ANR programme ARPEGE 2008

Systemes Embarqués et Grandes Infrastructures

Projet SELKIS : Une méthode de développement
de systéemes d’information médicauxr sécurisés :
de ’analyse des besoins a l'implémentation.

ANR-08-SEGI-018

Février 2009 - Décembre 2011 (extension jusqu’a fin aotiit 2012)

Projet SELKIS ANR-08-SEGI-018
Implémentation des plugins de
translation de politiques de sécurité
Livrable 5.3

Editeur : Institut Mines-Télécom / Télécom Bretagne / SERES

T0 + 36

Résumé

Le présent, rapport constitue le livrable 5.3 de la tiche WP5 du projet SEL-
KIS. L’objectif est de définir et implanter un plugin de transformation et d’im-
plémentation d’une politique de sécurité. La politique de sécurité est exprimée
conformément & un modéle de controle d’accés permettant une spécification ne
dépendant pas de la mise en ceuvre et une gestion des conflits potentiels avant
le déploiement, de cette politique.

Dans le cadre du projet SELKIS, deux plugins ont, été mis en oeuvre. Le premier
concerne la transformation d’une politique abstraite en des régles XACML uti-
lisées ensuite pour configurer les composants de controle d’accés au niveau d'un
web service. Ce Plugin a été notamment utilisé dans le cadre d’une des études
de cas du projet. Il s’agit de la gestion des accés aux dossiers des patients dans
le CHU de Brest en 'intégrant dans le portail de MEDECOM (I'un des par-
tenaires industriels du projet). Aiusi, une politique OrBAC est transformée au
moyen du plugin, puis le service fait appel au serveur qui interpréte la requéte
et applique la politique XACML (cf Livrable 4.2).

Le second plugin développé et implémenté dans le cadre du projet SELKIS est,
présenté dans le présent livrable. Il s’agit de la transformation et le déploiement
donc d’une politique dynamique et contextuelle de type OrBAC pour le gestion-
naire de sécurité d’'une machine virtuelle Java. Tout comme le plugin XACML,
ce transformateur est un plugin de MotOrBAC, le module de spécification et
d’analyse des politiques OrBAC.

ii

Abstract

The Java execution environment includes several security mecha-
nisms. They are found in the language itself, in the class loader, in
the class verifier and in the sandbox in which bytecode is executed.
The sandbox isolates the executed bytecode from the host on which
the Java virtual machine is executed. The security policy enforced by
the sandbox can be configured depending on who runs a program and
the origin of the program and offers fine-grained mechanisms to con-
trol resource access. However the security policy language offers no
higher-level paradigms, such as the abstraction of users into roles, to
enable the management of java security policies into large infrastruc-
tures. Moreover those policies are static and cannot change depending
on the state of the environment into which they are deployed. In this
report we present an approach to use of the OrBAC model to config-
ure the sandbox security policy, allowing the use of an implementation-
independent policy language which offers facilities to manage large sets
of JVMs, enables the expression of dynamic security policies and offers
an advanced administration model.

1 Introduction

This report presents an approach to use the OrBAC model to configure the
security policy of a Java Virtual Machine (JVM). This permits the use of an
implementation-independent policy language which offers facilities to man-
age large sets of JVMs, enables the expression of dynamic security policies
and offers an advanced administration model. An implementation of this
approach is presented as well as a performance evaluation.

The Java security model relies on several mechanisms. The Java lan-
guage itself provides strong type checking, a garbage collector and access
control to class members and methods. The Java Virtual Machine (JVM)
also implements a class loader and a class verifier which checks various prop-
erties of the loaded bytecode. The component which isolates the JVM from
the operating system in a sandbox is called the security manager. The se-
curity manager handles the external boundary of the JVM It controls how
code executed by the JVM interacts with resources outside of the JVM. This
security manager is configured by a security policy specified in a file loaded
when an instance of the JVM is created. This security policy is static and
expressed into a language specific to the JVM which offers many low level
security mechanisms. For example access control can be done on, among
other resources, the file system, network connections, thread management
and the AWT framework. If we consider the fact that the security policy
language offers no mechanisms to manage the expression and deployment
of policies on large infrastructures, configuring this security policy for one
user on a given machine is feasible but doing it for hundreds of users with
various profiles on hundreds of machines becomes an impossible task.

Given the increasing size of infrastructures into which more and more
complex information systems are integrated, system administrators must
often configure the security of a wide range of components using ad-hoc
configuration languages. This requires them to learn many languages and
prevent them from having a global view on the whole system security policy.
We believe that the administrators should use ideally one language to express
the security policy of a whole system, which should then be enforced through
a set of translators that generate configuration files for all the components.

The OrBAC [KBB103] model attempts to address this problematic by
offering several abstract concepts such as abstract entities and contextual
security rules which can be used to express a dynamic security policy in-
dependently from its implementation. Moreover The OrBAC model offers
a framework to analyze and solve rules conflicts, which is impossible to do
using multiple security policy languages. The OrBAC model also feature an
administration model, the AdOrBAC [CBCCO07] model, which can be used
to decentralize security policy administration.

We present in this report an approach to express and enforce dynamic se-
curity policies for the JVM security manager. Section 2 presents the existing
work related to the expression and management of JVM security policies.
Section 3 presents the JVM security policy language and how it is used. Sec-
tion 4 presents the OrBAC model. Section 5 shows how the OrBAC model
can be used to express JVM security policies. Section 6 illustrates how poli-
cies expressed in OrBAC can be enforced in a JVM. Section 7 concludes this
paper and presents future works.

2 Related work

To our knowledge there are few proposal that address the problems related
to the expression of JVM security policies. The standard Java Runtime
Environment (JRE) includes Policy Tool, a very simple application which
generates JVM security policies. This application aims at making the policy
specification easier by providing a user interface instead of editing directly
policies in a text editor. In [Sam04] the authors define a new policy model
which includes both positive and negative authorizations. The authors use
those two kinds of authorizations to define exceptions, which are not sup-
ported in the standard JRE policy language. They also define constraints as
temporal constraints exclusively, enabling them to associate temporal condi-
tions to the policy. The concept of permission delegation is also introduced
in the model. Since the authors focus on the use of Java in distributed
systems by using the Jini[Riv10] framework, the notion of delegation is here
restricted to the case of two JVMs communicating through the network and
exchanging permissions. However the only constraint on multi-step delega-
tion is the delegation duration time, not the depth of a delegation chain. The

authors also propose to use the notion of groups, a group being a set of prinic-
ipals. This group concept is close to the notion of role in RBAC[FSG101] or
OrBAC. The policies are expressed in XML. Although this work addresses
many problems in the expression and in the management of JVM security
policies, the fact that it focuses on distributed systems and that the secu-
rity model is an extension of the existing one makes the contribution less
interresting in the context of large infrastructure administration. Actually
a system administrator still has to use the new ad-hoc language to configure
the JVM security policy and has no global view over the security policy of
the whole system.

In [ZPPS06] the authors use an authorization specification language
(ASL [JSSB97]) to express security policies for mobile devices. The im-
plementation is done using a modified JRE security manager which parses
XACML policies translated from the ASL representation. Unfortunately
the authors only present the XAMCL format and not the abstract policy
expressed in ASL.

In [DCO7] the authors address the lack of flexibility of the Java 2 Micro
Edition (J2ME) security model. They extend the J2ME security model and
use the SPL language [RZFG99| to express the security policy enforced on
mobile devices. The J2ME is only used on mobile devices and does not use
the security manager of the standard JRE so this work is not applicable in
our context. The use of SPL offers policy administrators a wider view of the
security deployed on a mobile device.

In [CCBSMO04], the authors present an approach to express firewall se-
curity policies using the OrBAC model to translate them into native firewall
configuration languages. The model is independent from the targeted fire-
wall implementation.The authors choose to represent each firewall by an
organization, each firewall defining its own security policy through the spec-
ification of abstract rules in the corresponding organization. Although this
paper focuses on the abstraction of firewall policy and does not address JVM
policy modeling, we adopt a similar approach by defining the security policy
enforced in sets of JVM hosts into organizations (cf section 5.2).

3 JVM security policies

The current security model implemented by the JVM security manager re-
lies on different security mechanisms. In this paper we focus on the closed
security policy which defines the sandbox boundaries. This policy speci-
fies the permissions granted to bytecode depending on its source and the
principal as which it is executed, a principal being the identity assigned to
an entity, which can be the result of an authentication. This contrasts with
previous JDK version before version 1.4 where access control was based only
on which code is executed.

3.1 Policy syntax

By default a single system-wide policy is defined in a file and user specific
policies can optionaly be defined. The system-wide policy file defines an
optional keystore entry which is used to check the public keys associated
with signed bytecode. The rest of the policy file defines the permissions
granted to code through the specification of "grant” entries. A grant entry
specifies the sources and principals which are granted a list of permissions.
The policy file syntax is defined as follows:

grant signedBy "signer_names", codeBase "URL",
principal principal_class_name "principal_name",

permission permission_class_name "target_name", "action",
signedBy "signer_names";
}

Permissions have an action parameter which is not mandatory for all
permissions. Note that the JRE security policy is static by construction,
no dynamic condition can be associated with permissions. We believe that
current security requirements met by system administrators show the need
for dynamic policies. System administrators should not have to learn such
configuration language but should instead use higher level paradigms to
express the security of an information system. Note that in this paper we
do not address the security problems related to the lack of protection of a
Java Runtime Environment (JRE) default installation. For example if the
underlying operating system’s access control mechanisms do not correctly
restrict the access to a JRE setup, some of its components could be changed
and/or the policy file could be easily modified [WCLXO01].

Actually the target_name parameter may also implicitly contain an ac-
tion. For example the Security Permission type defines the createAccess
ControlContext target which contains the create action and the AccessControlContext
object. Note that the JRE security policy is static by construction, no dy-
namic condition can be associated to any permission. We believe that cur-
rent security requirements met by system administrators show the need for
dynamic policies. System administrators should not have to learn such con-
figuration language but should instead use higher level paradigms to express
the security of an information system. The following grants are taken from
a JDKT7 standard installation policy file:

grant codeBase " file:/usr/lib/jvm/java—7—openjdk—common/
jre/lib/ext /x” {

permission java.security.AllPermission;

¥
grant {

ermission java.lang.RuntimePermission "stopThread”;
bl

permission java.net.SocketPermission "localhost:1024-",

"listen”;

};...

The first grant entry specifies that all classes installed in the ext sub-
directory of the JDKY7 installation are given all permissions. This sub-
directory has been created so that system administrators can install standard
libraries which are trusted without having to write specific permissions for
them. Notice that the source associated with this grant is a filesystem path.
The second grant entry specifies that any code can stop a thread and listen
for connections on ports above 1024. The standard policy file also includes
rights for any code to read standard system properties like the JVM ver-
sion, the file separator, the OS version, etc... Note that in this paper we
do not address the security problems related to the lack of protection of a
Java Runtime Environment (JRE) default installation. For example if the
underlying operating system’s access control mechanisms does not correctly
restrict the access to a JRE setup, some of its components could be changed
and/or the policy file could be easily modified [WCLXO01]|. Another example
of vulnerability in a default JRE setup is the fact that the policy file can be
overriden when starting the JVM through the java.security.policy option.
This can be disabled by changing a property in the java.security file.

3.2 Permission types

The Java 2 security manager default implementation defines a set of per-
mission types which define the granularity of the JVM sandbox boundary.
We do not present the complete Java security policy due to space limita-
tions and since most of the permissions types are related to very specific use
cases. The use case presented in section 5 focuses on network access and
filesystem access hence we only use the security manager Iile Permission
and Socket Permission types . We do not review in details all permission
types here but the table presented on figure 1 lists all the permission types
and give some information about their semantic.

The AllPermission type has been defined to provide a simple way to
completely open the sandbox security policy as it implies all the permis-
sion types. For instance the ext directory presented in the previous section
example is granted the AllPermission permission.

4 The OrBAC model

The OrBAC model addresses many problems faced by system administra-
tors in big infrastructures when specifying security policies. For example, a

Permission type

Description

AllPermission grants all permissions

SecurityPermission the SecurityPermission object is used to guard access to the
Policy, Security, Provider, Signer, and Identity objects. It
can be used for example to allow some bytecode to replace
the security policy

AWTPermission guard access to the Abstract Windowing Toolkit, for exam-
ple access to the clipboard or the application display surface

FilePermission control access to the filesystem. It supports the read, write,

execute and delete operations

SerializablePermission

if granted some bytecode can replace the serialization imple-
mentation

Reflect Permission controls the behaviour of the reflection mechanisms, i.e it
can disable the standard language access check for public,
private and protected class members

RuntimePermission controls many aspects of the behaviour of an application.
For example code can be granted the right to create a new
class loader, load native libraries or define new classes at
runtime

NetPermission grants the ability to retrieve authentication information

SocketPermission controls access to the network via sockets. It supports the
accept, connect, listen and resolve operations

SQLPermission if granted a bytecode can replace the logging object used
when accessing databases

PropertyPermission controls access to the system properties

LoggingPermission controls access to the standard loggin system

SSLPermission if granted some bytecode can modify the behaviour of SSL
connections or get access to SSL sessions data

AuthPermission AuthPermission object is used to guard access to the Sub-

ject, SubjectDomainCombiner, LoginContext and Configu-
ration objects

PrivateCredential Permission

used to protect access to private credentials belonging to a
particular subject

DelegationPermission restricts the usage of the Kerberos delegation model, ie, for-
wardable and proxiable tickets

ServicePermission used to protect Kerberos services and the credentials neces-
sary to access those services

AudioPermission guards access to the audio system resources for playback and
recording

UnresolvedPermission used to hold permissions for which the bytecode has not

been yet loaded when the security policy is loaded

Figure 1: List of all the permission types defined in the standard JRE

company infrastructure may be spread accross different countries with dif-
ferent legislations, the employee turnover can be very high, its contractors
may need to access its information system and more generally, the security
policy must be modified on a regular basis. In such context, the need for
multiple administrators and a dynamic security policy become central.

OrBAC aims at modelling a security policy centered on the organization
which defines it or manages it. An OrBAC policy specification is done at the
organizational level, also called the abstract level, and is implementation-
independent. The enforced policy, called the concrete policy, is inferred from
the abstract policy. This approach makes all the policies expressed in the
OrBAC model reproducible and scalable. Actually once the concrete policy
is inferred, no modification or tuning has to be done on the inferred policy
since it would possibly introduce inconsistencies. Everything is done at the
abstract policy specification level. The inferred concrete policy expresses
security rules using subjects, actions and objects. The abstract policy, spec-
ified at the organizational level, is specified using roles, activities and views
which respectively abstract the concrete subjects, actions and objects. The
OrBAC model uses a first order logic formalism with negation. However
since first order logic is generally undecidable, we have restricted our model
in order to be compatible with a stratified Datalog program [UlIR9]. A
stratified Datalog program can be evaluated in polynomial time.

Fach organization specifies its own security rules. Some role may have
the permission, prohibition or obligation to do some activity on some view
given an associated context is true. The context concept [CCBO08| has been
introduced in OrBAC in order to express dynamic rules. Contexts are de-
fined through logical rules which express the condition that must be true in
order for the context to be active. In the OrBAC model such rules have the
predicate hold in their conclusion. As suggested in [CCBO08|, contexts can
be combined in order to express conjunctive contexts (denoted &), disjunc-
tive contexts (denoted @) and context negation (denoted ctx, ctx being a
context name). Once the security policy has been specified at the organiza-
tional level, it is possible to instantiate it by assigning concrete entities to
abstract entities.

5 Expressing JVM policies in OrBAC

In this section we show how the JVM policy model can be represented using
OrBAC. The main idea motivating this initiative is that ideally system ad-
ministrators should be able to use the same security policy model to specify
the security policy of a whole system. In the case of the OrBAC model,
administrators should be able to use the same abstract entities to define
the security rules which are enforced by heterogeneous security components.
For example let us consider a generic doctor role used in a hospital policy

to express the security rules common to all physicians. This role is refined
by defining sub-roles such as surgeon, radiologist or anethesist to specify
security rules that only apply to specialists. A person empowered in one
of the sub-roles of the doctor role may access various data about his/her
patients using various peripherals and applications which all must enforce
the security policy. Among those applications some are executed in the Java
runtime environment and others are nativelly executed.

In this report, we consider as a use-case a Java client application which
accesses a database containing the patients medical files. Informally, the
security policy associated with this application is the following: physicians
can use the application , the application can open network connections to
the database and can make some modifications to the local filesystem in
order for it to correctly run.

5.1 Supported permissions types

As said in section 3.2, in this paper we only focus on the FilePermission
and Socket Permission types. We review here in details what they represent
and how they are expressed in the JVM security policy model. Although we
do not model other permission types in this report, the policy translation
and deployment mechanism would still be the same.

5.1.1 FilePermission permission type

The FilePermission type represents an access to a file or directory. An
instance of this permission consists of a pathname and the set of actions
which can be done on the pathname. A pathname is either a file or a
directory and the syntax allows the use of wildcards. The * indicates all the
files in a directory and — indicates all the files in a directory plus recursively
all files and directories contained in the directory. The possible actions on
a file or directory are read, write (which implies the permission to create),
execute and delete.

Section 3.1 gives an example of such a permission to specify the access
to the ext sub-directory of the JDKT7 installation. Here is another example
which uses a Java system property to make the policy more generic:

permission java.util.PropertyPermission
"user.home”, "read”;

permission java.io.FilePermission
"${user.home}${/}.somefile”, "read ,write”;

The user.home system property is used to compute a platform-independant
path in which the application can read and write but not execute files.

5.1.2 SocketPermission permission type

The Socket Permission type represents an access to the network via sockets.
An instance of this permission consists of a host specification and a set of
operations which specifies how connections can be establiched with the host.
A hostname is specified as follows:

host = (hostname | IPaddress)|: portrange |
portrange = portnumber | —portnumber | portnumber—
[portnumber |

Four connection methods can be specified: accept, connect, listen and
resolve. resolve is implied by the first three methods, i.e if the JVM can
connect to other machines, accept connections or listen to connection then it
can resolve host names. Note that this representation of network activities
do not take into account network protocols and their attributes and states,
limiting considerably the expression of network security policy compared to
personnal firewalls.

5.2 OrBAC representation of JVM policies

This section focuses on the definition of OrBAC abstract entities (orga-
nizations, roles, activities, views, contexts, rules) necessary to model the
filesystem and network permissions of the Java security policy model.

5.2.1 Organizations

In the context of this report, a possible modeling choice would be to represent
each machine running the JVM by an organization but this would possibly
lead to a huge number of organizations, making the specification of JVM
policies more complicated and error prone than the manual configuration of
the machines. We argue here that a set of machines running the same Java
applications can be abstracted into one organization in which the common
security policy is defined. For example if we consider tablet PCs used by
physicians when visiting their patients in a hospital, we can assume that
they will all be running the same set of Java applications, or at least they
can be grouped in sets of machines running the same applications. We
use organization attributes to infer the set of JVM hosts on which a JVM
security policy must be deployed. More precisely, let us consider a set Sym1
of machines hosting the JVM on which a set of Java applications will be ran.
The predicate jum_target is used to associate each element of Sy, with an
organization Oy, modeling this set.

To avoid defining several times the same subset of the security policy in
different organizations, an organization hierarchy should be defined. This

- All organizations
~ {2 hospital
< & JvM

- O_commonApps
7 o_vm2
~ O_vm1

Figure 2: A simple example of an organization hierarchy defined in an hos-
pital

way common security rules can be defined in the super organization of orga-
nizations representing different machine sets sharing some common Java
application(s). We chose to define a default JV M organization as the
root of the hierarchy representing the sets of machines running java ap-
plications. Figure 2 shows an example of such hierarchy defined using the
MotOrBAC[ACCBCO08] tool where Oyy,1 and Oyme represent two subsets of
machines sharing some common applications for which the policy is defined
in OcommonApps- MotOrBAC is a security policy editor which implements
the OrBAC model.

5.2.2 Roles

In our approach we do not define specific roles linked to the specification of
JVM security policies. The roles are completely defined by the use case for
which a security policy is specified. However since a java application may
send and receive network packets, some activities, defined further below,
model those operations. We do not propose a new model from scratch for
the modeling of network operations but rather use the approach defined in
[CCBSMO04]. Actually we do not follow exactly the same semantic regarding
the modeling of network traffic direction. In [CCBSM04| a role models a
machine sending network packets to a machine modeled as a view. This
requires to create views corresponding to some roles to be able to specify
traffic going from and to a machine. In our case the roles model users using
a java application running on a machine which sends and receive traffic.
We do not create corresponding views for each role to be able to express
the security policy for incomming traffic but choose to encode the network
traffic direction in the activities modeling the traffic emission and reception.

5.2.3 Activities

As said previously, we only model in this paper the File Permission and
Socket Permission types. The actions defined by the FilePermission type
are already very generic operations that do not need much abstraction to
define the corresponding activities. In fact in our experience, we noticed
that the read, write and delete activities which abstract actions consist-

10

ing in accessing various data storage entities are often present in OrBAC
policies. The action of executing something is more specific to the use of
software and is also easy to abstract into the execute activity. We choose
to model the FilePermission actions by making the hypothesis that in
a super-organization of the JV M organization defined previously, generic
read, write, delete and execute activities are defined. A super-activity of
read, write and delete can be modeled as the handle activity (cf figure 3) ,
thus simplifying the specification of filesystem security rules for a JVM.

Roles ;-,“‘?.I Activities &? | Views
v o All activities
< g handle
af write
o read
gt execute

Figure 3: The activity hierarchy modeling the actions defined by the
FilePermission.

Regarding the modeling of the Socket Permission type, we follow the
approach presented in [CCBSMO04]| to specify network security policies with
OrBAC, i.e activities are seen as abstraction of network services. The activ-
ity hierarchy defined in [CCBSMO04] is represented on figure 4 and consists
of activities all_protocols, tep, udp and icmp. However we have seen in sec-
tion 5.1 that the Socket Permission type offers coarse granularity and do
not take into account network protocols. We define a sub-activity of the
all_protocols activity called bidirectionnal defined in the JV M organiza-
tion and two sub-activities of the bidirectionnal activity, send and receive,
also defined in the JV M organization. This way we modify locally, i.e in
the JV M organization, the semantic of the activity modeling proposed in
[CCBSMO04] but retain the ability to use the structuration of views related
to the firewall security policy. This allows us to use the aforementioned ap-
proach along with our approach to integrate the security policy specification
of JVM hosts inside a more global security policy. The Socket Permission
type does not allow to use the network protocol type to express the network
security policy but port numbers can be used to identify network services.
Actions considered as the bidirectionnal, send and receive activities have
a port attribute which expresses a port or a port range. For example the
following assertions represent two actions modeling the ssh and mysql ser-
vices:

action(ssh). action(mysqlV'5). port(ssh, 22). port(mysqlV'5,3306).

Port ranges are expressed the same way they are in the Socket Permission
type syntax.

11

directionnal
g send
&R receive

Figure 4: The activity hierarchy modeling the network protocols used to
model the Socket Permission

5.2.4 Views

To model the File Permission type, the set of views to be defined and their
hierarchies depend mainly on the design of the Java applications the subjects
will use. We choose to represent files and directories by objects having a
path attribute expressing the target path. Such an attribute is modeled
using the following predicate:

targetPath(obj, path)

This models the fact that object obj has a target path represented by
path. We use the same syntax as the File Permission type to express the
path. For example to represent a directory application/log located in the
current user home directory by an object called fooDir, the following as-
sertion would be true:

target Path(fooDir, ${user.home}${/ yapplication${/}log)

This object would then be used in a view representing a set of directory or
files belonging to some applications having the same right on them. Here the
${/} substring is a platform-independent representation of the file separator.

Views for the SocketPermission type are defined in a similar way as
in [CCBSMO04]. Such views represent sets of network machines, identified
by their address or name. For example the toDatabase view can be defined
to represent a set of machines on which databases are installed. Objects
representing network machines have an address attribute which represents
the machine ip address or network name. View definitions can be used to
manage large sets of machines. Indeed, instead of manually inserting large
numbers of objects into views, view definitions can be used to automatically
insert objects depending on the network address. For instance the following
view definition, defined in the hospital organization of the example used
earlier, says that an object representing a network machine H is used in the
toDatabase view representing databases if H is part of some subnet and that
it is not used in the toBackup view which models network backup hosts:

use(hospital, H, toDatabase) :-

networkAddress(H, A),
subNet(A,10.0.0.0,24),
—use(hospital, H,to Backup).
Using the same model as in [CCBSMO04] allows system administrators

12

to use the same views that have been defined when expressing the network
security policy in OrBAC, thus giving administrators a more global view of
their security policy.

5.2.5 Contexts

In section 3.1, we saw that the JVM security manager can grant right to
code depending on the location from which the bytecode is fetched (from
the local filesystem or the network) and the identity of the subject who has
signed the bytecode. This feature can be modeled by OrBAC contexts: we
define two contexts types corresponding to the two conditions.

The first context type, named code Base, models the code source condi-
tion expressed by the codeBase keyword in the JVM security policy syntax.
The following derivation rule shows an example of such context:

hold(JV M, S, _, _, codeBaseF00) :-

byteCode(S, B),
code Base(B, database.intranet.mycompany.com).

This context is true in organization JV M if the bytecode executed by the
subject .S has been downloaded from a server database.intranet.mycompany.com
in the intranet of some company.

The second context type, named signedCode, models the code source
condition expressed by the signed By keyword in the JVM security policy
syntax. The following derivation rule shows an example of such context:

hold(JV M, S, _, _, signedCodeF 00) :-

byteCode(S, B),
signed By(B, peter).

This context is true in organization JV M if the bytecode executed by
the subject S has been signed by Peter. The JVM security policy syntax
support the specification of code signed by multiple subjects, which can be
easily taken advantage of in our modeling. For example the following context
models a condition where at least one of the developpers of some bytecode
must have signed it in order to be true:

hold(JV M, S, _, _, signedCodeF 00) :-

byteCode(S, B),
developped By(B, D),
signedBy(B, D).

Here the developpedBy(b,d) predicate is true if bytecode b has been
developped by subject d.

Those contexts can be defined and used in the specifications of security
rules inside the JV M organization.

5.2.6 Security rules

In our approach we use the standard implementation of the JVM security
manager, which implements a closed policy. Hence in this paper the transla-

13

tion process only translates permissions specified in the JV M organization
and its sub-organizations. The JVM security policy is specified inside the
organization hierarchy defined in the JV M organization using the roles de-
fined in the super organizations of JV M. The activities, views and contexts
defined previously are used to define all the JVM abstract permissions.

However the system administrators are not limited to the use of the
previously defined context types when specifying the abstract permissions.
As said in the introduction of this paper, JVM security policies are static.
In our approach any other OrBAC context type can be used to make the
policy dynamic. Actually contexts can be composed using conjunction and
disjunction operators to associate complex contextual conditions with per-
missions. When a context state changes for some concrete entity triple
{subject, action, object} in the JV M organization or one of its sub-organiza
tions, the new infered concrete policy is pushed on the hosts specified in the
corresponding organization attributes. Such context can be, but is not lim-
ited to, a temporal context, a spatial context expressing a condition on the
position of a subject in space, a condition on some concrete entity attribute
or a condition on the system state. Since the JVM security manager stan-
dard implementation does not refresh the security policy if the policy file
is modified after a JVM instance is started, we have modified the standard
implementation to trigger this refreshment.

6 Enforcing JVM OrBAC policies

In this section we present the OrBAC JVM policy to JVM policy trans-
lation algorithm and illustrate it with an example and an implementation.
The translator which also updates the security policy files on target hosts
running a JVM is implemented as a MotOrBAC plugin. MotOrBAC is used
to specify the abstract security policy and associate concrete entities with
abstract entities. It is also used to specify the list of hosts on which the
security policy must be deployed.

6.1 Translation algorithm

The algorithm does not translate the abstract security policy but rather
the concrete security policy which is infered by the OrBAC Application
Programming Interface (API) inference engine. The OrBAC API is used by
MotOrBAC to process OrBAC policies. The concrete permissions infered
by the OrBAC API have many attributes like the contexts to which they
are associated and the organization in which they have been infered. Each
infered concrete permission is parsed to generate a grant entry. The JVM
security policy syntax does not support the specification of different policies
for different users in one file. Hence the translation process generates one
policy file per subject.

14

Let us consider a subject for which a set P of concrete permissions related
to a JVM security policy has been generated. For each permission p in P,
the translation process generates a grant entry for each contextual condition
on the origin of the code. Then for each of those entries, the list of signers
are added if the contextual condition contains such condition. The type of
permission to add to the grant entry and its attributes are extracted from
the parameters of p.

When the list of permissions for a subject changes because some contexts
have been activated or deactivated, the corresponding security policy file is
generated and pushed on the hosts the user may use.

6.2 Example

We consider an example based on the one presented in section 5.2 of an
OrBAC policy specified in an hospital. We assume that physicians use tablet
PCs when they visit their patients to access their files. The client application
is a Java applet, which must be signed by the main developper bob, running
inside a web browser which connects to a database where patient files are
stored. The applet can connect to the database but not the opposite. The
applet used by physicians uses a directory structure created in the user
home directory. This directory is called applet Dir and contains three other
directory storing specific files: the resource directory, which can only be
read, the log directory, which can only be written and the temp directory
which can be read and written. We assume that the OrBAC policy is already
structured according to the roles defined in the hospital and that a network
security policy has been defined according to the approach in [CCBSMO04|.
Hence we assume a doctor role has been defined in organization hospital.
We define a sub-organization of the JV M organization, called appletOrg,
in which the security policy applied to peripherals running the applet is
deployed. The list of hosts on which the policy is deployed is specified in
the appletOrg organization.
The technical details for the considered use case are the following:

e a DNS server is used in the private network

e the database server and the client Java applet are run on linux ma-
chines

e the database is a Mysql 5 database listenning on port 3306 and hosted
on machine database.intranet.hospital.com

e the webpage from which the applet is retrieved is:

http : / /applet.intranet.hospital.com

A mysql action models the action of using the Mysql database. TIts
port attribute is set to 3306. It is considered as the send activity in the

15

JV M organization because the applet connects to the database but does
not accept connections. Two actions readFilesystem and write Filesystem
are considered respectively as the read and write activities in the JV M
organization.

We assume that the database server has already been modeled by a
view database in the network related part of the OrBAC policy. The ob-
ject dbl is used in this view in the hospital organization. Its address at-
tribute is set to the host name specified above. Three views are defined
to model the applet directories: resource, log and temp. Three objects
resource_appletl, log_appletl and temp_appletl are used respectivelly in the
resource, log and temp views in the JV M organization. Their target Path
attribute is set respectivelly to ${user.home}${/}applet Dir ${/}resource,
${user.home}${/ yapplet Dir${/}log and ${user -home}${/} applet Dir${/}temp.

We define a codeBase context to model the condition on the applet
source bytecode:

hold(appletOrg, S, _, _, cbCtx) :-

byteCode(S, B),
code Base(B, applet.intranet.hospital.com).

The following signedBy context models the condition on the applet
signed bytecode:

hold(appletOrg, S, _, _, scCtx) -

byteCode(S, B),
signed By (B, bob).

We also define a visitTime temporal context in the hospital organization
which is only active when doctors are visiting their patients. Using the
previously defined abstract entities we can write the abstract permissions
corresponding to the example:
permission(appletOrg, doctor, send, database, scCta&cbCta&visitTime)
permission{appletOrg, doctor, read, resource, scCtx&chbCta)
permission{appletOrg, doctor, write, log, scCtx&cbCtx)
permission(appletOrg, doctor, handle, temp, scCta&cbCtx)

Assuming that a subject daniel is empowered in the doctor role in the
hospital organization and that the visitTime is active for daniel in the
hospital organization, the following concrete permissions are infered:
permission{daniel, mysql, dbl)
permission(daniel, readFilesystem, resource_appletl)
permission(daniel, write Filesystem, log_applet1)
permission(daniel, readFilesystem, temp_appletl)
permission(daniel, write Filesystem, temp_applet1)

6.3 implementation

We have developped a MotOrBAC plugin implementing the translation pro-
cess and the configuration of the JVM hosts. Four virtual machines have

16

been created to represent the database server, a tablet PC running the ap-
plet, a webserver from which the applet is downloaded and the administrator
host running MotOrBAC and the plugin. Generated policy configuration
files are uploaded by the plugin into the users home directory through ssh
connections using public key authentication. The list of hosts to which the
files are transfered is infered from the appletOrg organization attributes
as specified in section 5.2. Configuration files are transfered to the hosts
whenever a change in contexts state have been triggered. We have modified
the standard JVM security manager implementation to reload the security
policy while a JVM instance is executed when a change is detected in the
policy file. This way JVM security policies are dynamically updated as the
concrete policy evolves in time.

From the concrete permissions infered in the previous section and the
concrete entities attributes, a JVM security policy configuration files is gen-

erated:
grant signedBy "bob", codeBase "http://applet.intranet.hospital.com" {
permission java.io.FilePermission "\${user .home}\${/}appletDir\${/}resource", "read"

permission java.io.FilePermission "\${user .home}\${/}appletDir\${/}log", "write";
permission java.io.FilePermission "\${user .home}\${/}appletDir\${/Itemp", "read,write";
permission java.net.SocketPermission "database.intranet.hospital.com:3306", "connect";

}

Note that generated grant entries having the same signed By and code Base
conditions are grouped to generate smaller files. We use rsync to generate
less network traffic when uploading the configuration files. Note that al-
though we have used only linux machines in our proof of concept, the gen-
erated policy files could directly be used on other operating systems as we
used generic variables to identify the current user home directory and the
file system separator.

Although our proof of concept uses a small policy deployed on few hostss,
we tested the translation algorithm on larger policies. More precisely we used
the previously defined policy and added subjects empowered in the doctor
role to increase progressively the number of concrete rules to translate. Fig-
ure 5 shows the time needed to translate the OrBAC policy in milliseconds
on the vertical axis and the number of concrete rules to translate on the
horizontal axis.

7 Conclusion

In this report we presented an approach to abstract the JVM security pol-
icy model into the OrBAC model and an implementation as a MotOrBAC
plugin. This allows system administrators to use a powerful dynamic secu-
rity model to express the security requirements applied to JVM instances
instead of applying the ad-hoc policy language defined in the standard JRE.
We think that the main advantage of this approach is that system admin-
istrators can use the same model and the same abstract entities to define

17

Translation time (ms)

6000

5000

4000

3000

2000

1000

Translation performance test

T T T T +| T ¥
i & F
+
o
+ +
+
L + ¥
4 +
++F
L A *
o
I ff
g ! ! ! ! !
4] 10000 20000 30000 40000 50000

Number of concrete rules

Figure 5: Experimental results with larger policies

security policies applied to heterogeneous security components, thus giving
them a global view of their information system without having to specify
separate policies in different languages for each component. Moreover the
dynamic nature of OrBAC policies and the dynamic deployment of config-
uration files implemented in our approach provides means to change the
security properties of running java applications, which is not possible for a
standard JRE.

Another main advantage of this approach is that system administrators
can use the AdOrBAC [CBCCO07] model to administrate the specification
of JVM policies in OrBAC. MotOrBAC implements the AdOrBAC model,
including the delegation model, which means that administration tasks can
be managed in our proof of concept. For example a system administrator
can delegate to another subject the right to define only permission related
to the network policy of JVMs.

Using the standard security manager implementation limits the granular-
ity of the policies we can express, especially regarding the network policies.
We plan to modify the security manager implementation to refine its bound-
aries and directly integrate the OrBAC API inside it. This way OrBAC
policies specified with MotOrBAC could be directly interpreted without the
need for a translator.

18

References

[ACCBCOS]

[CBCCO7]

[CCBOg]

[CCBSMO4]

[DCO7]

[FSCH01]

[JSSBY7|

[KBB*03]

[Riv10]

F. Autrel, F. Cuppens, N. Cuppens-Boulahia, and C. Coma.
Motorbac 2: a security policy tool. In Third Joint Conference
on Security in Networks Architectures and Security of Infor-
mation Systems (SARSSI), 2008.

N. Cuppens-Boulahia, F. Cuppens, and C. Coma. Multi-
granular licences to decentralize security administration. In
First International Workshop on Reliability, Availability, and
Security (WRAS). Paris, France, 2007.

F. Cuppens and N. Cuppens-Boulahia. Modeling contextual
security policies. In International Journal of Information Se-
curity (1JIS). Vol. 7, no. 4. August, 2008.

F. Cuppens, N. Cuppens-Boulahia, T. Sans, and A. Miege.
A formal approach to specify and deploy a network security
policy. In Second Workshop on Formal Aspects in Security and
Trust (FAST), 2004.

Tulia Ton Boris Dragovic and Bruno Crispo. Extending the
java virtual machine to enforce fine-grained security policies
in mobile devices. In In Proceedings of the Annual Computer
Security Applications Conference ACSAC, 2007.

David F. Ferrailo, Ravi Sandhu, Serban Gavrila, D.Richard
Kuhn, and Ramaswamy Chandramouli. Proposed NIST stan-
dard for rbac. In ACM Transactions on Information and Sys-
tem Security, 2001.

Sushil Jajodia, Pierangela Samarati, V. S. Subrahmanian, and
Eliza Bertino. A unified framework for enforcing multiple ac-
cess control policies. In Proceedings of the 1997 ACM SIG-
MOD international conference on Management of data, SIG-
MOD 97, pages 474-485, New York, NY, USA, 1997. ACM.

A. Abou El Kalam, R. El Baida, P. Balbiani, S. Benfer-
hat, F. Cuppens, Y. Deswarteand A. Miege, C. Saurel, and
G. Trouessin. Organization based access control. In IEFEE
4th International Workshop on Policies for Distributed Sys-
tems and Networks (Policy 2003), 2003.

Apache River. Jini: a network architecture for the construction
of distributed systems, 2010.

19

[RZFG99)

[Sam04]

[U1189)]

[WCLXO01]

[ZPPS06]

Carlos Ribeiro, André Zuquete, Paulo Ferreira, and Paulo
Guedes. Spl: An access control language for security policies
with complex constraints. In In Proceedings of the Network and
Distributed System Securily Symposium, pages 89-107, 1999.

Frédéric Samson. Alternative Java Security Policy Model. Phd.
thesis, Université Laval, 2004.

Jeffrey D. Ullman. Principles of database and knowledge-base
systems. In Computer Science Press, 1989.

D. Wheeler, A. Conyers, J. Luo, and A. Xiong. Java security
extensions for a java server in a hostile environment. In Pro-
ceedings of the 17th Annual Computer Security Applications
Conference, ACSAC 01, pages 64—, Washington, DC, USA,
2001. IEEE Computer Society.

Xinwen Zhang, Francesco Parisi-Presicce, and Ravi Sandhu.
Towards remote policy enforcement for runtime protection of
mobile code using trusted computing, 2006.

20

