
ANR programme ARPEGE 2008

Systèmes embarqués et Grandes Infrastructures

Projet SELKIS : Une méthode de développement
de systèmes d’information médicaux sécurisés :

de l’analyse des besoins à l’implémentation.

ANR-08-SEGI-018

Février 2009 - Décembre 2011

Functionalities of the Policy
Enforcement Manager

Livrable numéro 4.1

Michel Embe Jiague
LACL

Stéphane Morucci
Swid

Février 2010

2

Abbreviations

AJAX Asynchronous JavaScript and XML

BPEL Business Process Execution Language

CIM Computation Independent Model

DBMS Database Management System

eb3 Entity-Based Black-Box

EB3SEC eb3Secured

ESB Enterprise Service Bus

HTTPS Hypertext Transfer Protocol Secure

IS Information System

JAX-WS Java API for XML-Based Web Services

JSP JavaServer Pages

LDAP Lightweight Directory Access Protocol

OASIS Organization for the Advancement of Structured Information Standards

OrBAC Organization-Based Access Control

PAP Policy Administration Point

PDP Policy Decision Point

PEM Policy Enforcement Manager

PEP Policy Enforcement Point

PIP Policy Information Point

RBAC Role Based Access Control

SAML2 Security Assertion Markup Language 2

SELKIS SEcure health care networKs Information Systems

SOA Service Oriented Architecture

SOAP Simple Object Access Protocol

WSDL Web Service Description Language

WSS Web Services Security

XACML eXtensible Access Control Markup Language

XML eXtensible Markup Language

3

Contents

Abbreviations 2

List of Figures 4

1 Introduction 5

1.1 The Policy Enforcement Point component . 5

1.2 The Policy Decision Point component . 5

1.2.1 Decision at the database level . 6

1.2.2 Decision at the second level using OrBAC 6

1.2.3 Decision at the process level using BPEL 8

1.3 The Policy Administration Point component . 9

2 Scenarii of the PEM 10

3 Deployment of the PEM in a SOA environment 10

3.1 Building a SOA environment from scratch . 10

3.1.1 Prototype . 11

3.2 Securing an existing environment: the case of Med.e.com 13

3.2.1 Use cases . 13

3.2.2 Orchestration . 14

3.2.3 Traceability . 14

4 Security properties and technical details 15

4.1 Integrity . 15

4.2 Authenticity and traceability . 15

4.2.1 Open-source . 15

4.3 Standards . 15

References 19

4

List of Figures

1 PDP internal view . 5

2 Overall picture . 7

3 From an OrBAC rule to a XACML policy . 8

4 Transformation from a formal language to BPEL 8

5 BPEL activities in the Netbeans toolbox . 9

6 PEP and PDP security scheme . 11

7 PEM deployed in the target architecture . 12

8 Class diagram of the bank IS [3] . 13

9 Web services in the bank IS . 13

10 The PEP implemented as handlers . 14

11 Formal specification of a rule using EB3SEC [3] 14

12 The policy rule1 implemented as a BPEL process 15

13 Medical information visualization . 16

14 Medical expertise . 17

15 UML diagram . 18

5

1 Introduction

In the WP4 of the SEcure health care networKs Information Systems (SELKIS) project pro-
posal, Information Systems (ISs) are implemented using Web services (in the broad sense).
Security features are implemented in the Policy Enforcement Manager (PEM). Those services
rely on data available in relational databases or eXtensible Markup Language (XML) based files.
Our security framework is based on two mains actors: the Policy Enforcement Point (PEP) and
the Policy Decision Point (PDP). They are responsible of intercepting client application’s re-
quests to services and applying security policies on those requests. There are two other actors
to consider: the Policy Administration Point (PAP) which allows to manage the security poli-
cies in a policy repository and the Policy Information Point (PIP) which provides additional
information on request’s subjects (roles, actions/services, environment, ...) when required by
the PDP.

1.1 The Policy Enforcement Point component

The PEP intercepts all requests from client applications/components to each distributed com-
ponent of the overall IS. If the IS’s architecture has a single entry point for such request (most
unlikely in todays Service Oriented Architecture (SOA) deployments), then it might be the
perfect candidate where to implement a PEP.

At the transport level, communication with the PEP must benefits from the state of the
art technology to ensure confidentiality and integrity. Such technologies may encompass cryp-
tography and digital signatures. For this purpose, XML Enc and XML Sig are examples of
such technology that may provide confidentiality and integrity features respectively for Simple
Object Access Protocol (SOAP) based Web services. More generally, Organization for the Ad-
vancement of Structured Information Standards (OASIS) proposes the standards Web Services
Security (WSS) for Web services which provide the required features to ensure confidentially
and integrity.

1.2 The Policy Decision Point component

The PDP is responsible of making approval/denial decisions based on defined policies in the
policy repository. The decision is based on three different levels of functional security as depicted
in figure 1 to ensure a high degree of fine tuned confidentiality.

Process level

RBAC level

Data level

PDP core

Figure 1: PDP internal view

6

1.2.1 Decision at the database level

The lowest level is at the database and ”elementary” access to data. At this level, access
to elementary functions (read, write, delete, ...) are checked and filters on accessed data (on
both read and write operations) are applied. For example, a doctor may be able to access the
records for his patients only. Depending on the designer of the application, a request can specify
the access to patient records and limits the result to the records associated with the doctor.
In this case the application logic (access patient’s records) is mixed with a security rule. But
the implementation may also specify the request to access patient’s records, without enforcing
at the same time any restriction on the returned results, and leave the latter to the PDP.
Implementations might harness existing Role Based Access Control (RBAC) functionalities and
constraints capabilities already existing in most Database Management System (DBMS).

1.2.2 Decision at the second level using OrBAC

The second level is the service level. Actions and operations of the IS are elements to secure
i.e. to control access to. Their granularity depends on the policy designer, so they can be
high-level services or even lower purpose services. Security policies at this level are RBAC in
essence. PDP must enact those policies. SWID is working on an engine enacting eXtensible
Access Control Markup Language (XACML) representations of those policies.

In the next paragraphes, we are focusing on a policy enforcement manager driven by secu-
rity policies expressed in Organization-Based Access Control (OrBAC) [1]. All these policies
are input and validated in terms of correctness and consistency using the freely available Mo-
tOrBAC tool, and more specifically using its inference engine. This design corresponds to the
Computation Independent Model (CIM) level described in SELKIS project.

The PEM must rely on a PAP/PDP and PEP common architecture. The PEP handles user
requests. The PDP transforms a high-level security policy expressed in OrBAC into configu-
rations applicable to a PEP (or answer specific PEP-generated requests). The PAP represents
MotOrBAC and its high-level security policy.

This PEM must also integrate an existing architecture, namely some Med.e.com software
components already installed. The overall picture is depicted in figure 2.

Motorbac1

This tool manages high-level security policy and ensures they are complete and correct.

Authentication server (Authent. server)
The authentication server is in charge of authenticating users and delivering credentials using a
standardized protocol.

Authorization server (Authz. server)
Once authenticated, users are given rights to access Med.e.com resources. This is handled by
the authorization server which is also using a standardized protocol.

1http://motorbac.sourceforge.net/index.php?page=home&lang=fr

http://motorbac.sourceforge.net/index.php?page=home&lang=fr

7

	
Figure 2: Overall picture

Using established standards guarantees that the authentication and/or the authorization could
be easily replaced in the infrastructure if Med.e.com or its customer should change providers. It
is also a mean to be independent from security software vendors by providing some ”plug-and-
play” components.

User databases
These databases contain the information required for the authentication server and the autho-
rization server to run properly.

Finally the Med.e.com application needs to be modified to integrate the output of the authen-
tication and the authorization servers. In particular:

• authenticated users must be recognized as such by the Med.e.com application

• Med.e.com application must be modified to take into account granted access (or denied
access) to resources.

As mentioned above, policies are expressed using OrBAC. Since we need to integrate into
an existing system that may already have some security or usage policies specified in another
language, it is interesting to define and introduce an intermediate simple formalism that could be
translated from OrBAC (with the same level of expressiveness) and that could also be produced
by internally developed tools to leverage existing policies mastered by hospital managers. Indeed,
converting existing policies to a XACML rule set is a complex and error-prone task. Using a
more user-friendly intermediate language will lead to better integration.

Commercial products may generate XACML policies. They can also be customized to gener-
ate policies expressed in such an intermediate language using for instance a two-steps process:

8

	

Figure 3: From an OrBAC rule to a XACML policy

first an export from existing policies and then a dedicated transformation process between the
commercial product proprietary output format and this intermediate language.

This intermediate language, which still needs to be defined, must be in text format to facilitate
its generation by some external process or software. The more input format the PEM can handle,
the better.

1.2.3 Decision at the process level using BPEL

The third level is the process level. At this level, the PDP makes decisions on executing
actions in the context of processes. The decision engine is based on a Business Process Execution
Language (BPEL) engine enacting policy rules as BPEL processes [5]. As such, the rules are
not attached to the actions or services to secure, nor to the entities (roles, actors, ...) involved.
Furthermore, those rules are expressed in a formal language [3] and then, are automatically
transformed to BPEL processes (see figure 4). For example, billing a patient is done only
after the patient have receive care from a doctor or a nurse, so a rule may specify that the
service performing the billing operation can be invoked only after a care for the patient has been
registered.

Formal security rule
(EB3SEC or ASTD)

BPEL
process

Automatic
transformation

Figure 4: Transformation from a formal language to BPEL

9

BPEL is an XML-based language standardized by OASIS. It is best suited for ”long lasting”
processes in organizations. It can be used to orchestrate workflows. Futhermore, it is very well
integrate with Web services, since a BPEL process interface with (caller and callee) partners
is also described using Web Service Description Language (WSDL)2. Even if BPEL is XML-
based, some editors propose graphical environments for BPEL documents, such a Netbeans3

(see figure 5).

Figure 5: BPEL activities in the Netbeans toolbox

1.3 The Policy Administration Point component

Policies must be specified by different stakeholders who can have different privileges or man-
agement rights. The tool used to manage associated policies must take into account these
constraints by displaying an interface automatically adapted to the administrator profile (i.e
the administrator management rights). Moreover, some actions that are not permitted for a
given administrator must not be displayed for this administrator. This is mainly to simplify the
interface, to make it coherent and to avoid confusion among users. By showing only what is
necessary, we are facilitating the acceptance of this new tool.

Using OrBAC, it is possible to define the administration rights. It is not yet possible to
automatically adapt the interface according to this administration policy.

Since administrators are potentially located anywhere in an hospital, it is crucial to have a
centralized server hosting all policies. To provide seamless integration, a Web-based interface
to manage these centralized policies appears as a good choice. Users only need their day-to-day
browser to administrate policies they are in charge of. This is simple and flexible and represents
a de-facto standard. Today state of art also requires an interface dynamically built by the

2http://www.w3.org/TR/wsdl
3http://netbeans.org/

http://www.w3.org/TR/wsdl
http://netbeans.org/

10

client, i.e a so-called ”Web 2.0” interface, using technologies like Asynchronous JavaScript and
XML (AJAX), Silverlight or Flash/Flex.

Such objectives are interesting challenges that need to be addressed.

2 Scenarii of the PEM

The following paragraphs describe the two main scenarii that take place in the PEM.

In scenario (a) in figure 6, the user application sends a request (1) to a service (or a component
of the distributed application) along with some credentials (e.g. user identification, role, etc.) on
a secure channel insuring confidentiality and integrity of the exchanged message. The request
is intercepted by the PEP which extracts the credentials and then formulate an autorisation
request for approval/denial by the PDP (2). The PDP makes a decision on whether or not to
approve or deny the client application’s request (in scenario (a) the request is denied). The
denial is then sent back to the PEP (3) which transmits it to the initial client application (4).

In scenario (b), messages (1) and (2) are the same as in the scenario (a) but in this case the
client application’s request is approved. The autorisation is reported back (3) to the PEP. The
PEP then allows the original request to continue to requested service/component (4). The last
steps are the service responding to the user application’s request (5) and (6). The service may
also take steps to perform – other business – validation on the request (e.g. checking that an
account has enough credit before performing a fund’s transfer). This response goes through the
PEP so that security policy repository or PAP (if there is any) can be updated with the recently
executed request.

It is important in both cases (a) and (b) that all message exchanges must be carry out through
secure channels. Those communication schemes are simplifications of the security data-flow
diagram described in the XACML’s OASIS standard [4].

3 Deployment of the PEM in a SOA environment

3.1 Building a SOA environment from scratch

In a typical SOA environment, the services are deployed as Web services ”behind” an Enterprise
Service Bus (ESB) serving as a gate to route messages, among other features, from consumers
to the components of the environment (see figure 7).

The PEP is implemented as a Web service handler on both the consumer and the service
side. On the consumer side, the handler role is to inject security parameters (credentials made
off user identity, role, ...) in the SOAP request message. On the server side, the handler is in
charge of retrieving the security parameters from the SOAP request and asking the PDP for a
decision on the access request using the given security parameters. This implementation is not
intrusive, however it requires that the consumer application implements a protocol in the cases
where the request is denied. This can be done using the exception mechanism or using error
codes.

11

User
application PEP

PDP

Service

User
application PEP

PDP

Service

(a)

(b)

1. request

2. request
for autorisation

3. autorisation
denied

4. autorisation
denied

response

1. request

2. request
for autorisation

3. autorisation
approved

6. service
response

4. client
request

5. service
response

Figure 6: PEP and PDP security scheme

3.1.1 Prototype

In [3], Konopacki et al. expose an example of a system illustrating a deposit of a cheque in a
bank. The example is specified using eb3 a formal method for specifying IS [2]. The system is
made off three entities as shown in figure 8: an instance of the class deposit is created to link
a client and a cheque.

However, we have implemented the IS as a set of Web services as depicted in figure 9 and
deployed in Glassfish4 them according to the architecture in figure 7. The Web services maintain
the entities as database records in the light DBMS Derby5.

Along with those Web services, we have implemented a client application (consumer in figure 7)
as a JSP page and a servlet. The page does not implement the common usage flow of Web
application i.e. a user first log in and then he can use the services offered by the application. It
is a rather simple Web page where the credentials are input as the same time as the parameters
(the new value of a cheque to modify for example) of the service to use.

As mentioned earlier, the PEP is based on two handlers, each on one side of the ESB. Both
are implemented as sub-classes of the Java API for XML-Based Web Services (JAX-WS)6 frame-
work’s generic interface SOAPHandler (see figure 10). These lies down to the implementation of
the method handleMessage(SOAPMessageContext). The handler on the consumer side is respon-
sible to inject security parameters in SOAP request originating from the consumer. This can

4https://glassfish.dev.java.net/
5http://db.apache.org/derby/index.html
6http://jcp.org/en/jsr/detail?id=224

https://glassfish.dev.java.net/
http://db.apache.org/derby/index.html
http://jcp.org/en/jsr/detail?id=224

12

Consumer

BPEL+ Security
policy

ESB

Service A

+BPEL
Engine

Translation

PDP Core

Handler

Handler

DB

Security
DB

1 13

2 12

3 11

9 10

4 8

5

6 7

PDP

PEP

Figure 7: PEM deployed in the target architecture

be also done using standard protocols to pass credentials in a request. On the other side of
the ESB, the handler attached to each Web service intercepts the request for the service. The
security parameters embedded in the SOAP header are then extracted and a new request for
autorisation is sent to the security filter which is essentially a BPEL process deployed as a Web
service.

Figure 11 is the formal specification of the rule ”clerks can perform all actions, except cancel
and validate, for cheques not exceeding 10 000 $”. This The policy is a choice of actions for
the role clerk and for each action, the allowed values of the parameters are filtered. The pick

activity of the BPEL language make it easy to implement the choice between actions.

When an autorisation’s request for the Web service’s operation createCheque, for example,
the request is receive by the process in the step 1 of figure 12 using BPEL’s receive activity.
The process then computes a boolean which is the result of matching the actual values of
the parameters and security parameters received from the consumer application to the specified
values in the formal specification of the policy (step 2 of figure 12) using BPEL’s assign activity.
The last step is to respond to the request with a response containing the calculated boolean at
the previous step (step 3) using BPEL’s reply activity. This filtering process is what is required
from the PDP at the third level (see section 1.2.3).

13

4 Pierre Konopacki,, Marc Frappier, and Régine Laleau

2.1 A Case Study

We illustrate the eb3 method on a small example, a check deposit procedure. A
bank client wants to deposit a check in his brokerage account. To start the check
deposit procedure, the client has to bring the check to his branch where a bank
employee starts the procedure. The check is first entered in the system and then
registered to the client. The check is then validated or cancelled. If the check is
validated the account of the client is credited, otherwise the client’s account is
not credited.

The requirements class diagram of this system is illustrated in Figure 1. It
contains two entity types : client and check. Their key attributes are respectively
clId and chId. The attribute value of the entity type check indicates the value of
the check. The attribute balance of the entity type client indicates the balance of
the client’s account. A check and his payee are linked by the association deposit.
Actions available for each entity type are listed below attributes.

create_client(clId)
modify_balance(clId,n)
delete_client(clId)

client
clId
balance

create_check(chId,n)
modify_value(chId,n)
delete_check(chId)

chId
value

check

register(clId,chId)
cancel(chId)
validate(chId)

deposit

0..1 *

payee check

Fig. 1. Class diagram of the check deposit procedure

The functional behavior of this small system is described by process expres-
sions. Each entity type and each association is described by a process expression.
The global behavior is described by process expression main. Typical patterns
for structuring process expressions based on the structure of the requirements
class diagram are described in [12]. The process expression describing the entity
type client is the following:

client (ct : ClientId)
∆
=

create client(ct) �
(

modify balance(ct,)
∗

�
� ck ∈ checkId : deposit (ct, ck)

) �
delete client(ct)

Figure 8: Class diagram of the bank IS [3]

ClientWS

createClient

modifyBalance

delete

ChequeWS

createCheque

modifyCheque

deleteCheque

DepositWS

register

cancel

validate

Figure 9: Web services in the bank IS

3.2 Securing an existing environment: the case of Med.e.com

3.2.1 Use cases

Figures 13 and 14 are sequence diagrams of the visualization of medical information and the
request for medical expertise respectively.

SELKIS suggests a model driven security approach. In this scheme, when moving from an
abstract model to a concrete model, we will need at some point a way to specify what are
the characteristics of the network and the network equipments we are currently processing. In
consequence, a network design tool may be a valuable asset that can be used to derive our
abstract model to a concrete model. This tool, web-based, must be simple, easy to use with
drag and drop facilities and export functions to some text format that can be processed by some
external software.

A network discovery tool can also be required to facilitate integration.

The UML diagram in figure 15 shows how the authentication and the authorization servers
integrate with Med.e.com application.

Both authentication and authorization servers are provided by Swid. These servers are com-
pliant with OpenID, Security Assertion Markup Language 2 (SAML2) and XACML standards
out-of-the-box. Some specific connectors to existing databases (for instance Lightweight Di-
rectory Access Protocol (LDAP)) must be implemented to benefit from existing users of the
hospital and their associated rights.

At the Med.e.com software side, two solutions are envisioned. The first one consists in a soft-
ware agent to be integrated in Med.e.com solution. The second one comprises a dedicated proxy

14

SOAPHandler
SOAPMessageContext

handleMessage(SOAPMessageContext)
SecuritySOAPHandler

Add security
parameters to the
consumer request

SOAPHandler
SOAPMessageContext

handleMessage(SOAPMessageContext)
SecuritySOAPHandler

Retrieve security parameters
from the message and check

the request autorisation

ServiceConsumer

Figure 10: The PEP implemented as handlers
12 Pierre Konopacki,, Marc Frappier, and Régine Laleau

rule1 ()
∆
=
(| ck ∈ CheckId, n ∈ 0..10000 : � , clerk, , create check(ck, n)�)

|
| ck ∈ check :

check(ck).value ≤ 10000 =⇒
(

(| n ∈ 0..10000 : � , clerk, , modify value(ck, n)�)
|

� , clerk, , delete check(ck)�
|

� , clerk, , register(, ck)�
)

rules2&3 ()
∆
=

(| ck ∈ CheckId, n ∈ N : � , director, , create check(ck, n)�)
|

| ck ∈ check :
(| n ∈ N : � , director, , modify value(ck, n)�)

|
� , director, , delete check(ck)�

|
� , director, , register(, ck)�

|
check(ck).value ≤ 10000=⇒

(
� , director, , validate(ck)�

|
� , director, , cancel(ck)�

)

rule4 ()
∆
=
� , head office, , validate()�

|
� , head office, , cancel()�

Fig. 4. Specification of rules 1,2,3,4

but this makes the specification shorter and more understandable, since the two
rules cater for role director. A guard check.value(ck) ≤ 10000=⇒ is used to
restrict cancel and validate to checks not exceeding 10 000 $ for directors. Rule
4 for head office is also specified in Figure 4 in a similar manner.

Rules 5 and 6 are specified in Figure 5. For each check ck, a single organ-
isation o is chosen to ensure that the creation, validation and cancellation are
made in the same organisation (i.e., branch). In the security class diagram, we
have chosen to represent the hierarchical structure of head offices (regional and
national) and branches by explicitly stating in association play which head office
person is responsible for which branch. Rules 7 and 8 are represented in Figure 5

Figure 11: Formal specification of a rule using EB3SEC [3]

in charge of authentication and authorization mechanisms, such that the Med.e.com software be
modified only to retrieve user credentials from specific headers set by the dedicated proxy. This
latter solution has the advantage of being less intrusive.

Med.e.com relies on some specific protocols like HL7 and DICOM. The PEM must be capa-
ble of embedding these specific messages in SAML2 messages if the implemented architecture
requires so.

3.2.2 Orchestration

Orchestration of operations (or Web services) is an important topic in this project. The PEM
must be able to orchestrate several processes. From an implementation point of view, the Policy
Enforcement Manager must integrate a workflow component.

This workflow must offer a graphical editor and compliant with standard orchestration de-
scription languages (like BPEL).

3.2.3 Traceability

Watermarking technologies will be used to ensure traceability of data.

15

initiateP...

initiateP...

clientWS...

canDoC...

canDoM...

canDoD...

cheque...

canDoC...

canDoM...

canDoD...

deposit...

canDoR...

canDoC...

canDoV...

PartnerL...

process...

SecurityFilterProcess

Process Start

Process End

ReceiveInitProcess
ScopeRule1

Assign1
RepeatUntil1

Pick1

OnMessa...

Message

Assig...

Reply...

OnMessa...

Message

Assig...

Reply...

OnMessa...

Message

Assig...

Reply...

OnMessa...

Message

Assig...

Reply...

SecurityFilterProcess

1.1 of 1 2010.03.02 17:53:05

1
2
3

Figure 12: The policy rule1 implemented as a BPEL process

4 Security properties and technical details

4.1 Integrity

To ensure integrity properties, all communications between components rely on Hypertext
Transfer Protocol Secure (HTTPS). It is also possible to release some constraints by requiring
that only communications with the user (and therefor, communications from an untrusted zone)
be made over HTTPS.

Some signature based solutions could also be used for this project.

4.2 Authenticity and traceability

Authenticity and traceability are properties that are fulfilled using secure structures that are
integrated into medical data. Data watermarking and dedicated readers will also be used when
processing these kind of data.

4.2.1 Open-source

We must use as much as possible Open-source softwares to implement all these requirements.
We must not be locked in by some vendors licenses if we want our implementations be successfully
exploited by other teams.

4.3 Standards

As previously mentioned, relying on standards is a strong requirement in order to be inde-
pendent from security software vendors.

In this project, we will use, for authentication protocols, OpenID due to its widespread accep-
tance and SAML2 considering its high level of security. XACML will be used for authorization

16

	
Figure 13: Medical information visualization

management. OpenID is a de-facto standard, while SAML2 and XACML are standards from
the OASIS consortium. We may also investigate XACML 3, should it be ratified by OASIS
during the project timeline.

17

	
Figure 14: Medical expertise

18

	
Figure 15: UML diagram

19

References

[1] A. Abou El Kalam, R. El Baida, P. Balbiani, S. Benferhat, F. Cuppens, Y. Deswarte,
A. Miège, C. Saurel, and G. Trouessin. Organization Based Access Control. In 4th IEEE
International Workshop on Policies for Distributed Systems and Networks (Policy’03), June
2003.

[2] M. Frappier and R. St.-Denis. eb3 : an entity-based black-box specification method for
information systems. Software and System Modeling, 2(2):134–149, 2003.

[3] Pierre Konopacki, Marc Frappier, and Régine Laleau. Modélisation de politiques de sécurité
à l’aide dune algèbre de processus. In INFORSID, pages 295–310, 2009.

[4] OASIS. eXtensible Access Control Markup Language (XACML) Version 2.0. OASIS, 2005.

[5] OASIS. Web Services Business Process Execution Language Version 2.0. OASIS, 2007.

	Abbreviations
	List of Figures
	1 Introduction
	1.1 The Policy Enforcement Point component
	1.2 The Policy Decision Point component
	1.2.1 Decision at the database level
	1.2.2 Decision at the second level using OrBAC
	1.2.3 Decision at the process level using BPEL

	1.3 The Policy Administration Point component

	2 Scenarii of the PEM
	3 Deployment of the PEM in a SOA environment
	3.1 Building a SOA environment from scratch
	3.1.1 Prototype

	3.2 Securing an existing environment: the case of Med.e.com
	3.2.1 Use cases
	3.2.2 Orchestration
	3.2.3 Traceability

	4 Security properties and technical details
	4.1 Integrity
	4.2 Authenticity and traceability
	4.2.1 Open-source

	4.3 Standards

	References

