Independence of the MIN principle from the PHP principle over bounded arithmetic

Mykyta Narusevych*

Faculty of Mathematics and Physics Charles University^{\dagger}

Abstract

The minimization principle $\operatorname{MIN}(\prec)$ studied in bounded arithmetic says that a strict linear ordering \prec on any finite interval $[0, \ldots, n)$ has the minimal element. We shall prove that bounded arithmetic theory $T_2^1(\prec)$ augmented by instances of the pigeonhole principle for all $\Delta_1^b(\prec)$ formulas does not prove $\operatorname{MIN}(\prec)$.

As a demonstration of our method, we derive similar independence for another prominent Σ_2^b -principle TOUR(G) from the aforementioned pigeonhole principle, where TOUR(G) states that, given an orientation G of the K_n , there is a subset $S \subseteq K_n$ of size $\leq \log n$ with the property that any vertex from $K_n \setminus S$ has directed edge towards some element of S.

^{*}Supported by the Charles University project PRIMUS/21/SCI/014, Charles University Research Centre program No. UNCE/24/SCI/022 and GA UK project No. 246223

[†]Sokolovská 83, Prague, 186 75, The Czech Republic