
Proof complexity of a CSP dichotomy proof

Azza Gaysin1

Passau university, Department of Mathematical Logic, Dr. Hans-Kapfinger Straße 30,
94032, Passau

azza.gaysin@uni-passau.de

Abstract. The constraint satisfaction problem (CSP) can be formu-
lated as a homomorphism problem between relational structures: given
structure A, for any structure X , whether there exists a homomorphism
from X to A. It was conjectured for years that all problems of this kind
over finite domains are divided into polynomial time and NP-complete
problems, and the conjecture was proved in 2017 separately by Zhuk [1]
and Bulatov [2].
Zhuk’s algorithm solves any tractable CSP(A) in polynomial time. For
satisfiable instances, the algorithm produces a solution, i.e. a polynomial-
size witness of an affirmative answer that one can independently check
in polynomial time. That is not the case for unsatisfiable instances.
We use some proof complexity methods (formalization in theories of
bounded arithmetic, propositional translations, etc.) to show that the
algorithm may be appended to provide an independent proof of the
correctness of the algorithm for negative answers too. We present the
formalization of the algorithm in the theory of bounded arithmetic W 1

1

introduced in [3]. The formalization shows that W 1
1 proves the soundness

of Zhuk’s algorithm, where by soundness we mean that any rejection of
the algorithm is correct. Together with the known relation of the theory
to propositional calculus G, it follows that tautologies, expressing the
non-existence of a solution for unsatisfiable instances, have short proofs
in G.

Keywords: Constraint satisfaction problems · Bounded arithmetic ·
Proof complexity.

References

1. Zhuk, D.: A proof of the csp dichotomy conjecture. J. ACM 67(5), 1–78 (2020)
2. Bulatov, A.A.: A dichotomy theorem for nonuniform csps. In: 2017 IEEE 58th An-

nual Symposium on Foundations of Computer Science (FOCS), pp. 319–330. IEEE,
Berkeley, CA, USA (2017)

3. Skelley, A.: A Third-Order Bounded Arithmetic Theory for PSPACE. In Computer
Science Logic, pp. 340–354. Springer Berlin Heidelberg, Berlin, Heidelberg (2004)


