the number with binary expansion 1x.

For Q ⊆ {0,1}∗ let

un(Q) :=
{

1num(x) | x ∈ Q
}

.

Allender, Gore 1990

Q ∈ LINH ⇐⇒ un(Q) ∈ AC0.



p-HALT= ∈ paraAC0 ⇐⇒ NE ⊆ LINH

Assume NE ⊆ LINH. Consider

Q
Input: n ∈ N in binary and a NTM M.
Problem: does M accept the empty input in exactly n steps?

Then Q ∈ LINH. Hence AC0 contains

un(Q) =
{

1num(〈n,M〉) | M accepts the empty input in exactly n steps
}

Then p-HALT= ∈ paraAC0 because

〈1n,M〉 7→ 1num(〈n,M〉)

is a suitable reduction to un(Q).
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Assume p-HALT= ∈ paraAC0. Let Q ∈ NE.

Want: un(Q) ∈ AC0.

Choose c ∈ N and an NTM M for Q in time num(x)c − 2|x|

Define M∗ on the empty input:

1: guess y ∈ {0,1}∗ in exactly 2|y| steps.

2: run M on y.

3: if M rejects, reject.

4: make dummy steps to complete num(y)c steps.

5: accept.



p-HALT= ∈ paraAC0 ⇐⇒ NE ⊆ LINH

Assume p-HALT= ∈ paraAC0. Let Q ∈ NE.

Want: un(Q) ∈ AC0.

Choose c ∈ N and an NTM M for Q in time num(x)c − 2|x|

Define M∗ on the empty input:

1: guess y ∈ {0,1}∗ in exactly 2|y| steps.

2: run M on y.

3: if M rejects, reject.

4: make dummy steps to complete num(y)c steps.

5: accept.

Then

1num(x) ∈ un(Q) ⇐⇒ M∗ accepts in exactly num(x)c + 1 steps.

Since p-HALT= ∈ paraAC0 and M∗ is a fixed machine: r.h.s. is AC0. �
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p-HALT= is the hardest almost tally problem in paraNP.

need: workable notion of reduction that preserves paraAC0.

r : {0,1}∗ → {0,1}∗ is an eventually definable reduction (Q, κ) to (Q′, κ′) if:

(a) |r(x)| ≥ |x|Ω(1).

(b) κ′ ◦ r ≤ f ◦ κ for some computable f : N→ N.

(c) x ∈ Q ⇐⇒ r(x) ∈ Q′.
(d) exist computable h, interpretation I st:

S(x)I ∼= S(r(x)).

for every x ∈ {0,1}∗ with |x| ≥ h(κ(x)).

Lemma

This reducibility is transitive and preserves paraAC0.
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p-HALT= is the hardest almost tally problem in paraNP.

(Q, κ) is almost tally if for some computable f : N→ N:

– Q ⊆
{
〈1n, x〉 | n ∈ N, x ∈ {0,1}∗

}
– |x| ≤ f

(
κ(〈1n, x〉)

)
.

• p-HALT=, p-HALT, p-∆0-TRUTH are almost tally.

Lemma

For every almost tally problem in paraNP there is an eventually definable
reduction to p-HALT=.

Corollary

NE ⊆ LINH iff every almost tally problem in paraNP is in paraAC0.
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ar)

Input: n ≥ 2 in unary and an Lr
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Problem: n |= ϕ ?
Parameter: k := |ϕ|.
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p-∆0-TRUTH 6∈ paraAC0.

Otherwise model-checking arithmetic is in paraAC0:

p-MC(Lr
ar)

Input: n ≥ 2 in unary and an Lr
ar-sentence ϕ.

Problem: n |= ϕ ?
Parameter: k := |ϕ|.

Thus there are a sentence sat and a computable h : N→ N such that

n |= ϕ ⇐⇒ S(〈1n, ϕ〉) |= sat

for all n ≥ h(num(ϕ)).

Construct a Lr
ar-formula true(x) such that

n |= ϕ ⇐⇒ n |= true(num(ϕ))

for all n ≥ h(num(ϕ)).



p-∆0-TRUTH 6∈ paraAC0.

Then

N |= “h(num(ϕ)) ≤ y” →
(
ϕ<y ↔ true<y(num(ϕ)).

)



p-∆0-TRUTH 6∈ paraAC0.

Then

N |= “h(num(ϕ)) ≤ y” →
(
ϕ<y ↔ true<y(num(ϕ)).

)
Let M be nonstandard and a ∈M \ N. Then

M |= ϕ<a ↔ true<a(num(ϕ))

for all Lr
ar-sentences ϕ.

Contradiction by standard diagonalization. �
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Upper bounds

Theorem

If p-∆0-TRUTH ∈ paraNP, then NE 6⊆ LINH.

If p-∆0-TRUTH ∈ FPT, then E 6⊆ LINH.

If p-∆0-TRUTH ∈ paraNL, then NLINSPACE 6⊆ LINH.

If p-∆0-TRUTH ∈ paraL, then LINSPACE 6⊆ LINH.

LINH ⊆ LINSPACE ⊆ NLINSPACE ⊆ E ⊆ NE



The MRDP theorem

Question Does I∆0 prove MRDP?

for every ϕ(x̄) ∈∆0 there are terms p(x̄, ȳ), q(x̄, ȳ) st I∆0 proves

ϕ(x̄) ↔ ∃ȳ p(x̄, ȳ) = q(x̄, ȳ).

Wilkie 1980 Then NP = coNP.

Gaifman, Dimitracopoulos 1982 I∆0+exp proves MRDP.
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Question Does I∆0 prove MRDP?

for every ϕ(x̄) ∈∆0 there are terms p(x̄, ȳ), q(x̄, ȳ) st I∆0 proves

ϕ(x̄) ↔ ∃ȳ p(x̄, ȳ) = q(x̄, ȳ).

Wilkie 1980 Then NP = coNP.

Gaifman, Dimitracopoulos 1982 I∆0+exp proves MRDP.

Conjecture I∆0 proves MRDP for small numbers:

for every ϕ(x) ∈∆0 there are terms p(x, ȳ), q(x, ȳ) st I∆0 proves

2x ≤ z →
(
ϕ(x) ↔ ∃ȳ p(x, ȳ) = q(x, ȳ)

)
.

Intuitively Much weaker than I∆0-provability.

Theorem

Then NE 6⊆ LINH.
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The MRDP theorem

Theorem Let T be a true, c.e. Π1-theory.

If T proves MRDP for small numbers, then NE 6⊆ LINH.

Proof Parikh’s Theorem implies:

for every ϕ(x) there are p(x, ȳ), q(x, ȳ), r(x, z) such that T proves

2x = z →
(
ϕ(x) ↔ ∃ȳ<r(x, z) p(x, ȳ) = q(x, ȳ)

)
Solve p-∆0-TRUTH on input 〈1n, ϕ(x)〉:

1: compute p, q, r from ϕ as above. // since T is c.e..

2: guess m̄ < r(n,2n). // length O(|ȳ| · |r| · n)

3: check p(n, m̄) = q(n, m̄) // time poly |p| · |q| · |r| · n

Hence p-∆0-TRUTH ∈ paraNP, so NE 6⊆ LINH. �
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const . . . and depth independent of the slice.
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Relaxing uniformity

XAC0 contains (Q, κ) if every slice is in AC0.

XAC0
const . . . and depth independent of the slice.

paraAC0 ⊆ XAC0
const ⊆ XAC0

Theorem

p-HALT ∈ XAC0
const.

p-HALT= ∈ XAC0
const iff NE ⊆ LINH.

p-∆0-TRUTH ∈ XAC0
const iff LINH collapses.
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Problem comparison

p-SPEC

↗ ↖

p-HALT= 6≡ p-∆0-TRUTH

↑

p-HALT

Corollary

p-HALT= 6≡ p-HALT unless NE ⊆ LINH.

p-HALT= 6≡ p-∆0-TRUTH.

p-SPEC
Input: n ∈ N in unary and a first-order sentence ϕ.
Problem: does ϕ have a model of size n?
Parameter: k := |ϕ|.


