
ANR programme ARPEGE 2008

Systèmes Embarqués et Grandes Infrastructures

Projet SELKIS : Une méthode de développement
de systèmes d’information médicaux sécurisés :

de l’analyse des besoins à l’implémentation.

ANR-08-SEGI-018

Février 2009 - Décembre 2011

Principles of the coupling between
UML and formal notations

Livrable numero 3.2

Akram Idani, Yves Ledru, Jean-Luc Richier, Mohamed-Amine Labiadh, Nafees Qamar
Laboratoire d’Informatique de Grenoble

Frédéric Gervais, Régine Laleau, Jérémy Milhau, Marc Frappier
Université Paris-Est, LACL, IUT Sénart Fontainebleau

Février 2011

Table des matières

1 Introduction 4

2 Synthèse des travaux de couplage d’UML et de notations formelles 6

2.1 Introduction . 6
2.2 Couplage d’UML et B . 7

3 Taking into account functional models in the V&V of security design models 9

3.1 Introduction . 9
3.2 Tools for V&V of role-based authorisation constraints 10

3.2.1 USE for the validation of security policies 10
3.2.2 SecureMova . 11

3.3 Motivating example . 11
3.4 Using testing and verification techniques . 12

3.4.1 Some solutions to explore . 12
3.4.2 Support of history-based constraints . 13

3.5 Conclusion . 14

4 Specification security-design models using Z 15

4.1 Introduction . 15
4.2 Illustrative example : medical information system 16
4.3 Translating the functional model into Z . 17
4.4 The security kernel . 19

4.4.1 Permissions . 19
4.4.2 Role hierarchy . 20
4.4.3 Action hierarchy . 20
4.4.4 Roles, users and sessions . 21
4.4.5 Putting it all together . 22

4.5 Linking functional and security models . 23
4.6 Validating and Animating Secure Operations . 24

4.6.1 Normal behaviour . 24
4.6.2 Analysing a malicious behaviour . 25

4.7 Related Work . 26
4.8 Conclusion and future work . 27

1

2

5 Validation of security policies by the animation of Z specifications 28

5.1 Introduction . 28
5.2 The meeting scheduler . 29
5.3 State of the art tools . 30

5.3.1 RBAC and SecureUML . 30
5.3.2 USE for the validation of security policies 31
5.3.3 SecureMOVA . 31

5.4 The need for dynamic analyses . 32
5.5 A toolset based on Z . 33

5.5.1 Input models . 33
5.5.2 Diagrams for the security model . 34
5.5.3 Linking both formal models . 37

5.6 Animation of the specification . 38
5.6.1 Queries on the security model . 39
5.6.2 Dynamic analyses : nominal behaviours 39
5.6.3 Further dynamic analyses . 41
5.6.4 Studying an attack scenario . 42

5.7 Conclusion . 43

6 Formalisation du contrôle d’accès statique en B 45

6.1 Principes de la traduction . 45
6.2 Formalisation en B du modèle fonctionnel . 46

6.2.1 Intégration des opérations de base dans le diagramme de classes 47
6.2.2 Traduction des classes . 48
6.2.3 Traduction des attributs de classes . 49
6.2.4 Traduction des associations . 52
6.2.5 Prise en compte de l’héritage de classes 55
6.2.6 Amélioration du modèle fonctionnel . 55

6.3 Transformation du modèle de sécurité . 56
6.3.1 Approche proposée . 57
6.3.2 Affectation d’utilisateurs aux rôles (relation User Assignement) 57
6.3.3 Affectation de permissions aux rôles (relation Permission Assignement) . 59

7 Formalising dynamic access control rules 64

7.1 Integrating astd into the security metamodel . 64
7.2 Systematic translation rules from astd to Event-B 65
7.3 Event-B Background . 66
7.4 astd Background . 66

7.4.1 astd Operators . 67
7.4.2 An astd Case Study . 68
7.4.3 Motivations . 69

7.5 Translation . 70
7.5.1 Automata . 70

3

7.5.2 Sequence . 71
7.5.3 Choice . 72
7.5.4 Kleene Closure . 73
7.5.5 Synchronization Over a Set of Action Labels 73
7.5.6 Quantified Interleaving . 74
7.5.7 Quantified Choice . 75
7.5.8 Guard . 75
7.5.9 Process call . 75

7.6 Animation and Model Checking of the Case Study 75
7.7 Conclusion and Future Work . 76

8 Efficient Execution of astd Specifications 78

8.1 Introduction . 78
8.2 The astd Notation . 78
8.3 Control Using iastd . 79

8.3.1 Main Algorithm . 80
8.3.2 Other Features . 80
8.3.3 Usages . 81

8.4 Conclusion, Current Limitations and Future Works 82

9 Proof of Translation Rules 83

9.1 Introduction . 83
9.2 State translation . 83

9.2.1 Automata . 83
9.2.2 Sequence . 84
9.2.3 Choice . 84
9.2.4 Kleene Closure . 84
9.2.5 Synchronization . 84
9.2.6 Quantified choice . 84
9.2.7 Quantified interleaving . 84
9.2.8 Guard . 84

9.3 Proof by Simulation . 85
9.3.1 Automata . 85
9.3.2 Sequence . 89
9.3.3 Choice . 90
9.3.4 Kleene Closure . 92
9.3.5 Synchronization . 92
9.3.6 Quantified choice . 93
9.3.7 Quantified interleaving . 94
9.3.8 Guard . 95

A Spécifications B issues d’un modèle fonctionnel 96

B Spécifications B issues du modèle de sécurité 100

Chapitre 1

Introduction

Le présent livrable est une mise à jour du livrable 3.1. Il constitue d’une part un approfondisse-
ment des divers concepts que nous avons développés précédemment, et il présente d’autre part,
les nouvelles pistes que nous avons exploitées.

Rappelons que les livrables 3.1 et 3.2 s’inscrivent dans le cadre des travaux entrepris par le
LIG autour du couplage de modèles graphiques et formels ainsi que ceux proposés par le LACL
autour des ASTD (Algebraic State Transition Diagrams). Ces travaux cherchent à tirer profit
des outils de preuve et d’animation assistant les méthodes formelles telle que la méthode B en
vue d’effectuer des vérifications automatisées de modèles graphiques.

Le travail présenté dans ce document se base sur le méta-modèle de sécurité résultant du WP2
et dont l’intention est d’élaborer les liens entre les aspects fonctionnels et sécuritaires à un
niveau conceptuel. Les modèles explorés sont exprimés au moyen de notations graphiques UML.
L’intérêt de ces notions est qu’elles sont faciles à comprendre et expriment de manière intuitive
les besoins fonctionnels et de contrôle d’accès. En revanche, le manque d’outils de vérification
assistant ces modèles constitue un frein devant leur application dans un contexte sécuritaire. Ce
livrable aborde donc cette problématique en donnant les principes de la formalisation du modèle
fonctionnel et de sécurité en B et aussi en Z. L’objectif est d’une part, de donner une sémantique
formelle précise aux modèles graphiques engendrés par le méta-modèle de sécurité, et d’autre
part de vérifier leur correction au moyen d’outils de preuve et d’animation. Pour ce faire, nous
proposons de formaliser (i) le modèle fonctionnel, (ii) le modèle de contrôle d’accès statique, et
(iii) le modèle de contrôle d’accès dynamique.

Ce document est structuré comme suit :
– Chapitre 2 : dresse un état de l’art des travaux de couplage de notations formelles en B et

semi-formelles en UML en mettant l’accent sur leur intérêt et leurs usages.
– Chapitre 3 : discute l’intérêt de la prise en compte du modèle fonctionnel lors des activités de

vérification et de validation et montre l’impact de ce modèle sur l’étude des aspects sécuritaires
d’un système.

– Chapitre 4 : donne les principes de la formalisation en Z du modèle fonctionnel et du modèle
de sécurité ainsi que l’intérêt d’une telle démarche pour l’animation de scénarios

– Chapitre 5 : montre par la pratique comment notre noyau de sécurité - exprimé en Z - peut
être exploité pour expliciter (au moyen de requêtes) certaines propriétés d’une politique de
sécurité.

– Chapitre 6 : donne les principales règles de génération de spécifications B à partir du modèle
fonctionnel et du modèle de contrôle d’accès statique. Ces règles ont été énoncées en vue d’être
automatisées et outillées dans notre outil IDM de transformation.

4

5

– Chapitre 7 : présente les fondements de la formalisation du contrôle d’accès dynamique. Dans
ce travail, le formalisme des ASTD est utilisé pour exprimer graphiquement les aspects dyna-
miques et B en vue raisonner formellement sur ces modèles.

– Chapitre 8 : présente un outil d’interprétation des ASTD dit iASTD et donne vie aux ASTD.
– Chapitre 9 : démontre rigoureusement les règles de transformation des ASTD en B et met

l’accent sur la justesse des choix réalisés.

Chapitre 2

Synthèse des travaux de couplage
d’UML et de notations formelles

2.1 Introduction

L’idée de coupler les méthodes semi-formelles et formelles n’est pas nouvelle. Elle a été introduite
dans les années 90 sous la dénomination des� approches mixtes � [FKV91, Pas95] et a permis
de mettre au point un certain nombre de pratiques de modélisation. En effet, nous soulignons,
dans ce contexte, l’existence de plusieurs stratégies de couplage des méthodes formelles et semi-
formelles ; en voici un bref aperçu [Ida06] :

Stratégie transitionnelle. Cette stratégie se base sur une intégration par dérivation (ou tra-
duction) impliquant une phase de transition de spécifications semi-formelles vers des spécifications
formelles équivalentes. Dans ce cadre, le modèle formel résultant peut alors être enrichi,
raffiné, etc, et l’application des techniques de vérification et de preuves ainsi que l’utilisa-
tion d’outils développés autour des méthodes formelles deviennent alors possibles.

Stratégie évolutive. Il s’agit d’étendre le langage semi-formel en y introduisant des notations
formelles. Ce mécanisme permet d’exprimer formellement certaines propriétés du modèle
semi-formel. Le système résultant évolue alors d’une simple description semi-formelle à un
système conjugué plus précis.

Stratégie d’enrichissement. (appelée aussi intégration conjointe dans [Pas95] et intégration
par extension dans [Mey01]) : le paradigme objet est perçu comme un mécanisme de struc-
turation. Il s’agit de définir un langage de spécification formelle “à objets”1 en étendant un
langage de spécification formelle existant. Nous citons, à titre de référence, Z++ [Lan92],
Object-Z [Smi95] et VDM++ [VDM92].

Stratégie de visualisation. L’objectif de cette stratégie est de construire une vue complémentaire
graphique, bien que partielle, sur des spécifications formelles. Cette technique nécessite
une phase de correspondance établissant les liens structurels et sémantiques entre un sous-
ensemble de constructions du langage formel et ceux du langage semi-formel cible. Les
modèles obtenus servent, principalement, de documentation graphique du modèle formel.

Une instance de ces stratégies de couplage est l’intégration des notations UML et formelles en B
et en Z qui peut être synthétisée en trois approches principales : (i) la dérivation de UML vers
une méthode formelles, (ii) la dérivation d’une méthode formelle vers UML, et (iii) l’intégration
conjointe. Dans ce rapport nous discuterons principalement le premier sens du couplage entre
UML et notations formelles. En effet, dans ce travail nous nous intéressons à une intégration de

1 Connus aussi sous l’appellation “langages formels Orientés Objets” [Lan95].

6

7

méthodes selon la stratégie transitionnelle. Nous proposons donc des règles de transformation
permettant de traduire le modèle fonctionnel (initialement exprimé en UML) ainsi que le modèle
de sécurité en une spécification formelle en B et en Z.

2.2 Couplage d’UML et B

UML et B sont deux techniques de spécifications reconnues en génie logiciel ; leur couplage
est motivé par le souhait de pouvoir les utiliser ensemble dans un processus de développement
de logiciels intégrant à la fois structuration et précision. Dans ce rapport, nous présentons un
aperçu de travaux de couplage de ces deux formalismes tout en mettant l’accent sur l’importance
de combiner la lisibilité d’une méthode graphique telle que UML et la rigueur d’une méthode
formelle telle que B.

Les travaux de dérivation de UML vers B ont commencé avec la thèse de Nguyen [Ngu98]
où principalement une stratégie transitionnelle a été adoptée. En effet, les fondements de ce
travail ont porté sur un catalogue de règles traduisant des diagrammes de OMT [RBL+90] en
B. La motivation principale de cette dérivation était de conserver les acquis des méthodes semi-
formelles déjà très répandus et de les renforcer d’un point de vue formel sans que cela ne nécessite
une reconstruction du système.

Depuis, plusieurs équipes ont travaillé sur le lien entre UML et la méthode B. Nous pouvons citer
notamment en France les travaux du CEDRIC/CNAM à Evry [Mam02, Reg02], du LORIA à
Nancy [Mey01, Led02], ou de l’Université de Versailles [Mar02], et à l’étranger des travaux menés
au Royaume Uni à l’Université de Southampton [SB06b] ou à l’Imperial College de Londres
[LCA04]. D’autres, comme par exemple [BBM03], ont présenté un cadre applicatif de ce couplage
(i.e. le ferroviaire). Somme toute, l’objectif de tels travaux est de préciser la sémantique d’UML,
de compléter ce langage pour augmenter son pouvoir d’expression, et de traduire les spécifications
semi-formelles en B pour profiter des outils de la méthode B. Ci-dessous, nous présentons une
synthèse des visées de chaque travail avec quelques précisions sur les diagrammes UML concernés.

(a) Travaux du CEDRIC/CNAM à Evry [Mam02, Reg02]

Objectif : Définition d’un environnement formel pour le développement d’applications bases
de données qualifiées de sûres. L’apport de ce travail ne porte pas sur la proposition de règles
de traduction, mais plutôt l’exploitation et l’adaptation de règles déjà mises au point dans
[Ngu98]. Le point de départ est donc une spécification B obtenue par traduction d’un ensemble
de diagrammes UML dédiés à la description des applications bases de données. Des tactiques
de raffinement sont définies en vue de générer (petit à petit) à partir des spécifications B les
différentes tables relationnelles ainsi que les requêtes SQL comme l’insertion d’un nouveau tuple
et la suppression d’un ensemble de tuples existants, etc.
Diagrammes UML concernés : le diagramme de classes, les diagrammes états/transitions et
les diagrammes de collaborations.

(b) Travaux de l’Université de Versailles [Mar02]

Objectif : Mise en œuvre d’un cadre transformationnel ciblant la prise en compte de contraintes
exprimées en OCL. Dans ses travaux, R. Marcano reprend l’essentiel des approches de dérivation
de UML vers B en y ajoutant des règles de traduction d’annotations OCL. Une autre contribution
intéressante est l’intégration de ces règles au sein de la plate-forme BRILLANT [CPP+05].
Diagrammes UML concernés : Diagrammes de classes et diagramme d’états/transitions
augmentés par des contraintes OCL.

8

(c) Travaux du LORIA à Nancy [Mey01, Led02]

Objectif : Définition d’un cadre théorique et pratique mettant en œuvre des transformations
de UML vers B. Les règles de traduction de base appliquées sont inspirées des travaux de
K. Lano et de H.-P. Nguyen sur la formalisation en B des concepts de OMT. Toutefois, E.
Meyer a apporté, d’une part, des solutions pour la traduction de l’héritage en UML, et d’autre
part, une formalisation nouvelle des diagrammes d’états/transitions en distinguant les concepts
d’événement et de transition. Le point de départ est une spécification UML (estimée finie)
décrivant aussi bien les aspects structurels que comportementaux d’un système. Sur cette base,
H. Ledang associe à chaque règle de traduction un schéma de dérivation montrant techniquement
comment l’ensemble des constructions du modèle UML (composé d’une palette de diagrammes)
sont projetées vers le modèle B. D’autres apports des travaux de H. Ledang sont à signaler comme
par exemple : la prise en compte du diagramme des cas d’utilisation et des transitions ayant
plusieurs actions en séquences. Par ailleurs, H. Ledang a proposé quelques règles de traduction
de certaines constructions OCL telles que les invariants, les pre et post-conditions d’opérations,
etc.
Diagrammes UML concernés : Diagrammes de classes, Diagrammes d’états/transitions,
diagrammes de collaborations et diagramme de cas d’utilisation.

(d) Travaux de l’Université de Southampton [SB06b, SB04]

Objectif : Ces travaux ont ciblé les projets MATISSE (www.matisse.qinetiq.com) et PUSSEE
(www.keesda.com/pussee) et ont eu pour vocation l’obtention d’une spécification B (dite “na-
turelle”) exemptée de constructions liées au mécanisme de traduction et pouvant compliquer
les preuves formelles. Par exemple, au lieu de dériver une machine B pour chaque classe, les
auteurs génèrent une machine B par paquetage et traduisent toutes les classes du paquetage
par des constructions B encapsulées au sein de cette même machine. Les contraintes d’intégrité
sont exprimées dans un nouveau formalisme (µB) et sont fondées sur la notation B. Par ailleurs,
C. Snook et ses co-auteurs dans [SB06b] apportent un brin d’originalité à cette technique en
spécialisant les concept d’UML avec des stéréotypes particuliers indiquant leurs contre-parties
B.
Diagrammes UML concernés : Diagramme d’état-transitions et diagramme de classes stéréotypées.

(e) Travaux de l’Imperial College de Londres [LCA04]

Objectif : Ces travaux ont principalement porté sur un ensemble de constructions UML adaptées
aux systèmes réactifs. Il s’agit de modèles UML-RSDS (Reactive System Development Support)
dont la sémantique se veut précise [Lan98]. L’objectif visé est de vérifier la correction du modèle.
Pour ce faire, un mélange de diagrammes UML et de notations formelles (B, SMV) est utilisé.
Diagrammes UML concernés : diagrammes UML-RSDS (diagrammes de classes, diagrammes
d’états/transitions, diagrammes de cas d’utilisation).
Ainsi, le sens de dérivation de UML vers B est largement étudié aujourd’hui, se concrétisant par
l’existence de plusieurs outils de traduction : e.g. UML2B [HLMK04], UML2SQL [LM00, UML04],
U2B [SB04], ArgoUML+B [Arg03]. Cependant, bien que les fondements théoriques de la dérivation
de UML vers B ont fait l’objet de nombreuses études, les outils qui en surgissent n’ont été
exploités qu’à un niveau académique.

Chapitre 3

Taking into account functional
models in the V&V of security
design models

Designing a security policy for an information system is a non-trivial task. Variants of the RBAC
model can be used to express such policies as access-control rules associated to constraints. In
this chapter, we advocate that currently available tools do not take sufficiently into account
the functional description of the application and its impact on authorisation constraints and
dynamic aspects of security. We suggest to translate both security and functional models into a
formal language, such as B or Z, whose analysis and animation tools will help verify and validate
a larger set of security scenarios.

3.1 Introduction

The design of today’s information systems must not only take into account the expected functio-
nalities of the system, but also various kinds of non-functional requirements such as performance,
usability or security. Security policies are designed to fulfill non-functional requirements such as
confidentiality, integrity and availability. They are usually expressed as abstract rules, indepen-
dently of target technologies. In the past, various access control models have been proposed to
define security policies. In this chapter, we focus on role-based access control models (RBAC)
[SCFY96, DDR03], including evolutions such as SecureUML [BDL06]. An important feature of
such models is the notion of role : permissions are granted to roles which represent a set of users.
Moreover users may play several roles with respect to the secure system.
Constraints can be associated to these access control models. They allow to express Separa-
tion of Duty properties [CW87], and other properties on roles (e.g. precedence, see Sect. 3.2).
Constraints may also link permissions to contextual information, such as the current state of the
information system. This is one of the interesting features of SecureUML which groups UML
diagrams of the application with security information describing the access control rules. In the
remainder, we will refer to the UML diagrams of the application as the functional model. The
term security model will refer to the access control model.
Constraints give flexibility to describe security policies, but result in complex descriptions which
need tool support for their verification and validation. Verification checks that the description is
consistent, in particular, it must check that constraints are not contradictory, which would result
in unsatisfiable policies. Validation checks that the policy corresponds to the user’s requirements.

9

10

With such complex models, V &V analyses can become a difficult task. The separation between
the functional model and the security model is an interesting solution, based on separation of
concerns. However, existing works are mainly interested by the security part. They propose
techniques to verify the consistency of an access control policy without taking into account
the impact of the functional part. Although it is definitely useful to analyse both models in
isolation, interactions between these models must also be taken into account. Such interactions
result from the fact that constraints expressed in the security model also refer to information
of the functional model. Hence, evolutions of the functional state will influence the security
behaviour. Conversely, security constraints can impact the functional behaviour. For example, it
is important to consider both security and functional models in order to check liveness properties
on the information system. Indeed, it can be the case that security constraints are too strong
and block the system.
Only a few tools have been proposed to support these V&V activities on role-based authorisation
constraints. In Sect. 3.2, we will review the features of two such tools, USE and SecureMova,
which are representative of the current state of the art. In Sect. 3.3, we present a security rule
whose validation requires to take into account dynamic aspects of the functional model. Such
aspects cannot be investigated with the currently available tools. Finally in Sect. 3.4, we propose
solutions based on formal methods such as B or Z, to address these issues.

3.2 Tools for V&V of role-based authorisation constraints

In this section, we briefly review the features of two tools which support the validation of
role-based security policies with constraints. In both cases, the constraints are written in OCL
[WK98], a language based on first order logic predicates over the constructs of an UML class
diagram.

3.2.1 USE for the validation of security policies

The USE tool (UML-based Specification Environment) [GBR07b] allows to evaluate OCL constraints
on a given object diagram. These constraints are usually invariants associated to the classes of
the diagram, but can also stand for pre- or post-conditions if the object diagram represents the
initial or final state of some operation. The tool also allows to program a random generator for
object diagrams, and to program sequences of object diagrams.
Sohr et al [SDAG08] have adapted this tool for the analysis of security policies. Their work
focuses on the security model, i.e. users, roles, sessions and permissions, constrained by OCL
assertions. This allows to express properties such as :
– Cardinality : a given role has at most n users.
– Precedence : u may be assigned to role r2 only if u is already member of r1.
– Separation of Duty : roles r3 and r4 are conflicting.
– Separation of duty for colluding users, e.g. two members of the same family may not take

conflicting roles.
– Context-dependent permissions, e.g. only doctors of a patient’s current hospital may have

access to his/her medical record.
The last two properties cannot be expressed on a pure security model. The model must be aug-
mented with functional information, e.g. some attribute
currentHospital should be added to the users. Another possibility is to explicitly include this
information in the constraints, e.g. in [SDAG08] all sets of colluding users are listed in the OCL
rules. Both cases correspond to extensions of the RBAC+constraint model which do not really
scale up. Such information definitely belongs to the functional model.

11

Sohr et al [SDAG08] report on two kinds of validation activities. An object diagram can be given
to the tool, and the tool will check which constraints are violated. The object diagram can be
user-defined, randomly generated, or member of a programmed sequence. This allows to detect
unsatisfiable constraints, i.e. constraints which are always false. They have also developed a tool
named authorisation editor, which implements the administrative, system and review functions
of the RBAC standard. The tool is connected to the API of USE so that the constraints of
the security policy are checked after each operation. This allows to detect erroneous dynamic
behaviour of the security policy. For example, if two roles are constrained both by a precedence
and a conflict relations, it will always be impossible to find a sequence of RBAC administrative
and system operations which leads to create the second role.

3.2.2 SecureMova

In [BCDE09b], Basin et al report on SecureMova, a tool which supports
SecureUML+ComponentUML. The tool allows to create a functional diagram, i.e. a class dia-
gram, and to relate it to permission rules. Constraints can be attached to permissions and these
constraints may refer to the elements of the functional diagram.
For example, this would allow to express the property that doctors may access a medical record
if and only if they are employed by the hospital of the patient. A class HOSPITAL may be
defined in the functional model and relations drawn between HOSPITAL and PATIENT , and
between HOSPITAL and DOCTOR. The OCL constraint associated to the permission to access a
medical record would navigate through the functional model to retrieve the PATIENT associated
to the medical record, and his/her current HOSPITAL. It would also retrieve the DOCTOR
corresponding to the user asking to access the medical record and retrieve his/her associated
HOSPITAL. Finally, the constraint will compare these two hospitals.
With SecureMOVA it is possible to ask questions about a current state, i.e. a given object
diagram. Such queries return the actions authorized for a given role, or to a given user. They
also allow to investigate on overlapping permissions, i.e. permissions which have a common set
of associated actions. The tool provides an extensive set of queries over a given model, possibly
associated with a given initial state. All reported examples [BCDE09b] are of static nature, i.e.
they don’t allow to sequence actions (either administrative or functional) and check that a given
sequence is permitted by the combination of the security and functional models.

3.3 Motivating example

Our motivating example is based on the constraint stated above : “If a doctor wants to access
the medical record of a given patient, he must belong to the same hospital as the patient”. Let
us now consider a malicious doctor, who wants to access the information of a patient in another
hospital. Since the patient and the doctor belong to different hospitals, the doctor will not be
permitted to access this information. In order to validate the rules of the security policy, one
may try several typical situations and query about the permitted/forbidden actions. Using a tool
such as SecureMova, one would provide an object diagram od1 with one doctor and one patient
linked to two different hospitals, and query if the doctor may perform action readMedicalRecord
on the patient’s medical record. The tool would answer that the doctor is not authorized to
perform this action.
Further validation of this security policy should explore dynamic aspects of the policy. For
example, is it possible for this malicious doctor to access the patient’s information ? Using
only static tools, one can check that, given an object diagram od2 where the malicious doctor
belongs to the same hospital as the patient, he will be granted this access. The next question to
investigate is : does there exist a sequence of actions which leads a malicious doctor to belong

12

to the same hospital as the patient ? This requires to animate a sequence of actions which leads
from od1 to od2. Such a sequence will presumably call an intermediate operation joinHospital
which will link the malicious doctor to the hospital of the patient. Here the dynamic analysis
will allow to identify these intermediate actions and check which role has permission to perform
these actions.
Another way to group the malicious doctor and the patient in the same hospital is to transfer
the patient in the hospital of the doctor. In this second sequence, one should investigate who
has the permission to perform such a transfer.
This simple example shows that the validation of a security policy may require dynamic analyses
to identify sequences of actions leading to an unwanted state. Moreover, these sequences of
actions are not restricted to the standard RBAC functions and may refer to operations defined
in the functional model. This is actually the case when constraints referring to the functional
model are expressed on permissions. Current tools, such as the ones presented in Sect. 3.2,
which focus on static queries or on the dynamic execution of the sole RBAC functions are not
sufficient to perform such dynamic investigations. In [SDAG08], Sohr also proposes the use of
Linear Temporal Logic (LTL) as a way to express a larger set of constraints, and then uses a
theorem prover to detect erroneous dynamic behaviours. Still, this work does not consider the
functional model and needs to be extended to address the case of our malicious doctor.

3.4 Using testing and verification techniques

The example of Sect. 3.3 shows that there is a need for dynamic analyses when designing a
security policy. Moreover, when the security policy refers to the functional model through the
use of constraints, the dynamic analysis should not only cover the RBAC standard functions,
but also take into account the behaviour of the functional model.
Dynamic analyses can take two forms : tests and verifications. Tests correspond to the execution
of a sequence of actions on the security and functional models, or on their implementations. The
test sequence is either defined by the security policy designer, possibly on the basis of use cases,
or it may be the output of a test generation tool on the basis of some coverage of the models. Test
can contribute to both validation and verification activities. Tests based on use cases correspond
to the validation activity because they contribute to show that the security policy meets the
users/customers needs. Tests based on model coverage contribute to verification. They can check
that all covered behaviours of the model will respect some global properties of the security policy
like separation of duties. Tests also contribute to detect unsatisfiable constraints because such
constraints may forbid any state different from the empty state.
Tests can only check a limited number of behaviours. When absolute guarantees are needed,
verification techniques should be considered. Verification techniques include model-checking and
symbolic proof techniques. Both techniques are of interest in the verification of a security policy.
Proof techniques can show the existence of some state, and hence prove that constraints are
satisfiable, or establish that some property, like separation of duty, is an invariant of the model.
Model-checking is based on model exploration, and can be used to find a sequence of actions
leading to a given state or property. In our motivating example, model-checking tools should be
experimented to find a path between od1 and od2.

3.4.1 Some solutions to explore

Testing techniques require the availability of executable models or implementations. Security
policies based on RBAC can easily be made executable, as demonstrated by Sohr in his autho-
risation editor [SDAG08]. Executability of the functional model can be achieved in two ways :

13

either by providing an implementation of the model which can interface with the contextual
constraints of the security model, or by providing an executable model. Providing an implemen-
tation makes sense in a context where the functional system is designed first, without considering
security aspects, and where a security policy must be designed later for this application. It also
makes sense during a maintenance phase where a given implemented security policy must evolve.
Some prototypes of RBAC can be coupled with an existing implementation. For example, the
MotOrBAC tool provides an API between its security engine and the application [ACCBCB08].
The other way is to get an executable functional model. In the case of USE or SecureMova,
the model is expressed as a class diagram combined with OCL predicates. In order to turn
UML methods into executable ones, one need to provide an implementation of the methods.
Actually, USE allows to define a body for each method using an imperative language based
on OCL. It seems that this feature was not explored in [SDAG08] and might be interesting to
investigate. Another way is to animate the methods based on their pre- and post-conditions. We
don’t know of tools which support this approach for OCL, but they exist for formal languages
such as Z[ISO02] or B[Abr96b]. For example, the Jaza tool [Utt05b] can be used to animate the
operations of a Z specification.
The B language actually appears as an interesting option. Several tools have been defined to
translate UML models into B specifications ; they show at least the feasibility of such translations
[ML06, SB06c]. Regarding the security model, Sohr[SDAG08] has already shown that it can be
specified in UML+OCL. Since the B language is based on the same principles as OCL (first order
predicate logic and set theory), it is possible to propose a similar translation of the security model
into B specifications. The B specifications produced from both security and functional models
can then be analysed using either animation tools such as ProB [LB08] or proof tools such as
Atelier-B 1. ProB also includes model-checking facilities which can be of interest to search for
malicious sequences of operations.

3.4.2 Support of history-based constraints

The constraints expressed in OCL only refer to a given instant of time. When expressing history-
based constraints, it is necessary to refer to several distincts instants of time. For example, let
us consider the following rule : “If a patient has left the hospital, all doctors belonging to the
hospital during the patient’s stay will keep read access to his medical record.”. If we want to
express this rule as a read permission associated to an OCL constraint, we need to extend the
functional model with information about past states, and this information is for security’s sake
only. This goes against separation of concerns.
In [SDAG08], Sohr suggests the use of TOCL, an extension of OCL with temporal operators.
Although this provides a way to express the history based constraints, it appears that no tool is
currently available to support the use of this formalism. Sohr suggests to translate TOCL into
LTL as future work.
Another approach in order to model such history-based constraints and dynamic aspects of a
security policy is process algebra. Process algebra can be used to model workflows of actions
and all ordering and security constraints related to a dynamic security policy. Based on process
algebra and Statecharts, the astd notation (Algebraic State Transition Diagrams [FGL+08]) is a
formal, graphical and state-based specification language. A security rule can be described using
a hierarchical automata notation. Rules, expressed as processes, can then be combined using
operators such as sequence, choice, synchronization or interleaving. Guards can also be used
in order to model security constraints. astd allows processes to be quantified. Quantifications
reduce model complexity by defining, for instance, the behavior of all entities of a class using
a single quantified astd. astd models are also executable using iastd [SM+10], an interpreter

1http://www.atelierb.eu

http://www.atelierb.eu

14

for astd. iastd efficiently determines if actions can be executed by the model and computes
the astd state after the execution. Combined with graphical representation of states it provides
a visual animation, helping to validate the model. Systematic translation of astd specification
to B or Event-B [?] can also be used to perform proofs and model checking and further verify
the specification of dynamic rules of the security policy.

3.5 Conclusion

This chapter has addressed the verification and validation (V&V) of security policies. These are
essential activities when designing or modifying a security policy. We have focussed on policies
based on access-control models with constraints. These constraints may concern the elements
of the security model, e.g. to express incompatible roles, but may also refer to elements of the
functional model controlled by the security policy. In many cases, the state of the functional
model is used as a context to grant access rights.
Separation of concerns suggests to treat the functional and security models in isolation. Unfor-
tunately, when constraints establish a link between these models, V&V activities must consider
both the security model and the functional model. In Sect. 3.2, we have stated that current
V&V tools cover static aspects of the functional model, as well as static and dynamic aspects
of the security model. A motivating example, presented in Sect. 3.3 has illustrated the need
for dynamic analyses which take into account both models. Such analyses can be conducted as
testing or verification (model-checking or proof). Both kinds of analyses require to describe the
behaviours of both models.
Based on these considerations, it appears that formal languages can provide an interesting
framework to support these activities. Such languages are often supported by mature proof,
model-checking and animation tools. Our current work goes into that direction. This approach
is currently investigated in the Selkis project, funded by the French national research agency.
The project includes the translation of security models, based on RBAC with constraints, into
the Z and B formal languages, in order to allow the use of their associated tools for static and
dynamic analyses.

Chapitre 4

Specification security-design models
using Z

This chapter is aimed at formally specifying and validating security-design models of an infor-
mation system. It combines semi-formal and formal methods, integrating specification languages
such as UML and an extension, SecureUML, with the Z language. The modeled system addresses
both functional and security requirements of a given application. The functional specification is
built automatically from the UML diagram, using our RoZ tool. The secure part of the model
uses a generic security-kernel written in Z, free from applications specificity, which implements
the concepts of RBAC (Role-Based Access Control). The final modeling step is to create a link
between the functional model and the security kernel. The integrated model is then animated
using the Jaza tool, which contributes to its validation. Our approach is demonstrated on a case-
study from the health care sector where confidentiality and integrity appear as core challenges
to protect medical records.

4.1 Introduction

It is often stated that most of the faults of software systems are traced back to deficiencies in
specifications [Mar03]. In secure information systems, specifications include functional aspects,
describing how information is processed, and security aspects, which describe who may access
the functionalities of the information system. Separation of concerns tends to separate functional
and security models. But since the security model refers to elements of the functional one, it
is necessary to integrate them to fully address security concerns and perform more complete
security analyses. One of the key considerations in secure systems development is to evolve
an integrated model of functional and non-functional aspects right from the beginning. This
gives rise to the concept of security-design models (e.g.,[Jür04], [BDT06]). Such models can
adequately support the study of malicious attacks and threats that are otherwise confronted in
the installed systems. Latest advancements [Jür04] in security critical systems have stated that
security properties cannot be retrofitted.
This chapter tries to combine formal and semi-formal methods, in order to incorporate the
precision of formal languages into intuitive graphical models. As for SecureUML [BDT06], we
propose to express functional and security models as UML diagrams. These diagrams are then
translated into a single formal specification, expressed in the Z language [Spi92]. We then use
Jaza [Utt05a] to animate the model and contribute to its validation. Validation is performed
by asking queries about the access control rules, as done in the SecureMova tool [BCDE09a]. It
is also achieved by playing scenarios, which lead the system through several state changes and

15

16

Fig. 4.1 – Security policy model using SecureUML

involve both the security and the functional model. Such dynamic scenarios can exhibit security
flaws, which cannot be detected by static queries.
In the past, we developed RoZ, a tool which transforms a UML class diagram, annotated with
Z assertions, into a Z specification [DLCP00]. The resulting Z specifications can be animated
using Jaza [Led06]. Our mid-term goal is to upgrade RoZ in order to address security concerns
in our UML models.
Our security model is based on RBAC (Role-Based Access Control) [FSG+01] and SecureUML
[BCDE09a]. Several attempts have been made to specify RBAC in Z [FSG+01],[AK06],[PSS08].
Most of them are specifications of the RBAC meta-model. As far as we know, none of these
has been used in conjunction with an animator in order to validate a given security policy.
Currently, several tools exploit OCL in order to validate RBAC or SecureUML specifications.
Sohr et al [SDAG08] have adapted the USE OCL tool [GBR07a] for the analysis of security
policies. SecureMova [BCDE09a] is a tool dedicated to SecureUML, an extension of RBAC. It
allows to query the security policy, and can also evaluate which actions are permitted for a
given role in a given context, depicted as an object diagram. Still, both tools only address the
functional model statically, i.e. they don’t animate the operations of the functional model.
This chapter presents our translation of functional and security models into Z and how these
can be validated, using the Jaza animator. Our approach has the following goals : 1) modeling a
secure system and stating its properties in terms of Z annotations, 2) comprehensible and easily
expressible specifications due to the fact that graphical models are employed, 3) validation by
queries over specified access-control policy of a system in question, and 4) validation through
animation of the integrated model.
The chapter is structured as follows. Sect. 4.2 introduces an illustrative example. Sect. 4.3
recalls the principles of the translation of the functional model, while Section 4.4 features the
specification of the security kernel. The integration of both models is described in Sect. 4.5.
Section 4.6 features the validation activities, based on animation. Finally, Sect. 4.7 presents
related work and conclusion along with future directions appear in Sect. 5.7.

4.2 Illustrative example : medical information system

Fig. 4.1 models a simple medical information system. The figure has two sides where functio-
nal features on the right, are decoupled from security features on the left. The functional part
describes four classes : patients, doctors, hospitals and medical records. Each medical record cor-
responds to exactly one patient. Its field contents stores confidential information whose integrity

17

Fig. 4.2 – Object diagram for the functional model produced from the output of Jaza

must be preserved. The functional part also records the current hospital hosting the patient,
the doctors working in this hospital, and the one responsible for the patient’s medical record.
Fig. 5.6 gives an object diagram corresponding to this functional model. It features 4 patients,
2 doctors (Alice and Bob), 2 medical records, and 2 hospitals. Alice is linked to both hospitals,
while Bob only works for one of them.
The left part of Fig. 4.1 describes the access control rules of the information system. In Secu-
reUML and RBAC, users of the system are abstracted into roles, and permissions are granted
to roles. Fig. 4.1 features two roles : Nurse and Doctor . An inheritance relation links Doctor
to Nurse, expressing that doctors inherit all permissions of nurses. Confidentiality and integrity
must be ensured for medical records. Two permissions rule the access to class Medrecord. Per-
mission ReadMedRecord is granted to nurses (and inherited by doctors). It expresses that nurses
and doctors have read access to medical records. It refers to entity action read which designates
operations accessing the class without modifying it. Permission UpdateMedrecord grants addi-
tional rights to doctors, who may update medical records. A constraint Same hospital as patient
restricts this permission to the doctors linked to the same hospital as the patient. In Fig. 5.6, it
means that only Alice has the right to modify the medical record of John, numbered “med data1”,
because she is the only doctor linked to RedCross hospital. In SecureUML, such constraints are
expressed in OCL ; here, they will be expressed in the Z language. In Fig. 4.1, a third permission
grants to all doctors full access, i.e. read and update access, to objects of class Doctor.
We will study the following attack scenario : Bob, a malicious doctor, wants to corrupt the
integrity of John’s medical record. Since Bob is not working for RedCross hospital, the access
control rules should deny him this modification.

4.3 Translating the functional model into Z

The RoZ tool automatically translates the functional model, corresponding to the right part
of Fig. 4.1, into a Z specification. RoZ [DLCP00] transforms a UML class diagram, annotated
with Z assertions, into a single Z specification. The tool also generates basic operations such as
setters and getters for the attributes and the associations.
Here are some elements of the formal specification generated from the functional diagram of
the medical record information system. First, the types of the class attributes are introduced as
given types.

[NAME ,USERID ,STRING,RECORDNB]

18

Every class is translated into two Z schemas. The first one, a schema type, describes the type
of the elements of the class. This schema corresponds to the class intent and lists the class
attributes. Schemas MEDRECORD and DOCTOR describe the intent of the corresponding
classes. A second schema describes the extension of the class, i.e. the set of objects belonging to
the class. Schemas MedrecordExt and DoctorExt correspond to these extensions ; each of these
includes a finite set of objects corresponding to the type of the class.

MEDRECORD

recordnb : RECORDNB

contents : STRING

MedrecordExt

Medrecord : F MEDRECORD

DOCTOR

id : USERID

name : NAME

DoctorExt

Doctor : F DOCTOR

During a Jaza animation, each object is represented as a list of pairs
attribute == value. The list is enclosed between 〈| . . . |〉. Here is the Jaza representation of
sets Doctor and Medrecord corresponding to the state of Fig. 5.6.
Doctor ′ == {〈| id == ”003”,name == ”Alice” |〉, 〈| id == ”004”,name == ”Bob” |〉},
Medrecord ′ == {〈| contents == ”healthy”, recordnb == ”meddata2” |〉,

〈| contents == ”sick”, recordnb == ”meddata1” |〉},

UML associations are translated by RoZ as a pair of functions corresponding to both roles of
the association. For example, functions hospitalsOfDoctor and doctorsOfHospital describe the
association between doctors and hospitals. Their domain and range are constrained by predicates
of the schema. Additional predicates express that the inverse role can be constructed from the
direct one.1

DoctorHospitalRel

HospitalExt ;DoctorExt

hospitalsOfDoctor : DOCTOR 7→ F HOSPITAL

doctorsOfHospital : HOSPITAL 7→ F DOCTOR

dom hospitalsOfDoctor ⊆ Doctor ∧
⋃

(ran hospitalsOfDoctor) ⊆ Hospital

. . .

Here is how Jaza represents role doctorsOfHospital corresponding to Fig. 5.6.
doctorsOfHospital ′ == {(〈| name == ”BlueCare” |〉, {〈| id == ”003”,name == ”Alice” |〉,

〈| id == ”004”,name == ”Bob” |〉}),
(〈| name == ”RedCross” |〉, {〈| id == ”003”,name == ”Alice” |〉})},

Finally, here are the specifications of several operations. First,
MRChangeContents is a setter for field contents. This operation, which works on the type
of medical records, must be promoted to impact the actual contents of the class extension, and
to modify the related associations. The promoted operation is named MRChangeContentsPr ,
and takes an additional input x? designating the object to modify.

MRChangeContents

∆MEDRECORD

newcontents? : STRING

contents ′ = newcontents? ∧ recordnb′ = recordnb

1These predicates are omitted for space reasons.

19

MRChangeContentsPr == MRChangeContents ∧ . . .

Operation DRLinkDoctors creates a link between a doctor and an hospital. Its predicates distin-
guish between the case where a first doctor is linked to the hospital, and the case where doctors
were already linked to this hospital.

DRLinkDoctors

ΞHospitalExt ;ΞDoctorExt ;∆DoctorHospitalRel

hospital? : HOSPITAL ;doctor? : DOCTOR

(hospital? 6∈ dom doctorsOfHospital) =⇒
(doctorsOfHospital ′ = doctorsOfHospital ⊕ {hospital? 7→ {doctor?}})

(hospital? ∈ dom doctorsOfHospital) =⇒
(doctorsOfHospital ′ = doctorsOfHospital ⊕ {hospital? 7→

(doctorsOfHospital(hospital?) ∪ {doctor?})})

These operations are sufficiently detailed to animate the model with Jaza. After several steps,
one may end up with a state corresponding to Fig. 5.6. Nevertheless, these operations don’t take
into account the access control rules. In particular, they are not aware of which user is executing
them. This will be the responsibility of the security kernel described in the next section.

4.4 The security kernel

4.4.1 Permissions

A permission assignment links a role to an operation on a given class, also called the protected
resource. These four types are introduced in Z as given types or as enumerated types. When
considering enumerated types, the values of the type must be extracted from the UML diagram
in order to instantiate the security kernel. Here are the type declarations corresponding to Fig.
4.1. PERMISSION stores the names of the permissions. Schema Sets includes sets of values
corresponding to each of these types.

[PERMISSION]

ROLE ::= Doctor | Nurse

RESOURCE ::= Medrecords | Patients |
Doctors | Hospitals

ABS ACTION ::= EntityRead |
EntityUpdate | EntityFullAccess

Sets

role : F ROLE

resource : F RESOURCE

permission : F PERMISSION

abs action : F ABS ACTION

Here are the values of these variables during the Jaza animation.
abs action ′ == {EntityFullAccess,EntityRead ,EntityUpdate},
permission ′ == {”ReadMedrecord”, ”UpdateDoctor”, ”UpdateMedrecord”},
resource ′ == {Doctors,Hospitals,Medrecords,Patients},
role ′ == {Doctor ,Nurse},

Schema ActionAssignment links roles to a tuple made of the name of the permission, the abstract
action allowed by the permission and the kind of resource associated to this permission.

ActionAssignment

action Asmt : ROLE ↔ (PERMISSION ×ABS ACTION × RESOURCE)

20

The permissions of Fig. 4.1 are stored during a Jaza session as :
action Asmt ′ == {(Doctor , (”UpdateDoctor”,EntityFullAccess,Doctors)),

(Doctor , (”UpdateMedrecord”,EntityUpdate,Medrecords)),
(Nurse, (”ReadMedrecord”,EntityRead ,Medrecords))}

4.4.2 Role hierarchy

RBAC allows to define hierarchical relations between roles. This is captured by schema RoleInherits.
The predicates forbid circularity in the role hierarchy, and forbid the use of roles not declared
in set role.

RoleInherits

Sets

role Inherits : ROLE ↔ ROLE

role Inherits+ ∩ id role = ∅
dom role Inherits ⊆ role ∧ ran role Inherits ⊆ role

Fig. 4.1 features a simple role hierarchy, expressed in Jaza as :

role Inherits ′ == {(Nurse,Doctor)},

Schema InheritAssignment computes comp Asmt which is action Asmt combined with the in-
herited permissions.

InheritAssignment

RoleInherits

ActionAssignment

comp Asmt : ROLE ↔ (PERMISSION ×ABS ACTION × RESOURCE)

comp Asmt = {r : dom action Asmt ;x : role ;a : ran action Asmt

| ((r 7→ x) ∈ ((role Inherits+) ∪ (id role))) ∧ ((r 7→ a) ∈ action Asmt) • (x 7→ a)}

In our example, permission ReadMedrecord is inherited by doctors from nurses.
comp Asmt ′ == {(Doctor , (”ReadMedrecord”,EntityRead ,Medrecords)),

(Doctor , (”UpdateDoctor”,EntityFullAccess,Doctors)),
(Doctor , (”UpdateMedrecord”,EntityUpdate,Medrecords)),
(Nurse, (”ReadMedrecord”,EntityRead ,Medrecords))},

4.4.3 Action hierarchy

Permissions of Fig. 4.1 refer to abstract actions, such as read or update. These must be linked to
their concrete counterparts. Our security kernel allows to express this link, as well as an action
hierarchy, defining abstract actions in terms of other abstract actions (e.g. EntityFullAccess is
defined as the set including EntityUpdate and EntityRead). These two relations are expressed
in schema ActionsRelation. We first introduce the enumerated type of atomic actions.

ATM ACTION ::= MRReadMedrecord1 | DRLinkDoctors1 | MRChangeContentsPr1

21

ActionsRelation

Sets

action Inherits : ABS ACTION ↔ABS ACTION

atm action : F ATM ACTION

action Relation : ABS ACTION ↔ (ATM ACTION × RESOURCE)

action Inherits+ ∩ id abs action = ∅
dom action Inherits ⊆ abs action ∧ ran action Inherits ⊆ abs action

dom action Relation ⊆ abs action ∧ ran action Relation ⊆ (atm action × resource)

It must be noted that the correspondance between abstract and concrete actions takes into
account the class on which the abstract action is performed. For example, concrete operation
MRReadMedrecord1 only makes sense for medical records. These relations are instantiated as
follows in our example.
action Inherits ′ == {(EntityRead ,EntityFullAccess),

(EntityUpdate,EntityFullAccess)},
action Relation ′ == {(EntityRead , (MRReadMedrecord1,Medrecords)),

(EntityUpdate, (MRChangeContentsPr1,Medrecords)),
(EntityUpdate, (DRLinkDoctors1,Doctors))},

abstract Asmt unfolds the hierarchy of abstract actions in comp Asmt . Then concrete Asmt
replaces abstract actions by their concrete counterparts for the given kind of resource.

ComputeAssignment

InheritAssignment ;ActionsRelation

abstract Asmt : ROLE ↔ (PERMISSION ×ABS ACTION × RESOURCE)

concrete Asmt : ROLE ↔ (PERMISSION ×ATM ACTION × RESOURCE)

...

concrete Asmt ′ == {(Doctor , (”ReadMedrecord”,MRReadMedrecord1,Medrecords)),
(Doctor , (”UpdateDoctor”,DRLinkDoctors1,Doctors)),
(Doctor , (”UpdateMedrecord”,MRChangeContentsPr1,Medrecords)),
(Nurse, (”ReadMedrecord”,MRReadMedrecord1,Medrecords))},

4.4.4 Roles, users and sessions

Actual users of the security kernel must be linked to roles, through sessions. We first define sets
of users, sessions and user ids, and the corresponding types. USERID already appeared in the
functional model and will be used to make a link between users appearing in the security part
of the model, and the classes representing these users in the functional model. Injective function
accessRights makes this link between user ids, and users.
A session corresponds to one and only one user, who has activated a set of roles. These roles
must correspond to roles allowed to this particular user. This is expressed in role Asmt . Several
predicates, associated to these schemas, check the consistency between these variables.

22

[USER,SESSION]

RoleAssignment

Sets

user : F USER

role Asmt : USER↔ ROLE

. . .

SessionRoles

RoleAssignment

uid : F USERID ;

session : F SESSION

accessRights : USERID 7�USER

session User : SESSION 7→USER

session Role : ROLE ↔ SESSION

. . .

Table 4.1 features several sessions with associated users, roles and ids.

4.4.5 Putting it all together

Schema PermissionAssignment offers an entire table of the graphical model given in Fig. 4.1.
It constructs a relation between user identity, user, role and the respective permissions, atomic
actions, and the resources. This is achieved using concrete Asmt relation and linking roles to
their users and user ids.

PermissionAssignment

SessionRoles ;RoleAssignment ;ComputeAssignment

perm Asmt : (USERID ×USER × ROLE)↔
(PERMISSION ×ATM ACTION × RESOURCE)

perm Asmt = {uid : dom accessRights ;u : dom role Asmt ;

r : ran role Asmt ;b : ran concrete Asmt |
(uid , u) ∈ accessRights ∧ (u, r) ∈ role Asmt ∧ (r , b) ∈ concrete Asmt •

((uid , u, r) 7→ b)}

In our example, perm Asmt takes the following value
perm Asmt ′ ==
{((”003”, ”Alice”,Doctor), (”ReadMedrecord”,MRReadMedrecord1,Medrecords)),
((”003”, ”Alice”,Doctor), (”UpdateDoctor”,DRLinkDoctors1,Doctors)),
((”003”, ”Alice”,Doctor), (”UpdateMedrecord”,MRChangeContentsPr1,Medrecords)),
((”004”, ”Bob”,Doctor), (”ReadMedrecord”,MRReadMedrecord1,Medrecords)),
((”004”, ”Bob”,Doctor), (”UpdateDoctor”,DRLinkDoctors1,Doctors)),
((”004”, ”Bob”,Doctor), (”UpdateMedrecord”,MRChangeContentsPr1,Medrecords)),
((”007”, ”Jeck”,Nurse), (”ReadMedrecord”,MRReadMedrecord1,Medrecords))},

We can now use this table, and the information about sessions, to specify the basis for secure
operations. SecureOperation actually does nothing : it does not update the state nor computes
a result. It simply states preconditions to allow user ?, with id uid ?, acting in a given role ?,
during a given session ? to perform a given action ? on a resource ?, as stated by permission ?.

Session User Role User Id
sess1 Alice Doctor 003
sess2 Bob Doctor 004
sess3 Jeck Nurse 007

Tab. 4.1 – Three sessions

23

SecureOperation

ΞSessionRoles ;ΞPermissionAssignment

session? : SESSION ;resource? : RESOURCE ;atm action? : ATM ACTION

role? : ROLE ;user? : USER ;uid? : USERID ;permission? : PERMISSION

(session?, user?) ∈ session User

(role?, session?) ∈ session Role

((uid?, user?, role?), (permission?, atm action?, resource?)) ∈ perm Asmt

Another use of this table is to perform queries on the access control policy. We have implemented
three such queries, inspired by [BCDE09a].
– Given a role, what are the atomic actions allowed to this role ?
– Given an atomic action, which roles may perform it ?
– Given a kind of resource, which permissions apply ?
EvaluateActionsAgainstRoles corresponds to the second kind of query. It takes an atomic action
as input and returns a table listing all roles allowed to perform this atomic action, and the
corresponding permission.

EvaluateActionsAgainstRoles

ΞSets ;ΞComputeAssignment

atm action? : ATM ACTION

z roles! : ROLE ↔ (PERMISSION ×ATM ACTION × RESOURCE)

z roles! = {r : dom comp Asmt ;p : permission ;rsrc : resource |
(r 7→ (p, atm action?, rsrc)) ∈ concrete Asmt • (r 7→ (p, atm action?, rsrc))}

This can be evaluated using Jaza. For example, the following query questions about the per-
missions to call MRChangeContentsPr1. The answer tells us that only role doctor is allowed to
perform this action on medical records.

;EvaluateActionsAgainstRoles[atm action? := MRChangeContentsPr1]
. . .
z roles! == {(Doctor , (”UpdateMedrecord”,MRChangeContentsPr1,Medrecords))}

4.5 Linking functional and security models

SecureOperation is meant to be included, as a precondition, in the secured version of the opera-
tions of the functional model. For example, let us consider the setter method for contents, named
MRChangeContentsPr . A secured version of this operation includes the schema of the operation
and SecureOperation. Schemas PatientHospitalRel and DoctorHospitalRel are also included to
get read access to the associations between hospitals, patients and doctors.
The first predicate makes a link between this operation and the corresponding atomic action
and resource in the security model. They can be generated automatically. The other predicate
expresses the constraint Same hospital as patient : “the medical record may only be updated
by a doctor working in the current hospital of the patient”. It retrieves hospital , the hospital
corresponding to the patient x? of the medical record. Then it retrieves the object of class
Doctor corresponding to the user id of the user of the current session. Finally, it checks that this
doctor works for hospital . This constraint must be added manually by the analyst and cannot
be extracted from the UML diagram.

24

SecureMRChangeContentsPr

SecureOperation

MRChangeContentsPr

ΞPatientHospitalRel ;ΞDoctorHospitalRel

atm action? = MRChangeContentsPr1 ∧ resource? = Medrecords

∃ hospital : Hospital | hospitalOfPatient(patientOfMedrecord(x?)) = hospital •
∃ doctor : Doctor | accessRights−1(session User(session?)) = doctor .id •

doctor ∈ doctorsOfHospital(hospital)

This operation inherits all input parameters of schemas SecureOperation. Most of these para-
meters can be deduced by Jaza once session? has been fixed. Therefore, we define a new version
of the schema hiding these parameters.

SecureMRChangeContentsPr2 ==

SecureMRChangeContentsPr
∖

(uid?, user?, abs action?, atm action?, resource?,

permission?, role?)

Secure versions of ReadMedicalRecord and LinkDoctors are defined similarly.
Constraint Same hospital as patient links information from the security model (the id of the
current user) to the state of the functional model (the hospital of the patient). Its evaluation
depends on the states of both models and can thus evolve if any of these models evolves. As we
will see in Sect. 4.6, this makes the analyses and validation of the security policy more complex.

4.6 Validating and Animating Secure Operations

Validation of security properties is based on animation of the specification using Jaza [Utt05a].
Jaza can animate a large subset of constructs of the Z language. It uses a combination of rewriting
and constraint solving to find a final state and outputs from a given initial state and inputs. If
the initial state and inputs don’t satisfy the precondition of the operation, the tool returns ”No
Solutions”. The tool can be further queried to find out which constraint could not be satisfied.
In the sequel, we start from the state of Fig. 5.6 and Table 4.1. We first show how normal
behaviours can be experimented with the tool, demonstrating that such behaviours are permitted
by the security model. We then investigate the attempts of a malicious doctor to corrupt the
integrity of a medical record.

4.6.1 Normal behaviour

Our first tests aim at exercising scenarios that are expected to succeed. Their success will show
that the combination of security and functional models allows such normal behaviours to take
place.

Scenario I : A doctor reads a medical record.
;SecureMRReadMedrecord2
Input session? = ”sess1”
Input r? = ”meddata2”

This first scenario tests whether a doctor, here Alice, may read a medical record. This tests
the inheritance of permission ReadMedrecord from nurses to doctors. Jaza animation gives the
following result :

x ! == {〈| contents == ”healthy”, recordnb == ”meddata2” |〉} |〉

25

Scenario II : A doctor updates the medical record of a patient in the same hospital. In this
scenario, doctor Alice wants to update some medical record. Since Alice belongs to the same
hospital as the patient, this modification is allowed.

;SecureMRChangeContentsPr2
Input x? = 〈| contents == ”healthy”, recordnb == ”meddata2” |〉
Input newcontents? = ”severe”
Input session? = ”sess1”

The output shows that contents have been changed to ”severe”.
Medrecord ′ == {〈| contents == ”severe”, recordnb == ”meddata2” |〉,

〈| contents == ”sick”, recordnb == ”meddata1” |〉},

These two examples show that the security kernel does not block licit operations. They can
be shown to stakeholders of the information system to validate that the right behaviour was
captured.

4.6.2 Analysing a malicious behaviour

Security analysis also involves the evaluation of the system’s ability to block unauthorized beha-
viour. Here, let us consider a malicious doctor, Bob, who tries to corrupt the integrity of medical
record meddata1.
Because we are worrying about integrity constraints, we can start by querying the system about
which roles may perform operation MRChangeContentsPr1, which is the only operations allowed
to modify the contents of a medical record. As we have seen in Sect. 5.6.1, this query tells us
that only doctors are allowed to perform this operation. Still, animations go beyond the results
of queries presented in Sect. 5.6.1, because queries don’t take into account constraints such as
Same hospital as patient which may restrict the access to some operations. We will thus try a
scenario where Bob tries to modify medical record meddata1.

Scenario III.A : A doctor attempts to update the medical record of a patient of another hospital.

;SecureMRChangeContentsPr2
Input x? = 〈| contents == ”sick”, recordnb == ”meddata1” |〉
Input newcontents? = ”cured”
Input session? = ”sess2”

Hopefully, Jaza answers that this execution is not allowed by the model.

No Solutions

Upon checking the constraints we come to know that hospital for this doctor is not the same
as of the patient. These constraints give us added value on the standard queries. Still, similar
results can be obtained using the SecureMova tool [BCDE09a]. Let us now consider a scenario
that cannot be played by that tool.
The query tool told us that only doctors are allowed to change the contents of a medical record.
But Jaza animation also confirmed that a constraint requires the doctor to work in the same
hospital as the patient. Since Bob does not work in the same hospital, there are two ways for
him to change the outcome of this constraint. Either he moves the patient to his hospital, or he
joins the hospital of the patient. Let us study the latter solution, and query the model about
which roles are allowed to change the affiliation of a doctor.

;EvaluateActionsAgainstRoles[atm action? := DRLinkDoctors1]
. . .
z roles! == {(Doctor , (”UpdateDoctor”,DRLinkDoctors1,Doctors))}

The query tells us that doctors are allowed to call this operation. Let us try it !

26

Scenario III.B : The doctor first attempts to change his hospital association using one of the
class methods and he succeeds in his attempt.

;SecureDRLinkDoctors2
Input session? = ”sess2”
Input hospital? = 〈| name == ”RedCross” |〉
Input doctor? = 〈| id == ”004”,name == ”Bob” |〉

The output tells us that Bob is now working for both hospitals.
doctorsOfHospital ′ ==

{(〈| name == ”BlueCare” |〉, {〈| id == ”003”,name == ”Alice” |〉,
〈| id == ”004”,name == ”Bob” |〉}),

(〈| name == ”RedCross” |〉, {〈| id == ”003”,name == ”Alice” |〉,
〈| id == ”004”,name == ”Bob” |〉})},

Scenario III.C : The doctor makes the malicious changes to the medical record
;SecureMRChangeContentsPr2
Input x? = 〈| contents == ”sick”, recordnb == ”meddata1” |〉
Input newcontents? = ”cured”
Input session? = ”sess2”

Bob did succeed and compromised the integrity of the medical record.
Medrecord ′ == {〈| contents == ”cured”, recordnb == ”meddata1” |〉,

〈| contents == ”severe”, recordnb == ”meddata2” |〉},

Actually, it means that the current access control rules allow any doctor to join the hospital of
any patient. Constraint Same hospital as patient is thus useless !
Our approach supports three kinds of validation activities : (a) answering standard queries
about the access rules (leaving out the constraints), (b) checking that a given operation may
be performed by a given user in a given state, (c) sequencing several operations for given users
from a given state. Our scenarios show that the three kinds of activities are useful. State of the
art tools such as SecureMova or OCL/USE only allow (a) and (b), which are mainly of static
nature. Our tool covers (c), adding a dynamic character to validation activities.
Constructing a sufficiently complete set of scenarios is essential to perform a suitable valida-
tion. This construction is outside the scope of the current chapter that focuses on making such
scenarios animatable.

4.7 Related Work

Our previous works [DLCP00],[Led06] on RoZ are the roots to our present work. Amalio [AP03]
gives an overview of the alternate approaches to translate UML into Z.
SecureUML[BDT06] is a security profile for UML. It has already been presented and it is the
basis of our approach. The works of Sohr [SDAG08], and the SecureMova tool [BCDE09a] are
the closest to our approach, and have deeply influenced it. In Sect. 4.6, we showed several
queries similar to the ones handled by these tools. In addition, our tool can handle sequences
of operations involving both security and functional model. UMLSec [Jür04] is another UML
profile that focuses on secrecy and cryptographic protocols. Our work does not target secrecy
aspects, but addresses a more abstract level focusing on access control.
Hall [Hal94] used Z to specify a formal security policy model for an industrial project. Like-
wise, ISO standardized RBAC has widely been described by researchers using Z. A few notable
propositions are [AK06],[MSGC07],[YHHZ06] that offer generic formal representation of RBAC.
Yet, these works focus on meta-model foundations of RBAC, while we target the animation of
application level models.

27

Various validation and verification of security properties based on RBAC are given in [MSGC07],[Bos95].
Abdallah [AK06] defines a security administration using access monitor for core RBAC and dis-
tinguishes among various concepts of RBAC. Boswell [Bos95], describes a security policy model
in Z, for NATO Air Command and Control System (ACCS). The author shares learned les-
sons from manual validation of this large, distributed, and multi-level-secure system. This too
questions manual versus automated validation/verification and creates room for tools like Jaza
[Utt05a]. Morimoto et al., [MSGC07] chose a common-criteria security functional requirements
taken from ISO/IEC-15408 and proposed a process to verify Z specifications by the Z/EVES
theorem prover. Sohr [SDA05] has proposed protecting clinical information systems to overcome
risks by using first-order LTL facilitated with Isabelle/HOL for formal verification of security
policy for RBAC.

4.8 Conclusion and future work

We have presented an approach to validate security design models using Z assertions. The
graphical notation of security rules is inspired by SecureUML. Our proposal goes through three
steps : (a) automated generation of functional specifications using RoZ [DLCP00], (b) the use of
a generic security kernel, instantiated by the security model, and specified in Z, and (c) the link
between the kernel and the operations of the functional model. Animation of the specifications
makes it possible to check that normal behaviours are authorized by the security model and to
analyze potential attacks. This is based on the evaluation of standard queries about the security
policy and the animation of user-defined scenarios. Using Jaza brings a dynamic dimension to
these analyses which is not covered by state of the art tools such as SecureMova and USE.
Our current tool automatically translates the functional model, but requires manual instantiation
of the security kernel, and manual definition of the link between both models. Our next step is
to generate this information automatically, from the security part of the SecureUML diagram
and a description of the action hierarchy. Also, the security kernel can be improved to take into
account additional concepts such as delegation or organisation. Other perspectives include the
automated generation of scenarios that test the model, and the definition of metrics for the
coverage of the model by these scenarios.

Chapitre 5

Validation of security policies by the
animation of Z specifications

Designing a security policy for an information system is a non-trivial task. In this chapter,
we consider the design of a security policy based on a variant of the RBAC model, close to
SecureUML. This variant includes constraints for the separation of duties, as well as contextual
constraints. Contextual constraints use information about the state of the functional model of
the application to grant permissions to users. These constraints add flexibility to the security
policy, but make its validation more difficult. In this chapter, we first review two tools, USE
and SecureMOVA, which can be used to analyse and validate a security policy. These tools
focus on analyses of static aspects of the secured system. We then propose a new tool, based on
the Z formal language, which uses animation of the specification to validate the static as well
as dynamic aspects of the security policy, taking into account possible evolutions of the state
of the functional model. We discuss how the security policy and the functional application are
described to the tool, and what kind of queries and animations can be performed to analyse
nominal and malicious behaviours of the system.

5.1 Introduction

The design of today’s information systems must not only take into account the expected functio-
nalities of the system, but also various kinds of non-functional requirements such as performance,
usability or security. Security policies are designed to fulfill non-functional requirements such as
confidentiality, integrity and availability. They are usually expressed as abstract rules, indepen-
dently of target technologies. In the past, various access control models have been proposed to
design security policies. In this chapter, we focus on role-based access control models (RBAC)
[DDR03], including evolutions such as SecureUML [BDL06]. An important feature of such mo-
dels is the notion of role : permissions are granted to roles which represent a set of users. Moreover
users may play several roles with respect to the secure system.
Constraints can be associated to these access control models. They allow to express Separation
of Duty properties [CW87], and other properties on roles (e.g. precedence, see Sect. 5.3.2).
Constraints may also link permissions to contextual information, such as the current state of
the information system. This is one of the interesting features of SecureUML which groups UML
diagrams of the application with security information describing the access control rules. In the
remainder, we will refer to the UML diagrams of the application as the functional model. The
term security model will refer to the access control model. Constraints give flexibility to describe
security policies, but result in complex descriptions which need tool support for their verification
and validation. Verification checks that the description is consistent, in particular, it must check

28

29

that constraints are not contradictory, which would result in unsatisfiable policies. Validation
checks that the policy corresponds to the user’s requirements. Our work focusses on validation.
With such complex models, validation can become a difficult task. The separation between
the functional model and the security model is an interesting solution, based on separation
of concerns. However, existing works [Jür04, SDAG08] are mainly interested by the security
part. They propose techniques to verify the consistency of an access control policy without
taking into account the impact of the functional part. Although it is definitely useful to analyse
both models in isolation, interactions between these models must also be taken into account.
Such interactions result from the fact that constraints expressed in the security model also
refer to information of the functional model. Hence, evolutions of the functional state influence
the security behaviour. Conversely, security constraints can impact the functional behaviour.
For example, it is important to consider both security and functional models in order to check
liveness properties on the information system. Indeed, it can be the case that security constraints
are too strong and block the system. Only a few tools have been proposed to support validation of
RBAC models. They focus on static analyses of the model. In this chapter, we propose a toolset
which supports both static and dynamic analyses, allowing to study nominal and malicious
behaviours of the secure system.
In Sect. 5.2, we present the meeting scheduler example which will illustrate our work. In Sect.
5.3, we review the features of two tools, USE and SecureMOVA, which are representative of
the current state of the art. In Sect. 5.4, we discuss the interest of leading dynamic analyses of
security policies. Sect. 5.5 discusses the translation of security and functional diagrams into a Z
specification. Sect. 5.6 details the dynamic analyses that can be performed on our specification.
Finally Sect. 5.7 draws the conclusions of this work.

5.2 The meeting scheduler

package MeetingApp

SystemUser

Supervisor

Create a meeting

Add participants

Notify meeting to
participants

SystemAdministrator

Director

Create a person

Delete a personCancel a meeting

Modify a meeting Modify a person

Fig. 5.1 – Use cases for the meeting scheduler

To illustrate our work, we consider a meeting scheduler example used by Basin et al to illustrate
SecureUML and SecureMOVA [BCDE09b]. The meeting scheduler helps users plan a “meeting”
involving several “persons”. Basically, the information system records information about persons,
meetings, and the links between these. These links are (a) the ownership of a meeting by a person

30

who organizes it, and (b) the participation of a given user in a meeting. Fig. 5.1 gives the major
use cases of this system and the related actors. The major kind of actor is the system user.
System users can create and cancel meetings, modify the meeting’s information (e.g. change the
time or duration of the meeting), add participants to a meeting, and notify the participants
about the meeting (which performs some side-effecting operation such as sending a mail to the
participants). The system administrator is another actor. Basically, he is responsible of managing
information about the persons, i.e. the potential owners of and participants to the meetings.
Fig. 5.1 gives the basis for access control rules : users are in charge of their meetings and system
administrators manage the persons. An important security property is related to the integrity
of information about meetings. It is expressed by the following rules : (1) a meeting may only
be modified or canceled by its owner, and (2) supervisors have the privilege to modify or cancel
meetings they don’t own. Supervisors are thus introduced as a specialisation of system users.
Another kind of actor is the Director, who is both a user and an administrator.

5.3 State of the art tools

5.3.1 RBAC and SecureUML

Our security model is based on SecureUML [BDL06, BCDE09b], an extension of RBAC (Role-
Based Access Control) [DDR03]. In RBAC, access control is expressed by a set of permissions.
A permission allows to perform a set of actions on a set of resources. Instead of directly granting
permissions to users, RBAC abstracts users performing the same duties into roles. Permissions
are thus granted to roles. When a user wants to access some action on a resource, he starts a
session and activates one or several roles in this session. Based on the activated roles, he gets
the permission to access the resource.
RBAC has been extended with several constraint mechanisms. One of the goals is to achieve
separation of duties. Separation of duties aims at forbidding a user to take conflicting roles. In
our example, one may consider that roles System Administrator and Supervisor give too much
privilege and forbid that a user takes these roles. Dynamic separation of duties (DSD) requires
that a given user may not take these conflicting roles simultaneously in the same session. Static
separation of duties (SSD) forbids a user to take these conflicting roles even in different sessions.
SecureUML is a UML profile which expresses RBAC rules in a class diagram, using stereotyped
elements. The class diagram provides a functional model of the application, and the stereotyped
elements define the security model. It includes the concepts or RBAC and the possibility to
associate permissions with contextual constraints. These constraints involve elements of both
security and functional models and restrict the applicability of the permission to the cases
where the constraint is verified. In the meeting scheduler, such a constraint is associated to the
permission of system users to modify or cancel a meeting. The constraint restricts this permission
to the owner of the meeting. Information about the owner of the meeting will be retrieved from
the functional class diagram, while information about the user performing the action is related
to the security model.
Contextual constraints give much flexibility to express a security policy, but their validation
must take into account both functional and security models. Therefore, they require adequate
tools. In the next sections, we briefly review two tools which support the validation of role-based
security policies with constraints. In both cases, the constraints are written in OCL [WK98], a
language based on first order logic predicates over the constructs of an UML class diagram.
It must be noted that UMLSec [Jür04] is another attempt to address security in UML, but it
focusses on the security model (in particular cryptographic aspects) and does not address its
interaction with the functional model.

31

5.3.2 USE for the validation of security policies

The USE tool (UML-based Specification Environment) [GBR07b] allows to evaluate OCL constraints
on a given object diagram. These constraints are usually invariants associated to the classes of
the diagram, but can also stand for pre- or post-conditions if the object diagram represents the
initial or final state of some operation. The tool also allows to program a random generator for
object diagrams, and to program sequences of object diagrams.
Sohr et al [SDAG08] have adapted this tool for the analysis of security policies. Their work
focusses on the security model, i.e. users, roles, sessions and permissions, constrained by OCL
assertions. This allows to express properties such as :
– Cardinality : a given role has at most n users.
– Precedence : u may be assigned to role r2 only if u is already member of r1.
– Separation of Duty : roles r3 and r4 are conflicting.
– Separation of Duty for Colluding Users, e.g. two brothers may not take conflicting roles.
– Context-dependent permissions, e.g. a meeting may only be modified by its owner.
The last two properties cannot be expressed on a pure security model. It must be augmented
with functional information, e.g. some attribute ownedMeetings should be added to the users.
Another possibility is to explicitly include this information in the constraints, e.g. in [SDAG08]
all sets of colluding users are listed as OCL rules. Both cases correspond to extensions of the
RBAC+constraint model which do not really scale up. Such information definitely belongs to
the functional model.
Sohr et al [SDAG08] report on two kinds of validation activities. An object diagram can be given
to the tool, and the tool will check which constraints are violated. The object diagram can be
user-defined, randomly generated, or member of a programmed sequence. This allows to detect
unsatisfiable constraints, i.e. constraints which are always false. They have also developed a tool
named authorisation editor, which implements the administrative, system and review functions
of the RBAC standard. The tool is connected to the API of USE so that the constraints of the
security policy are checked after each operation. It detects erroneous dynamic behaviours of the
security policy. For example, if two roles are constrained both by a precedence and a conflict
relations, it is impossible to find a sequence of RBAC administrative and system operations
which leads to create the second role.

5.3.3 SecureMOVA

In [BCDE09b], Basin et al report on SecureMOVA, a tool which supports SecureUML+ComponentUML.
The tool allows to create a functional diagram, i.e. a class diagram, and to relate it to permis-
sion rules. Constraints can be attached to permissions and these constraints may refer to the
elements of the functional diagram.
SecureMOVA allows to evaluate queries about the security policy. The tool provides an extensive
set of queries over a given model, possibly associated with a given initial state. In [BCDE09b],
Basin et al list the queries that are supported by the tool. A first set of queries explores the
relations between roles and actions.
– Given a role, what are the atomic actions that a user in this role can perform ?
– Given an atomic action, which roles can perform this action ?
– Given a role and an atomic action, under which circumstances can a user in this role perform

this action ?
Other queries ask more general questions to analyse the security policy. They help identify
redundant roles or permissions.
– Are there two roles with the same set of atomic actions ?
– Given an atomic action, which roles allow the least set of actions, including the atomic action ?
– Do two permissions overlap ?

32

– Are there atomic actions that every role, except the default role, may perform ?
With SecureMOVA it is also possible to ask questions about a current state, i.e. a given object
diagram. Such queries return the actions authorized for a given role, or to a given user in the
current context.
– Given a functional and a security state, can a given user in a given role perform a given action

on a given resource ?
– Given a user and a state, what are all actions that this user can perform ?
– Given a state, which users may perform a given action on a given resource ?
– Given a state, which role should take a given user to perform a given action on a given

resource ?
This extensive set of supported queries is of great help to analyse and validate a security policy.
In particular, the last set of queries, which involve a given functional state, can be very useful to
study the impact of contextual constraints. Nevertheless, all reported examples [BCDE09b] are
of static nature, i.e. they don’t allow to sequence actions (either administrative or functional)
and check that a given sequence is permitted by the combination of the security and functional
models.

5.4 The need for dynamic analyses

In the sequel, we propose to use animation techniques to further validate security policies.
Animation allows to play sequences of actions from a given state. USE and SecureMOVA only
report whether the first action of the sequence can be executed from the given state. Animation
of sequences of actions is useful to investigate two kinds of behaviours : nominal behaviours,
corresponding to the requirements of the system, and malicious behaviours, corresponding to
attacks against the secure system.
In both cases, the corresponding behaviour may involve several steps, and it is not sufficient
to investigate whether a given action can be performed in a given state. It is also necessary to
check that the given state can be reached from the initial state, and when sequences of actions
are considered, to compute the resulting state and check that the next action can be performed
from this resulting state. Animation tools allow to perform a sequence of actions, starting from
an initial state and to compute all intermediate states.
Such dynamic analyses require the availability of executable models. Security policies based
on RBAC can easily be made executable, as demonstrated by Sohr in his authorisation editor
[SDAG08]. Executability of the functional model can be achieved in two ways : either by provi-
ding an implementation of the model which can interface with the contextual constraints of the
security model, or by providing an executable model. Providing an implementation makes sense
in a context where the functional system is designed first, without considering security aspects,
and where a security policy must be designed later for this application. It also makes sense during
a maintenance phase where a given implemented security policy must evolve. Some prototypes
of RBAC can be coupled with an existing implementation. For example, the MotOrBAC tool
provides an API between its security engine and the application [ACCBCB08].
Instead of working at the implementation level, our approach favours early validation at the
abstract level of a PIM (Platform-Independent Model). The other way is to get an executable
functional model. In the case of USE or SecureMOVA, the model is expressed as a class diagram
combined with OCL predicates. In order to turn UML methods into executable ones, one need
to provide an implementation of the methods. Actually, USE allows to define a body for each
method using an imperative language based on OCL. It seems that this feature was not explored
in [SDAG08] and might be interesting to investigate. Another way is to animate the methods
based on their pre- and post-conditions. We don’t know of tools which support this approach
for OCL, but they exist for formal languages such as Z[ISO02], B[Abr96b], or Alloy [Jac06].

33

In [TRA+09], functional and security models are merged into a single UML model which is
translated into Alloy. Alloy can then be used to find a state which breaks a given property. The
properties described in [TRA+09] are mainly of static nature, i.e. they focus on the search for a
state which breaks a property, and don’t search for sequences of actions leading to such a state.
Nevertheless, Alloy can take into account the behaviour of the actions of the model, and we
believe it has the potential to perform such dynamic analyses.
In this chapter, we adopt the Z language, and the Jaza tool [Utt05b] is used to animate the
operations of a Z specification.

5.5 A toolset based on Z

We propose to translate the functional and security models into a Z specification, and then
to use the Jaza animator to analyse this specification, using animation and queries. Actually,
several attempts have already specified RBAC in Z [FSG+01], but these were not aimed to be
the input of an animator.

5.5.1 Input models

Our toolset takes as input : (a) a class diagram of the functional application, possibly annota-
ted in Z, and (b) several security diagrams, including diagrams stating the permissions, and a
diagram assigning users to roles. Security diagrams are completed by a description of an action
hierarchy linking abstract actions to concrete ones. From these inputs, our toolset computes a
Z specification of the system which can be animated with Jaza (see sect. 5.6).

Functional model

The functional model is described by a class diagram annotated with Z assertions and we use
the RoZ tool [DLCP00] to complete it and translate it into Z. Given a class diagram, RoZ auto-
matically generates the specification of basic operations (i.e. attribute and association setters).
The center of Fig. 5.2 gives the class diagram for the meeting scheduler. It includes two classes
(Meeting and Person) and two associations. A meeting is characterized by its starting date and
its duration, a person is simply characterized by his/her name. Most operation specifications
have been created automatically. They correspond to operations to create and delete objects,
update object attributes, and create links between objects. Three operations are user-defined :
notify and cancel are specific to the application, createMeeting creates of an object of class mee-
ting and simultaneously links it to its owner and first participant. This operation is necessary
in order to satisfy the arity constraints related to both associations : a meeting has at least one
owner and one participant.
From this annotated diagram, RoZ can generate a complete Z specification. For example, the
specification of operations RemoveMeeting and cancel are as follows :

MeetingRemoveMeeting
∆MeetingExt
meeting? : MEETING

Meeting ′ = Meeting \ {meeting?}

34

package MixedModel

<<Role>>
Supervisor
(from Roles)

<<Role>>
SystemAdministrator

(from Roles)

<<Role>>
SystemUser
(from Roles)

Meeting
(from FunctionalModel)

+start : Date
+duration : Time
+notify()
+cancel ()
+ChangeStart()
+ChangeDuration ()
+AddMeeting ()
+RemoveMeeting ()
+LinkmeetingsOfOwner()
+LinkmeetingsOfParticipant()
+createMeeting ()

Person
(from FunctionalModel)

+name : String
+ChangeName ()
+AddPerson ()
+RemovePerson ()
+Linkowner()
+Linkparticipants ()

<<dataType>>
Date

(from FunctionalModel)

<<dataType>>
Time

(from FunctionalModel)

<<dataType>>
String

(from FunctionalModel)

user? = (owner (meeting?)).name

<<Permission>>
OwnerMeeting

<<Permission>>
SupervisorCancel

(from SupervisorPerms)

<<MethodAction>>+cancel ()
<<MethodAction>>+notify()

<<Permission>>
ReadMeeting

(from SystemAdministratorPerms)

<<EntityAction>>+Read ()

<<Permission>>
UserManagement

(from SystemAdministratorPerms)

<<EntityAction>>+Fullaccess ()

<<Permission>>
UserMeeting

(from SystemUserPerms)

<<EntityAction>>+Create ()
<<EntityAction>>+Read ()

<<Permission>>
OwnerMeeting

(from SystemUserPerms)

<<EntityAction>>+Delete ()
<<EntityAction>>+Modify ()

+meetingsOfOwner

*

+owner1
+meetingsOfParticipant*

+participants

1..*

Fig. 5.2 – Class diagram and permissions for the meeting scheduler

meetingcancel
MeetingRemoveMeeting
ΞPersonExt
∆MeetingOwnerRel
∆MeetingParticipantsRel

owner ′ = {meeting?} −C owner
participants ′ = {meeting?} −C participants

The first operation takes a meeting as input (denoted by ’?’) and removes it from the set of
existing meetings (Meeting). Operation meetingcancel includes the first operation and extends
its scope to access the owner and participant associations. The meeting is also removed from the
domains of both associations. In this example, the specification of RemoveMeeting was generated
automatically by the tool, but the user had to provide the details of meetingcancel as annotations
of the corresponding operation in the class diagram.
RoZ generates specifications which can be animated with Jaza [Led06]. This animation helps to
convince the analyst that he has captured the right functional model, and expressed the right
specifications for application specific operations.

5.5.2 Diagrams for the security model

Permissions

The security model involves several diagrams. The main diagram (Fig. 5.2) expresses the per-
missions related to each role. In accordance with the use cases of Fig. 5.1, users may only access
meetings. A first permission, UserMeeting, allows them to create and read objects of the class
meeting. A second permission, OwnerMeeting, details the rights to update an existing meeting,
i.e. to modify it or to delete it. This permission is associated to a constraint, written in the Z
language, which states that the user must have the same name as the owner of the meeting.
Similar permissions are expressed for Supervisor and SystemAdministrator. Permission Super-
visorCancel grants to supervisors the right to perform operations cancel and notify on any mee-
ting. UserManagement grants to administrators full access to the class Person, and ReadMeeting
grants them the right to read class Meeting.

35

It must be noted that these permissions refer to abstract operations (e.g. Read or Fullaccess)
and that a link must be established between these abstract operations and their concrete coun-
terparts. This will be explained in Sect. 5.5.2.

Roles and users

An additional diagram (Fig. 5.3) declares the roles of the application, and links them to several
users. In this diagram, the roles correspond to the actors of the use case diagram : SystemUser,
Supervisor, SystemAdministrator and Director. Four users are declared and assigned to these
roles through UA (User Assignment) links. These user assignments list the roles that a user
can take in a session. Yet, the user may choose to perform the session using a subset of his
possible roles. The diagram also declares some separation of duties constraints between roles.
Fig. 5.3 features one static separation of duty (SSD) between Supervisor and Administrator, and
one dynamic separation of duties (DSD) between Director and SystemUser. It can be visually
checked that the SSD constraint is respected by the user assignments. The DSD constraint,
which will be enforced during a session, may only be violated by Mark who may use both roles
of the DSD.package Roles

<<Role>>
Director

<<Role>>
Supervisor

<<Role>>
SystemAdministrator <<Role>>

SystemUser

<<User>>
Alice

<<User>>
Bob

<<User>>
John

<<User>>
Mark

<<UA>>
JohnA

<<UA>>
JohnU

<<UA>>
BobU

<<UA>>
BobS

<<UA>>
AliceU

<<UA>>
MarkD

<<SSD_RoleMutex>>
SSD1

<<DSD_RoleMutex>>
DSD

<<UA>>
MarkU

Fig. 5.3 – Users, roles and separation of duties for the meeting scheduler

Action hierarchy

As mentioned earlier, the permissions of Fig. 5.2 refer to abstract actions. A link must be
established between these and the actual operations defined in the classes. Currently, our toolset
does not provide a graphical notation to express this link. It must be defined directly using the
Z syntax. We intend to define a graphical notation for it in a near future. The following table,
action Relation expresses how abstract actions are instantiated in each class. For example, action
EntityDelete corresponds to Cancel in class Meeting and to RemovePerson in class Person. To
avoid name conflicts in the Z specification, operation names are suffixed with “1” and class

36

names with “s”.

action Relation =
{(EntityDelete 7→ (Cancel1,Meetings)),
(EntityDelete 7→ (RemovePerson1,Persons)),
(EntityRead 7→ (Notify1,Meetings)),
(EntityCreate 7→ (AddMeeting1,Meetings)),
(EntityCreate 7→ (CreateMeeting1,Meetings)),
(EntityCreate 7→ (AddPerson1,Persons)),
(EntityUpdate 7→ (ChangeStart1,Meetings)),
(EntityUpdate 7→ (ChangeDuration1,Meetings)),
(EntityUpdate 7→ (ChangeName1,Persons)),
(AssocEndUpdate 7→ (Linkowner1,Persons)),
(AssocEndUpdate 7→ (Linkparticipants1,Persons)),
(AssocEndUpdate 7→

(LinkmeetingsOfOwner1,Meetings)),
(AssocEndUpdate 7→

(LinkmeetingsOfParticipant1,Meetings)),
(NotifyExecute 7→ (Notify1,Meetings)),
(CancelExecute 7→ (Cancel1,Meetings)), }

It must be noted that the previous table does not explain what FullAccess stands for. This is
because FullAccess corresponds to several abstract operations. This is detailed in action Inherits.
The table also defines AssocEndUpdate as a special case of EntityUpdate.

action Inherits = {(EntityRead 7→ EntityFullAccess),
(EntityUpdate 7→ EntityFullAccess),
(EntityCreate 7→ EntityFullAccess),
(EntityDelete 7→ EntityFullAccess),
(AssocEndUpdate 7→ EntityUpdate)}

perm Assignment ==
{ ((”001”, ”Alice”,SystemUser), (”OwnerMeeting”,Cancel1,Meetings)),

((”001”, ”Alice”,SystemUser), (”OwnerMeeting”,ChangeDuration1,Meetings)),
((”001”, ”Alice”,SystemUser), (”OwnerMeeting”,ChangeStart1,Meetings)),
((”001”, ”Alice”,SystemUser), (”UserMeeting”,CreateMeeting1,Meetings)),
((”001”, ”Alice”,SystemUser), (”UserMeeting”,Notify1,Meetings)),

. . .
((”002”, ”Bob”,Supervisor), (”OwnerMeeting”,Cancel1,Meetings)),
((”002”, ”Bob”,Supervisor), (”SupervisorCancel”,Cancel1,Meetings)),
((”002”, ”Bob”,Supervisor), (”UserMeeting”,Notify1,Meetings)),

. . .
((”003”, ”John”,SystemAdministrator), (”UserManagement”,AddPerson1,Persons)),
((”003”, ”John”,SystemAdministrator), (”UserManagement”,Linkowner1,Persons)),

. . .

Fig. 5.4 – A subset of the perm Assignment table

37

Z Translation of the security model

The security diagrams are prepared with the TopCased tool1. A meta-model and a UML profile
have been defined to support the edition of these models. The graphical models are translated
into Z using Acceleo2, a MDA based code generator.
The Z specification of the security model is based on the specification of a Z security kernel,
independent of a specific application, which specifies the main RBAC data structures (user assi-
gnment to roles, role hierarchy, definition of permissions, action hierarchy, session management,
Static and Dynamic separation of duties) and computes a table, named perm Assignment which
links user ids, users, roles, permissions, actions and resources.
The translation of the security diagrams and the action hierarchy of Sect. 5.5.2 are used to ins-
tantiate these data structures, and the associated enumerated types. Using the Jaza animator,
we can compute perm Assignment for our example. Fig. 5.4 gives a subset of this table. For
example, the first line tells us that Alice, whose user id is 001, acting as System User, may cancel
a meeting due to permission OwnerMeeting. It also tells us that Bob, acting as a supervisor, has
two ways to cancel a meeting, using either permission OwnerMeeting or permission Supervisor-
Cancel. It must be noted that this table does not refer to contextual constraints. Its information
is thus partial.
The security kernel defines a generic operation, named
SecureOperation, which takes as arguments a user, its user id, a role, a session, a permission,
an atomic action and a resource and checks that (a) the user is logged in the session with the
given role, and (b) that table perm Assignment authorizes this action for the user in the given
role. This definition of SecureOperation is actually a precondition that must be satisfied for the
action to take place.

SecureOperation
. . .

user? : USER
userid? : USERID
role? : ROLE
session? : SESSION
permission? : PERMISSION
atm action? : ATOMIC ACTION
resource? : RESOURCE

. . .

(session?, user?) ∈ session User
(role?, session?) ∈ session Role
((userid?, user?, role?), (permission?, atm action?, resource?))

∈ perm Assignment

5.5.3 Linking both formal models

The last step in the preparation of the Z specification links the Z specifications of both models.
First, one must relate the types appearing in both models. Here, the constraint on OwnerMeeting
compares the name of the owner to the user performing the cancel operation. This requires that
name and user have compatible types. In our example, this is done by redefining type USER as
a STRING .

1http ://www.topcased.org/
2http ://www.acceleo.org/pages/home/en

38

USER == STRING

At this point, secure versions of the functional operations can be defined. For example, the secure
version of
meetingcancel includes SecureOperation and meetingcancel (given in Sect. 5.5.1). What the ope-
ration actually does is completely defined in the functional operation
(i.e. meetingcancel). So the secure operation simply adds several checks to allow the opera-
tion to take place. These checks take the form of additional preconditions. These requires the
atomic action to be Cancel1 and the resource to be Meetings. They also require that input para-
meter meeting? corresponds to an existing meeting, which allows to retrieve its owner. The last
condition includes the contextual constraint (user is owner). Since this constraint only applies
for OwnerMeeting and not for SupervisorCancel, it only applies if the role is not Supervisor.

Securemeetingcancel
SecureOperation
meetingcancel

atm action? = Cancel1
resource? = Meetings
meeting? ∈ Meeting
role? 6= Supervisor =⇒ (user? = (owner(meeting?)).name)

Securemeetingcancel has a large number of input parameters. Many of these parameters can be
deduced from a subset of the input parameters (here session? and meeting?) and the precondi-
tions of the operation. Operation
Securemeetingcancel2 actually hides the useless parameters. In Z, the hide operation (

∖
) exis-

tentially quantifies the hidden variables. This means that the Z animator will have to find a
value for each of the hidden parameters.

Securemeetingcancel2 == Securemeetingcancel
∖

(userid?,
user?, atm action?, resource?, permission?, role?)

Currently, secure operations are defined manually. Still this definition is completely systematic
and a significant part can be automated, using additional Acceleo transformations.

5.6 Animation of the specification

Based on the resulting Z specification, we can use the Jaza animator [Utt05b] to perform static
(queries) and dynamic analyses (animations) of the security policy. Jaza is a Z animation tool
based on a combination of proof (simplification, rewriting) and search (generate and test) tech-
niques. It covers a wide range of Z constructs and supports some level of non-determinism in
the specifications (provided the search space is not too large).
Jaza can execute an operation whose input parameters are fully instantiated. It checks the
preconditions, computes the resulting state and checks that the resulting state is in accordance
with all postconditions of the operation and with the state invariants. The user may also omit
some input parameters, using the hiding operator. In that case, Jaza searches for values which
will satisfy the pre-conditions of the operation and chooses one of these. This requires the search
space to be finite, and small enough. In the sequel we will exploit both features of Jaza to analyse
the Z specification.

39

5.6.1 Queries on the security model

We start our analysis by asking some queries, inspired by the ones of SecureMOVA [BCDE09b](see
Sect. 5.3.3). These queries are mainly based on the perm Assignment table (Fig. 5.4).
– What are the atomic actions associated to a given role ?
– Which roles can perform a given atomic action ?
For each of these queries, a corresponding Z operation has been defined. Since the queries don’t
depend on the application, the Z operations are also reusable. For example, let us query which
roles may perform the cancel operation. Jaza answers that three roles can perform this action
and reports on the associated permissions. A closer look at the diagrams reveals that one of
these permissions is associated to a constraint.
EvaluateActionsAgainstRoles[atm action? := Cancel1]

z roleAction! ==
{ (Director , (”OwnerMeeting”,Cancel1,Meetings)),

(Supervisor , (”OwnerMeeting”,Cancel1,Meetings)),
(Supervisor , (”SupervisorCancel”,Cancel1,Meetings)),
(SystemUser , (”OwnerMeeting”,Cancel1,Meetings))}

A second series of queries consider the whole set of rules. They help identify generic flaws in the
security policy.
– Are there duplicate roles, i.e. two roles with the same set of atomic actions ?
– Do two permissions overlap ?
– Is there an atomic action that every role may

perform ?
– Is there an atomic action that nobody may perform ?
For example, the following query reports that Supervisor and SystemUser are duplicate roles. It
means that they have the same privileges in table perm Assignment . Still a closer look at the
diagrams shows that a contextual constraint restricts the rights of SystemUser, which justifies
the existence of both roles.
FindDuplicateRoles

z role1! == Supervisor , z role2! == SystemUser
The following query looks for operations that are always blocked by the security policy. It reveals
that RemoveMeeting is not accessible. Actually, RemoveMeeting is meant to be used as a part
of meetingcancel . So it is normal that no role has access to this operation.
AccessNobody

z action! == RemoveMeeting1
It must be noted that the same queries are supported by SecureMOVA, but that it only answers
“yes” or “no”. We found it useful to provide witnesses when the answer is positive, because it
speeds up the debugging process.

5.6.2 Dynamic analyses : nominal behaviours

The queries of the previous section are of static nature and do not take into account the contex-
tual constraints associated to permissions. So they don’t benefit from our integration of the
functional and security models. In this section, we will perform dynamic queries, animating
sequences of actions which correspond either to nominal behaviours or to possible attacks.
All animations of this section rely on an initial state where some sessions are predefined. Fig.5.5
gives information about these sessions.
First, we explore nominal behaviours. Our first goal is to find a sequence of actions which will
lead us to the functional state depicted in Fig. 5.6. This requires to create two persons, one
meeting, and three links. Persons must be created by the system administrator (i.e. John in

40

Session User Roles
sess1 Alice SystemUser
sess2 Bob Supervisor, SystemUser
sess3 John SystemAdministrator, SystemUser
sess4 Mark Director

Fig. 5.5 – Sessions with their users and roles

package ObjectDiagram

MeetingOfAlice : Meeting

start = 1
duration = 10

Alice : Person

name = 'Alice'

Bob : Person

name = 'Bob'

Owner link

Fig. 5.6 – Object diagram for the meeting scheduler

session 3), then the meeting and its links will be created by Alice (session 1). This corresponds
to the following Jaza animation.
SecurePersonAddPerson2[session? := ”sess3”,

person? := 〈| name == ”Alice” |〉]
SecurePersonAddPerson2[session? := ”sess3”,

person? := 〈| name == ”Bob” |〉]
SecuremeetingcreateMeeting2[session? := ”sess1”,

meeting? := 〈| start == 1, duration == 10 |〉,
owner? := 〈| name == ”Alice” |〉]

SecuremeetingLinkmeetingsOfParticipant2[
session? := ”sess1”,
meeting? := 〈| start == 1, duration == 10 |〉,
person? := 〈| name == ”Bob” |〉]

This animation proceeds with success. Actually it covers a nominal behaviour which includes
several use cases of Fig. 5.1 : create a person, create a meeting, add participants.
We proceed by trying to cancel the meeting. This will validate the contextual constraint. First,
we use the session of John to perform this attempt. Since John is neither supervisor nor the
owner of the meeting, this attempt should fail. And this is exactly what happens.
Securemeetingcancel2[session? := ”sess3”,

meeting? := 〈| start == 1, duration == 10 |〉]
No solutions

We then try the same operation, using the session of Alice, the owner of the meeting. This time,
the operation succeeds and the set of meetings is empty after the operation.
Securemeetingcancel2[session? := ”sess1”,

meeting? := 〈| start == 1, duration == 10 |〉]
Meeting ′ == {}, . . .

These animations increase our confidence that we expressed the right rule and the right constraint.

41

Another nominal behaviour is to delete some person. Let us consider that Alice has left the
company and that we must delete object Alice, starting from the state of Fig. 5.6. Only system
administrators are allowed to remove a person, so this will be performed by John in session 3.
SecurePersonRemovePerson2[session? := ”sess3”,

person? := 〈| name == ”Alice” |〉]
No solutions

Jaza reports that the operation failed. Actually, this is due to the fact that deleting Alice leads
to have a meeting without owner, which is forbidden by the class diagram (every meeting has
one and only one owner). So the functional model requires to first cancel Alice’s meeting and
then remove Alice. Since John is administrator, he has no right to cancel Alice’s meeting. Since
Alice has left the company, we need the help of a supervisor, here Bob in session 2. Now the
following sequence of operations will succeed.
Securemeetingcancel2[session? := ”sess2”,

meeting? := 〈| start == 1, duration == 10 |〉]
SecurePersonRemovePerson2[session? := ”sess3”,

person? := 〈| name == ”Alice” |〉]
This animation convinces us that it was useful to create role Supervisor in our security policy,
otherwise, the security rule would make it impossible to remove a user who has left the company.
One may wonder whether role Director could be used to cancel the meeting and then remove the
person. But the animator reports that the Director, who is neither supervisor nor the meeting
owner, may not cancel Alice’s meeting. This may suggest to modify the definition of Director
and make him inherit from Supervisor (but this will conflict with the SSD constraint).
Other analyses of nominal behaviours can test SSD and DSD constraints. For example, the
following animation shows that the SSD constraint works as expected
AddRole[user? := ”Mark”, role? := SystemAdministrator]
AddRole[user? := ”Mark”, role? := Supervisor]

No solutions
and the following one gives a similar result for DSD
NewSession[session? := ”sess5”,

user? := ”Mark”, role? := Director]
AddSessionRole[session? := ”sess5”,

user? := ”Mark”, role? := SystemUser]

No solutions

5.6.3 Further dynamic analyses

In [BCDE09b], SecureMOVA is used to evaluate queries which depend on a given context. “Given
a state, which role should take a given user to perform a given action on a given resource ?” For
example, which role should take Bob to cancel Alice’s meeting ?
Here, the result does not only depend on perm Assignment , but also on the current state of the
data. We can ask a similar query in Z, by defining the following operation.

RoleNeededForMeetingCancel == (NewSession
∖

(role?)) ; (Securemeetingcancel2)

RoleNeededForMeetingCancel first creates a new session, then uses this session to cancel the
meeting. It hides input parameter role? so that Jaza must find a role which satisfies the precon-
ditions of both operations. When we call this operation, acting as user Bob, it actually leads to
a resulting state where the set of meetings is empty. A closer look at the state shows that session
6 was created with Bob as user, and in the role of Supervisor. This answers our question : Bob
may cancel Alice’s meeting if he logs in as a supervisor.

42

RoleNeededForMeetingCancel [session? := ”sess6”,
user? := ”Bob”,
meeting? := 〈| start == 1, duration == 10 |〉]

Meeting ′ == {}, . . .
session Role ′ == {. . . , (Supervisor , ”sess6”)},
session User ′ == {. . . , (”sess6”, ”Bob”)},

5.6.4 Studying an attack scenario

Integrity of meetings is an important security property we want to enforce on our information
system. Let us now focus on user John, who may play the role of SystemAdministrator and
SystemUser. For some malicious reason, John wants to cancel the meeting of Alice. Since John
may play two different roles, we can ask which role he should use to cancel the meeting (as we
did for Bob in the previous section).
RoleNeededForMeetingCancel [session? := ”sess7”,

user? := ”John”,
meeting? := 〈| start == 1, duration == 10 |〉]

No solutions
As expected, the system answers that John is not allowed, in any of his roles to perform this
action. In Sect. 5.6.1, we already queried which roles allow to perform action Cancel1 (using
EvaluateActionsAgainstRoles), and found that it requires roles SystemUser, Supervisor, or Di-
rector. John may only use role SystemUser to cancel the meeting, but a closer look at Fig. 5.2
tells us that permission “OwnerMeeting” requires John to be the owner of the meeting. This
explains why he is not allowed to cancel the meeting. This also suggests that John may get this
permission if he becomes owner of the meeting. This requires a more elaborate attack where
John first becomes owner of the meeting and then cancels it. The functional model provides
two methods to change the owner of the meeting (see Fig. 5.2) : LinkmeetingsOfOwner in class
Meeting and Linkowner in class Person.
Let us check which roles may use these operations :
EvaluateActionsAgainstRoles[

atm action? := LinkmeetingsOfOwner1]

z roleAction! ==
{ (Director ,

(”OwnerMeeting”,LinkmeetingsOfOwner1,Meetings)),
(Supervisor ,

(”OwnerMeeting”,LinkmeetingsOfOwner1,Meetings)),
(SystemUser ,

(”OwnerMeeting”,LinkmeetingsOfOwner1,Meetings))}
None of these permissions apply for John, because he may only take the role SystemUser in this
list, and in that case, he must be the owner of the meeting. Operation Linkowner corresponds
to the other end of the association. A similar query may be performed.
EvaluateActionsAgainstRoles[atm action? := Linkowner1]

z roleAction! ==
{ (Director , (”UserManagement”,Linkowner1,Persons)),

(SystemAdministrator ,
(”UserManagement”,Linkowner1,Persons))}

So John may perform action Linkowner as SystemAdministrator. This action requires to first
create an object of class Person corresponding to John. John being system administraor, he
may create this object, using session sess3.

43

SecurePersonAddPerson2[session? := ”sess3”,
person? := 〈| name == ”John” |〉]

SecurepersonLinkowner2[session? := ”sess3”,
person? := 〈| name == ”John” |〉,
meeting? := 〈| start == 1, duration == 10 |〉]

package ObjectDiagram2

MeetingOfAlice : Meeting

start = 1
duration = 10

Alice : Person

name = 'Alice'

Bob : Person

name = 'Bob'

John : Person

name = 'John'
Owner link

Fig. 5.7 – Another Object diagram for the meeting scheduler

John is now the owner of the meeting, as shown in Fig. 5.7. Being the owner, he may now cancel
the meeting.
Securemeetingcancel2[session? := ”sess3”,

meeting? := 〈| start == 1, duration == 10 |〉]
Meeting ′ == {} . . .

The attack of John has succeeded ! This may be considered as a flaw of the security policy. The
meeting scheduler example was discussed in several articles, and defined independently of our
research team. To the best of our knowledge, this problem was never reported before. We foresee
that similar problems will happen in SecureUML descriptions which use contextual constraints.
The problem is that SystemAdministrator has full access to class Person, which includes the
right to modify association ends. One solution is to add a SSD constraint between SystemAd-
ministrator and SystemUser. Hence, John will still be able to become owner of the meeting, but
will not be able to log as SystemUser in order to delete it.

5.7 Conclusion

This chapter has addressed the validation of security policies expressed as RBAC rules with
contextual constraints. Such constraints refer to elements of both security and functional models,
using the state of the functional model as a context to grant access rights. Separation of concerns
suggests to treat the functional and security models in isolation. Unfortunately, when constraints
establish a link between these models, validation must take both models into account.

Current state of the tools We have presented a toolset based on a variant of SecureUML and
the Z specification language. It allows to perform static analyses, as done by the SecureMOVA
tool, and dynamic analyses, playing sequences of actions. Such sequences of actions correspond
to expected behaviours, and to attacks against the secure system. We presented these tools
on a classical example, the meeting scheduler, addressed in the presentation of SecureMOVA.
We identified a potential attack against the integrity of the information system that requires a
sequence of actions to allow evolutions of the functional state. We believe that it is easier to
analyse this sequence of actions with animation tools, than with static analyses only.

44

Our toolset includes a large number of the queries supported by USE and SecureMOVA, and it
can be extended to support most of the remaining ones. One feature of SecureMOVA remains
difficult to support. SecureMOVA is able to report the text of the conditions that are associated
to a permission, due to the reflexive character of the UML model. Our Z specification does not
allow such reflexivity mechanisms, and can only evaluate the condition in a given state.
Part of our translation from diagrammatic models to Z specifications is currently performed
manually. Still, this manual translation is systematic, and we are confident that it will be soon
handled automatically. Finally, we did not evaluate the capability of our tool to scale up, and
only used it on small models, with acceptable response times (a few seconds). Further work is
needed to experiment it on real-size models and, if needed, to optimize its calculations.

Other perspectives Animation is not the only way to perform dynamic analysis. Model-
checking provides an interesting alternative. In this chapter, we showed a sequence of actions
which compromizes the integrity of the information system. Our tools help identify such se-
quences, but model-checking could help find a sequence of actions which leads from a given
initial state to some unwanted state. Model-checking tools are not available for the Z language,
but Pro-B [LB08] provides such a tool for the B language, which is close to Z. This gives an
interesting perspective for future work.

Chapitre 6

Formalisation du contrôle d’accès
statique en B

Comme évoqué dans le chapitre 1, plusieurs travaux ont cherché à définir des règles de trans-
formation d’UML en B. Somme toute, ces travaux proposent des règles complémentaires qui
permettent de couvrir une grande partie des construction UML utilisées dans les diagrammes de
classes et d’états/transitions. Dans [IL10] nous avons proposé une plateforme IDM permettant
de combiner des règles alternatives provenant de ces approches. L’objectif en est de disposer
d’un cadre outillé supportant une grande variété de règles de transformation et de pouvoir, par
conséquent, sélectionner les règlses les mieux adaptées aux besoins de la transformation. Dans
la suite nous allons commencer par présenter un ensemble de règles adaptées à la traduction du
modèle fonctionnel. Nous présenterons ensuite la technique que nous proposons pour formaliser
une politique de contrôle d’accès associée à ce modèle fonctionnel.

6.1 Principes de la traduction

Les termes “shallow embedding” et “deep embedding” [BGG+93, WN04] sont souvent utilisés
pour désigner un changement ou une intégration de formalismes. Le premier terme désigne une
traduction directe d’un modèle source vers un modèle cible, alors que le second terme désigne
une traduction de formalismes aboutissant à des constructions qui représentent des types de
données. En suivant une logique semblable, P. Facon et R. Laleau, dans [Fac95] distinguent
deux approches de dérivation de spécifications formelles à partir de spécifications semi-formelles :
l’approche interprétée et l’approche compilée. Notons qu’une illustration détaillée et complète de
l’application de ces deux approches à une dérivation de UML vers B est présentée dans [Reg02].

L’approche compilée (ou par traduction). Cette approche consiste à donner des règles
permettant de traduire un modèle semi-formel directement dans un langage formel. Nous citons
en guise d’exemple la règle suivante de traduction du concept d’héritage extraite de [Fac95] :

Règle de traduction : faire une machine abstraite B par classe
de la hiérarchie avec un lien uses de chaque spécialisation vers la
généralisation, plus une machine abstraite globale qui inclut (includes)
toutes les autres machines abstraites et qui en fait représente l’interface
de la hiérarchie.

La plupart des travaux de dérivation de UML vers B adoptent une approche compilée [Mam02,
Reg02, Mey01, SB06b] fondée sur un ensemble de règles de traduction. L’intérêt majeur d’une

45

46

telle technique est qu’elle est réalisée par une traduction directe d’un modèle semi-formel à
une spécification formelle. Cependant, son principal inconvénient est que la sémantique des
correspondances entre B et UML n’est pas explicitement formalisée étant donné qu’elle est
cachée au niveau des règles de traduction.

L’approche interprétée (ou par méta-modélisation). Cette approche est fondée sur un
mélange des spécifications formelles issues aussi bien des concepts du méta-modèle que des
éléments du modèle semi-formel sujet de la traduction. Il s’agit précisément de proposer, une fois
pour toutes, une formalisation du méta-modèle du modèle semi-formel ; et d’effectuer, ensuite, la
traduction de la partie propre à chaque application et l’injecter au niveau de la formalisation du
méta-modèle. Par exemple, pour traiter l’héritage, une classe n’est plus comme précédemment
immédiatement traduite par une machine abstraite. Nous avons à la place une seule machine
abstraite générique qui comprend :
– L’ensemble de tous les objets du système,
– Une fonction associant à chaque nom de classe, les ensembles d’objets instances de la classe,
– Une fonction associant à chaque nom d’association la relation correspondante entre objets, et
– Une fonction associant à chaque objet et attribut la valeur correspondante.

Notre point de vue. Contrairement à l’approche interprétée, l’approche compilée se veut
plus directe car les spécifications formelles qui en découlent reflètent de manière naturelle et
explicite les éléments du modèle (ou de l’application) en question. Cependant, pour des besoins
propres à des systèmes particuliers, l’approche interprétée permet de préciser et de clarifier les
éléments des méta-modèles qui leurs sont dédiés.
Dans notre travail, nous dissocions la formalisation en B du modèle fonctionnel de celle du
modèle de contrôle d’accès. Notre processus de dérivation de spécifications formelles produit
ainsi deux modèles B :

(i) Un premier modèle B issu du modèle fonctionnel via une approche compilée. Les spécifications
formelles qui en résultent peuvent être enrichies par la prise en compte de contraintes fonc-
tionnelles et servent pour vérifier la correction du modèle fonctionnel.

(ii) Un deuxième modèle B qui représente la politique de sécurité en vue de contrôler l’accès aux
diverses entités fonctionnelles. Ce modèle est généré en suivant une approche interprétée.
En effet, nous traduisons une fois pour toute, notre méta-modèle de sécurité en B. Nous
traduisons ensuite la partie propre à la politique de contrôle d’accès et nous l’injectons
dans le modèle B issu du méta-modèle de sécurité.

Les liens entre ces deux modèles B sont explicités par les opérations. En effet, les opérations
issues du modèle fonctionnel permettent d’effectuer des opérations incontrôlées, alors que celles
issues du modèle de sécurité ont pour objectif d’effectuer ce contrôle.

6.2 Formalisation en B du modèle fonctionnel

Dans le but d’illustrer les diverses règles de traduction d’un diagramme de classes UML en B,
nous allons nous baser sur un extrait du diagramme de classes de l’étude de cas IFREMMONT
(figure 6.1). Dans ce diagramme nous considérons uniquement les classes Patient et Mana-
gementAct avec une relation de composition indiquant les actes de soins associés à chaque
patient.

47

Fig. 6.1 – Extrait du diagramme de classes de l’étude de cas IFREMMONT

6.2.1 Intégration des opérations de base dans le diagramme de classes

Les spécifications B que nous allons produire à partir du diagramme de classes ont vocation à
être opérationnelles. Cela nous permettra de les animer dans le but de voir l’évolution de l’état
du système et d’observer l’effet qu’un scénario d’exécution pourrait avoir sur les propriétés
invariantes. Le point d’entrée à ces spécifications B est donc les opérations qu’elles fournissent.
Elles peuvent être des constructeurs/destructeurs d’instances, des constructeurs/destructeurs de
liens, des getters/setters d’attributs, ou des getters de liens. Nous faisons donc évoluer, d’emblée,
le diagramme de classes en y intégrant toutes ces opérations. La figure 6.2 présente l’évolution
d’un diagramme de classes composé de deux classes (A et B), d’une association (R) entre ces
classes et d’un attribut1.

Fig. 6.2 – Intégration des opérations de base dans le diagramme de classes

– Constructeurs d’instances : createA, createB
– Destructeurs d’instances : deleteA, deleteB
– Constructeurs de liens : A AddB In R, B AddA In R
– Destructeurs de liens : A DeleteB In R, B DeleteA In R
– Getter d’attributs : A GetAtt
– Setter d’attributs : A SetAtt
– Getters de liens : A Getb, B Geta

Le corps de chacune de ces opérations de base sera spécifié directement en B et sera discuté au fur
et à mesure que nous présentons la traduction des éléments structurels auxquels ces opérations
sont rattachées.

Notons que dans la suite nous proposons de générer une machine B unique, que nous appelons
Functional Model, en vue de traduire tous les concepts d’un diagramme de classes.

1La visibilité des attributs n’est pas importante à ce niveau.

48

6.2.2 Traduction des classes

La notion d’ensemble abstrait en B (abstract sets) représente une abstraction d’un ensemble
d’objets du monde réel. Cette définition est proche de la notion de classe en UML et est
d’ailleurs utilisée par toutes les approches de transformations d’UML en B pour formaliser
des classes UML. Néanmoins, pour affiner cette traduction, [Ngu98, Mey01] considèrent qu’un
ensemble abstrait B pourrait représenter des objets instances possibles d’une classe, alors que
les objets effectifs (ou instances existantes) devraient être formalisés autrement. L’objectif prin-
cipal de cette vision est de permettre l’introduction de constructeurs et destructeurs d’instances
effectives. Par exemple, [Reg02] traduit une classe Client par :

(i) L’ensemble abstrait2 CLIENT désignant l’ensemble des clients possibles.

(ii) La variable3 Client désignant l’ensemble des clients effectifs. Et,

(iii) L’invariant4 : Client ⊆ CLIENT.

Des variétés de cette traduction existent. Par exemple, C. Snook et al., dans [SB04] considèrent
l’invariant “Client ∈ P(CLIENT)” au lieu de “Client ⊆ CLIENT”. Hung Ledang [Led02] rajoute
une couche pour distinguer l’ensemble de tous les objets possibles OBJECTS et définit l’ensemble
des instances possibles par une constante5 incluse dans l’ensemble abstrait OBJECTS.
Nous choisissons de mettre en oeuvre la traduction proposée par [Ngu98, Mey01, Reg02]. Celle-ci
introduit, dans la machine Functional Model, les structures associées à une classe A de la
manière suivante :

MACHINE
Functional Model

SETS PA /*Ensemble des instances possibles*/
VARIABLES EA /*Ensemble des instances effectives*/
INVARIANT EA ⊆ PA

INITIALISATION EA := ∅

Nous proposons ensuite de générer, dans la clause OPERATIONS de cette machine, les
opérations de base createA and deleteA permettant la création et la suppression d’instances
effectives.

createA(obj) =̂
PRE obj ∈ PA ∧ obj 6∈ EA THEN
EA := EA ∪ {obj}
/* Initialisation des attributs obligatoires */

END

deleteA(obj) =̂
PRE obj ∈ PA ∧ obj ∈ EA THEN
EA := EA − {obj}
/* Suppression des valeurs des attributs ; et
Mise à jour des liens entrepris avec d’autres
instances de classes */

END

2clause Sets.
3clause Variables.
4clause Invariant.
5Clause Constants.

49

Dans le but d’illustrer cette traduction nous présentons, ci-dessous, les structures associées à la
classe Patient (figure 6.1) dans la machine Functional Model :

MACHINE
Functional Model

SETS
PATIENTS

VARIABLES
Patients

INVARIANT
Patients ⊆ PATIENTS

INITIALISATION
Patients := ∅

Quant aux opérations de base createPatient and deletePatient permettant la création et la
suppression d’instances effectives de la classe Patient, elles sont données dans la figure 6.3.

createPatient(obj) =̂
PRE obj ∈ PATIENTS ∧ obj 6∈ Patients THEN

Patients := Patients ∪ {obj}
/* Initialisation des attributs obligatoires */

END

deletePatient(obj) =̂
PRE obj ∈ PATIENTS ∧ obj ∈ Patients THEN

Patients := Patients − {obj}
/* Suppression des valeurs des attributs ; et
Mise à jour des liens entrepris avec d’autres
instances de classes */

END

Fig. 6.3 – Constructeur et destructeur de la classe Patient

Notons que le constructeur et le destructeur doivent mettre en œuvre des traitements particuliers,
notamment l’initialisation d’un attribut obligatoires pour chaque instance créée, ou la mise-à-
jour des liens entrepris avec d’autres instances de classes en cas de suppression, etc. Les lignes
commentées dans le corps du constructeur et du destructeur seront discutées lors de la traduction
des attributs et des associations.

6.2.3 Traduction des attributs de classes

A. Types des attributs

Les types des attributs, autres que les types de base B (i.e. NAT, BOOL, etc) et les types classe,
seront traduits par des ensembles abstraits dans la clause SETS. Par exemple, le type String de
l’attribut SSN est traduit par l’ensemble abstrait LesSSNs. Ceci permet de représenter l’ensemble
des châınes de caractères possibles pour SSN.
Les types énumérés seront traduits par des ensembles énumérés dans la clause SETS. Par
exemple, le type de l’attribut Type de la classe ManagementAct donnera lieu à l’ensemble
énuméré LesTypes = {T1,T2}.

50

B. Attributs mono-valués

Un attribut dans une classe est généralement traduit par une relation fonctionnelle R associant
l’ensemble des instances effectives et le type de l’attribut. Par exemple, l’attribut Att de la classe
A de la figure 6.2 donne lieu à une variable Att typée ainsi au niveau de l’invariant de typage :

A Att ∈ EA R TAtt

Où EA correspond à l’ensemble des instances effectives de la classe A et TAtt au type de l’attribut
Att. Les spécialisations de la relation R dépendent de la nature de l’attribut : obligatoire ou
optionnel, unique ou non. Le tableau 6.1 donne les différentes valeurs de R.

Optionnel Obligatoire
Unique 7� ��

Non unique 7→ →

Tab. 6.1 – Relations fonctionnelles issues des attributs de classes

Par exemple, l’attribut SSN de la classe Patient (figure 6.1) est un attribut mono-valué, optionnel
et unique. Il sera donc traduit par une injection partielle comme suit :

Patient SSN ∈ Patients 7� LesSSNs

L’attribut Validated de la classe ManagementAct est un attribut mono-valué, obligatoire et
non-unique ; il sera donc traduit par une fonction totale :

ManagementAct Validated ∈ ManagementActs →BOOL

C. Opérations de base

Les getters et les setters

Des getters et des setters sont produits pour chaque attribut de classe. Ils permettent de lire et
de mettre à jour les attributs qu’ils soient publics ou privés. Lors de la traduction du modèle
fonctionnel nous ne faisons aucune distinction entre un attribut privé ou un attribut public.
En effet, c’est le modèle de sécurité qui définit la politique d’accès à ces attributs. Soit, par
exemple, l’attribut Att (figure 6.2) défini par : A Att ∈ EA R TAtt ; alors les opérations de
lecture (A GetAtt) et d’écriture (A SetAtt) sont spécifiées en B comme suit :

A SetAtt(obj) =
PRE obj ∈ PA ∧ obj ∈ EA THEN

ANY att WHERE
att ∈ TAtt [∧ att 6∈ ran(R)]

THEN
R(obj) := att

END
END ;

att ← A GetAtt(obj) =
PRE obj ∈ PA ∧ obj ∈ EA THEN

att := R(obj)
END ;

51

L’ensemble PA correspond à l’ensemble abstrait représentant les instances possibles de A. Le
prédicat [∧ att 6∈ ran(R)] correspond à une condition d’unicité et est défini en particulier pour
les attributs avec une contrainte {Unique} comme l’attribut SSN de la classe Patient. En guise
d’exemple nous présentons ci-dessous les getters et les setters de l’attribut SSN.

ssn ← patient GetSSN(obj) =
PRE obj ∈ PATIENTS ∧ obj ∈ Patients THEN

ssn := patient SSN(obj)
END ;

patient SetSSN(obj) =
PRE obj ∈ PATIENTS ∧ obj ∈ Patients THEN

ANY ssn WHERE
ssn ∈ LesSSNs ∧ ssn 6∈ ran(patient SSN)

THEN
patient SSN(obj) := ssn

END
END ;

Prise en compte des attributs dans les constructeurs

Outre les getters et les setters générés automatiquement pour tous les attributs, les constructeurs
d’instances effectives doivent prendre en compte la valeur par défaut des attributs ainsi que les
attributs obligatoires. En effet, les attributs ayant une valeur par default sont initialisés avec
cette valeur lors de la construction d’une instance. Les attributs obligatoires n’ayant aucune
valeur par default sont initialisés en passant leurs valeurs en paramètre du constructeur. Par
exemple, la valeur par défaut de l’attribut Validated de ManagementAct est false et l’attribut
obligatoire dateTime n’a pas de valeur par default. Le constructeur createManagementAct sera
donc comme suit :

createManagementAct(obj,dateTimeValue) =̂
PRE obj ∈ MANAGEMENTACTS ∧ obj 6∈ ManagementActs ∧ dateTi-

meValue ∈ DATETIME THEN
ManagementActs := ManagementActs ∪ {obj} ||
ManagementAct Validated(obj) := FALSE ||
ManagementAct DateTime(obj) := dateTimeValue

END

Fig. 6.4 – Constructeur de ManagementAct

Mise-à-jour des attributs dans les destructeurs

La suppression d’une instance effective obj d’une classe A de l’ensemble des instances effectives
EA doit être suivie de la suppression de la valeur de chaque attribut A Att associé à obj . Ceci
est considéré dans le destructeur deleteA comme suit :

deleteA(obj) =̂
PRE obj ∈ PA ∧ obj ∈ EA THEN
EA := EA − {obj} ||
A Att := {obj}C− A Att

END

52

Par exemple, la figure 6.5 présente le destructeur de la classe Patient en prenant en compte la
mise-à-jour de la relation patient SSN issue de l’attribut SSN.

deletePatient(obj) =̂
PRE obj ∈ PATIENTS ∧ obj ∈ Patients THEN

Patients := Patients − {obj} ||
patient SSN := {obj}C− patient SSN

END

Fig. 6.5 – Destructeur de la classe Patient prenant en compte l’attribut SSN

6.2.4 Traduction des associations

Dans le cas général, une association assos liant deux classes A et B est traduite par une relation
fonctionnelle entre les ensembles des instances effectives issus de ces classes :

assos ∈ EA R EB

Les spécialisations de la relation R dépendent des multiplicités des deux côtés de l’association
assos. Par exemple, des multiplicités ∗ et 1 respectivement du côté de A et de B, donnent lieu à
une fonction totale → de A vers B. Le tableau 6.2 extrait de [Ida06] liste les diverses relations
fonctionnelles en B en leur associant des multiplicités UML.

du côté de A Du côté de B

Spécialisations de R expression min max min max

Relation ↔ 0 * 0 *
Fonction partielle 7→ 0 * 0 1

Fonction totale → 0 * 1 1
Injection partielle 7� 0 1 0 1

Injection totale � 0 1 1 1
Surjection partielle 7� 1 * 0 1

Surjection totale � 1 * 1 1
Bijection partielle 7�� 1 1 0 1

Bijection totale �� 1 1 1 1

Tab. 6.2 – Table des multiplicités associée aux spécialisations de relations fonctionnelles en B

Cependant, ce tableau ne couvre pas tous les cas de figure comme par exemple des multiplicités
fixes ou des multiplicités 1..∗ des deux extrémités de assos. Il devient donc opportun de traduire
chaque côté de l’association assos de manière spécifique. Pour ce faire, nous présentons le tableau
6.3 extrait de [OSS06]. Dans cette approche, l’invariant spécifiant assos par une relation entre
EA et EB est remplacé par un nouveau prédicat Cmult1(assos) ∧ Cmult2(assos) (2eme et 3eme

colonne du tableau 6.3). Ainsi, on obtient l’invariant suivant pour des multiplicités 1..∗ des deux
extrémités de assos :

assos ∈ EA↔EB ∧ dom(assos) = EA ∧ ran(assos) = EB

Ainsi, la traduction de l’association patientActs liant la classe Patient à la classe ManagementAct
(figure 6.1) peut être effectuée de deux manières. La première suit le tableau 6.2 et produit
simplement une fonction totale de l’ensemble ManagementActs vers l’ensemble Patients :

patientActs ∈ ManagementActs → Patients

La deuxième traduction suit le tableau 6.3 et produit l’invariant suivant :

53

Multiplicité Cmult2(assos) (du côté de B) Cmult1(assos) (du côté de A)
* ou 0..* assos ∈ EA ↔ EB assos−1 ∈ EB ↔ EA

0..1 assos ∈ EA 7→ EB assos−1 ∈ EB 7→ EA
1 assos ∈ EA→EB assos−1 ∈ EB →EA

1..* assos ∈ EA ↔ EB ∧ assos−1 ∈ EB ↔ EA ∧
dom(assos) = EA ran(assos) = EB

n assos ∈ EA ↔ EB ∧ assos−1 ∈ EB ↔ EA ∧
∀ x .(x ∈ EA ⇒ card(assos[{x}]) = n) ∀ x .(x ∈ EB ⇒ card(assos−1[{x}]) = n)

0..n assos ∈ EA ↔ EB ∧ assos−1 ∈ EB ↔ EA ∧
∀ x .(x ∈ EA ⇒ card(assos[{x}]) ≤ n) ∀ x .(x ∈ EB ⇒ card(assos−1[{x}]) ≤ n)

1..n assos ∈ EA ↔ EB ∧ assos−1 ∈ EB ↔ EA ∧
dom(assos) = EA ∧ ran(assos) = EB ∧
∀ x .(x ∈ EA ⇒ card(assos[{x}]) ≤ n) ∀ x .(x ∈ EB ⇒ card(assos−1[{x}]) ≤ n)

n..* assos ∈ EA ↔ EB ∧ assos−1 ∈ EB ↔ EA ∧
∀ x .(x ∈ EA ⇒ card(assos[{x}]) ≥ n) ∀ x .(x ∈ EB ⇒ card(assos−1[{x}]) ≥ n)

n..m assos ∈ EA ↔ EB ∧ assos−1 ∈ EB ↔ EA ∧
∀ x .(x ∈ EA ⇒ n ≤ card(assos[{x}]) ≤ m) ∀ x .(x ∈ EB ⇒ n ≤ card(assos−1[{x}]) ≤ m)

où n et m sont des entiers positifs tels que n ≥ 2 ∧ n ≤ m.

Tab. 6.3 – Prise en compte des multiplicités pour la dérivation d’une association

patientActs ∈ Patients ↔ ManagementActs ∧
patientActs−1 ∈ ManagementActs → Patients

L’avantage de cette deuxième traduction est qu’elle respecte le sens de navigabilité de l’associa-
tion (i.e. de la classe Patient vers la classe ManagementAct).

Génération des opérations de base

Dans la section 6.2.1 nous avons présenté les opération de base qui permettent d’enrichir le
diagramme de classes avant sa traduction en B. Les opérations relatives à la manipulation d’une
association R entre deux classes A et B sont :
– Constructeurs de liens : A AddB In R, B AddA In R
– Destructeurs de liens : A DeleteB From R, B DeleteA From R
– Getters de liens : A Getb, B Geta
Notons que la génération automatique de ces opérations est conditionnée par divers paramètres :
la navigabilité, la composition ou l’existence d’une multiplicité minimale égale à 1.

(i) Prise en compte de la navigabilité : une association R navigable uniquement de A vers B
indique qu’il est possible, à partir d’une instance x de A, de retrouver les instances de B liées
à x via R. De ce fait, la spécification B intègre uniquement les opérations : A AddB In R,
A DeleteB In R et A Getb6. Ces opérations permettent d’agir sur R en ayant une instance
donnée de A. Si R est navigable dans les deux sens alors on aura dans la spécification B
toutes les opérations qui permettent d’agir sur R à partir d’instances de A ou de B.

(ii) Prise en compte de la composition ou de l’existence d’une multiplicité minimale égale à 1 :
Si R est une association de composition indiquant que des objets de type A sont composés
d’objets de type B, alors on considère que l’ajout et la suppressions d’instances de B est
contrôlé par A. De ce fait, la spécification B n’intégrera pas les opérations B AddA In R

6Si le nom de rôle est explicité dans le diagramme de classes alors il apparâıt dans l’étiquette du getter, sinon
le getter serait A GetR.

54

et B DeleteA In R. Cette même règle s’applique si le diagramme de classes indique que
chaque instance de B est nécessairement rattachée à au moins une instance de A via R.
Dans ces deux cas on ne génère pas le constructeur de B (Create B).

De même que pour les attributs, les liens avec une multiplicité minimale égale à 1 sont créés
lors de la construction d’instances. Aussi, la destruction d’un objet impliqué dans un tel lien
induit-elle la destruction de ce lien. Toutefois, avant la construction d’un lien, on doit s’assurer
que les cardinalités ne dépassent pas les valeurs maximales (et réciproquement pour les valeurs
minimales lors de la destructions d’un lien).
Dans la figure 6.1, l’association patientActs est une composition navigable uniquement de Patient
vers ManagementAct. Par conséquent, on ne produit pas dans la spécification B le constructeur
CreateManagementAct. Cela permettra d’interdire la création d’instances isolées de Manage-
mentAct. Les opérations de manipulation de patientActs seront donc : patient AddpatientActs,
patient DeletepatientActs et patient GetpatientActs.
L’opération patient AddpatientActs joue donc le rôle de constructeur et devra par conséquent
initialiser les attributs obligatoires de ManagementAct conformément à la section 6.2.2.

patient AddpatientActs(obj) =
PRE obj ∈ PATIENTS ∧ obj ∈ Patients THEN

ANY ma WHERE
ma ∈ MANAGEMENTACTS ∧ ma 6∈ ManagementActs ∧
ma 6∈ dom(patientActs)

THEN
ManagementActs := ManagementActs ∪ {ma} ||
patientActs := patientActs ∪ {(ma 7→ obj)} ||
managementact validated(ma) := FALSE

END
END ;

De même, l’opération patient DeletepatientActs joue le rôle de destructeur et devra faire les
actions de mise à jours nécessaires :

patient DeletepatientActs(obj) =
PRE obj ∈ PATIENTS ∧ obj ∈ Patients THEN

ANY ma WHERE
ma ∈ MANAGEMENTACTS ∧ ma ∈ ManagementActs ∧
ma ∈ patientActs −1 [{obj}] ∧
managementact validated(ma) = FALSE

THEN
ManagementActs := ManagementActs - {ma} ||
patientActs := {ma} C− patientActs ||
managementact validated := {ma} C− managementact validated ||
managementact dateTime := {ma} C− managementact dateTime ||
managementact Type := {ma} C− managementact Type

END
END ;

Le prédicat managementact validated(ma) = FALSE de l’opération patient DeletepatientActs
est introduit manuellement et correspond à une contrainte fonctionnelle. Celle-ci indique qu’un
ManagementAct validé ne peut être supprimé.

55

Quant au getter de lien permettant de retrouver les actes de soin associés à un patient, il est
comme suit :

managementacts ← patient GetpatientActs (obj) =
PRE obj ∈ PATIENTS ∧ obj ∈ Patients THEN

managementacts := patientActs −1 [{obj}]
END ;

6.2.5 Prise en compte de l’héritage de classes

L’héritage entre classes est traduit en B par une inclusion entre les ensembles d’instances effec-
tives. Par exemple, une classe C qui hérite d’une classe A produira l’invariant suivant : EC ⊆ EA
(avec EC et EA sont les variables d’instances effectives de C et de A). Cet invariant d’inclusion
permet de simuler l’héritage d’attributs, de rôles et d’opérations car toutes les operations rela-
tives à une classe, incluant les assesseurs et les mutateurs de rôles et d’attributs, s’appliqueront
systématiquement aux sous-classes.
Le constructeur d’une classe doit ajouter l’instance créée dans les ensembles des instances effec-
tives issus de ses parents. Ce constructeur prend en compte également les attributs et les rôles
hérités. Cela peut être mis en oeuvre en copiant la pré-condition et la substitution issues du
constructeur de la superclasse. En effet, dans l’exemple ci-dessous, la pré-condition obj ∈ PA

∧ obj 6∈ EA ainsi que la substitution EA := EA ∪ {obj} sont celles de l’opération createA. Cela
permet de couvrir de la même manière un héritage à plusieurs niveaux. Ce même raisonnement
est effectué pour l’opération de destruction d’instances effectives deleteC.

createC(obj) =̂
PRE obj ∈ PA ∧ obj 6∈ EA THEN
EA := EA ∪ {obj}
/* Initialisation de roles et d’attributs issus de la classe A*/
EC := EC ∪ {obj}
/* Initialisation de roles et d’attributs issus de la classe C*/

END

deleteC(obj) =̂
PRE obj ∈ PA ∧ obj ∈ EA THEN
EA := EA − {obj}
/* Mise à jour des roles et liens issus de la classe A */
EC := EC − {obj}
/* Mise à jour des roles et liens issus de la classe C */

END

6.2.6 Amélioration du modèle fonctionnel

La spécification B issue du diagramme de classes fonctionnel nécessite certains traitement ma-
nuels, notamment lors de l’introduction des contraintes ou de nouvelles opérations. Parmi les
propriétés fonctionnelles que nous pouvons citer sur la base de l’exemple de la figure 6.1 nous
avons :

(i) L’opération de validation d’un acte de soin.

(ii) Une fois validé un acte de soin ne peut plus être modifié

(iii) Un acte de soin validé dispose nécessairement d’un type et d’une date

56

La propriété (i) se traduit par l’intégration de l’opération managementAct Validate à la spécification
B. Cette opération est pré-conditionnée par le fait que l’acte de soin en cours de validation n’a
pas déjà été validé et qu’il dispose d’un type et d’une date.

managementact Validate(obj) =
PRE

obj ∈ MANAGEMENTACTS ∧
obj ∈ ManagementActs ∧
managementact validated(obj) = FALSE ∧
obj ∈ dom(managementact Type) ∧
obj ∈ dom(managementact dateTime)

THEN
managementact validated(obj) := TRUE

END

La prise en compte de la propriété (ii) est effectuée par :
– L’ajout de la pré-condition “managementact validated(obj) = FALSE” à toutes les opérations

de modification d’un acte de soin (e.g. setters d’attributs)
– L’ajout de la pré-condition précédente à l’opération patient DeleteManagementAct
– L’interdiction de la suppression d’une instance de Patient ayant au moins un acte de soin

validé.
– La suppression du setter managementact SetValidated.

Quant à la propriété (iii), elle est prise en compte par l’introduction de l’invariant suivant :

dom(managementact validated B {TRUE}) ⊆ dom(managementact Type) ∧
dom(managementact validated B {TRUE}) ⊆ dom(managementact dateTime)

6.3 Transformation du modèle de sécurité

Fig. 6.6 – Méta-modèle de sécurité

57

6.3.1 Approche proposée

La figure 6.7 illustre les principes de la traduction que nous proposons en vue de traduire un
modèle fonctionnel augmenté par une politique de contrôle d’accès. Celle-ci n’est autre qu’une
instance du méta-modèle de sécurité de la figure 6.6. La machine B nommée “Security Model”
joue le rôle de filtre et permet de contrôler l’usage des opérations encapsulées dans la machine
B “Functional Model”. En effet, l’utilisateur courant interagit avec la spécification “Security
Model” qui lui donne accès uniquement aux opérations auxquelles il a droit dans la politique
sécurité (Policy instance).
Rappelons que dans le but de traduire le modèle de sécurité nous adoptons une approche in-
terprétée ; et ce, en suivant les étapes suivantes :
– Proposer une formalisation « stable » du méta-modèle (“Security Model”)
– Traduire l’instance du méta-modèle et l’injecter dans la formalisation du méta-modèle (“Policy

instance”)
Ensuite, à chaque opération de “Functional Model” on associe une opération sécurisée dans “Se-
curity Model”. L’opération sécurisée se charge donc de vérifier que l’utilisateur courant dispose
d’une permission lui permettant d’appeler l’opération associée dans le modèle fonctionnel. Si c’est
le cas, alors l’utilisation d’un animateur tel que ProB [LB03a] permettra d’animer l’opération
sécurisée et de faire évoluer, par conséquent, l’état du modèle fonctionnel.

Functional
Model

B Machine

getPatientInfo
validateAct

…

getPatientInfo
validateAct

…

Analyst

V&V Security
Model

B Machine

SecGetPatientInfo
SecValidateAct

…

V&V Security
Model

B Machine

SecGetPatientInfo
SecValidateAct

…

SecGetPatientInfo
SecValidateAct

…

V&V Policy
instance

B Machine

Policy
instance

B Machine

Useranimation Useranimation

Fig. 6.7 – Principe de la traduction

6.3.2 Affectation d’utilisateurs aux rôles (relation User Assignement)

La formalisation de la relation User Assignement est réalisée au moyen d’une machine B dis-
tincte appelée “UserAssignements.mch”. Celle-ci contient la formalisation de la portion du méta-
modèle de sécurité mettant en jeu les méta-classes USER et ROLE (figure 6.8).

Fig. 6.8 – Portion du méta-modèle de sécurité proposé pour core-RBAC

La formalisation en B de cette patrie du méta-modèle de sécurité est présentée ci-dessous.

58

MACHINE
UserAssignements

SETS
ROLES ; USERS

VARIABLES
roleOf,
Roles Hierarchy,
currentUser

INVARIANT
Roles Hierarchy ∈ ROLES ↔ ROLES ∧
roleOf ∈ USERS → P (ROLES) ∧
closure1(Roles Hierarchy) ∩ id(ROLES) = ∅ ∧
currentUser ∈ USERS

Dans ce modèle nous considérons que la relation roleOf associe pour chaque utilisateur un
ensemble de rôles. L’invariant “closure1(Roles Hierarchy) ∩ id(ROLES) = ∅” indique que
la hiérarchie de rôles ne doit pas contenir de cycle. La variable currentUser sert uniquement
pour l’animation du modèle et permet d’identifier l’utilisateur courant. Nous introduisons ainsi
l’opération changeUser qui permet de changer d’utilisateur courant.

OPERATIONS
changeUser(user) =
PRE

user ∈ USERS
THEN

currentUser := user
END

END

La deuxième étape de l’approche interprétée, consistant à formaliser une instance du méta-
modèle et l’injecter dans la spécification B du méta-modèle, se traduit par l’introduction de
valuations dans les ensembles USERS et ROLES et par l’initialisation adéquate du modèle.
Prenons, à titre d’exemple, l’instance du méta-modèle illustrée dans la figure 6.9.

Fig. 6.9 – Instance du méta-modèle de la figure 6.8

La formalisation de cette instance sera injectée dans la spécification B du méta-modèle de la
façon suivante :

59

SETS
ROLES = {Team Doctor, Nurse, Operator, Team Member, Regulator} ;
USERS = {Bob, Paul, Martin, Jack, none}
. . .

INITIALISATION
roleOf := {(Bob 7→ {Team Doctor}),

(Paul 7→ {Operator}),
(Martin 7→ {Nurse}),
(Jack 7→ {Regulator}),
(none 7→ ∅)} ||

Roles Hierarchy := {(Team Doctor 7→ Team Member),
(Nurse 7→ Team Member)} ||

currentUser := none
. . .

Notons que l’utilisateur none est un utilisateur fictif indiquant, quand il est affecté à currentUser ,
qu’aucun utilisateur réel n’est connecté.

6.3.3 Affectation de permissions aux rôles (relation Permission Assignement)

Comme pour la relation User Assignement la formalisation de Permission Assignement suit une
logique semblable. Nous commençons tout d’abord par traduire en B les entités du méta-modèle
associées aux concepts de permission, d’action, etc. Cette formalisation est présentée ci-dessous :

MACHINE
RBAC Model

INCLUDES
Functional Model,
UserAssignements

SETS
ENTITIES ;
Attributes ;
Operations ;
KindsOfAtt = {public, private} ;
PERMISSIONS ;
ActionsType = {read, create, modify, delete, privateRead, privateModify} ;
Stereotypes = {readOp, modifyOp}

VARIABLES
AttributeKind, AttributeOf, OperationOf,
constructorOf, destructorOf, setterOf, getterOf,
PermissionAssignement, EntityActions,
MethodActions, StereotypeOps,
isPermitted

60

INVARIANT
AttributeKind ∈ Attributes → KindsOfAtt ∧
AttributeOf ∈ Attributes → ENTITIES ∧
OperationOf ∈ Operations → ENTITIES ∧
constructorOf ∈ Operations 7� ENTITIES ∧
destructorOf ∈ Operations 7� ENTITIES ∧
setterOf ∈ Operations 7� Attributes ∧
getterOf ∈ Operations 7� Attributes ∧
StereotypeOps ∈ Stereotypes ↔ Operations ∧
setterOf ∩ getterOf = ∅ ∧
PermissionAssignement ∈ PERMISSIONS → (ROLES × ENTITIES) ∧
EntityActions ∈ PERMISSIONS 7→ P (ActionsType) ∧
MethodActions ∈ PERMISSIONS 7→ P (Operations) ∧
isPermitted ∈ ROLES ↔ Operations

Les ensembles ENTITIES, Attributes, Operations et KindsOfAtt contiennent les éléments du
modèle fonctionnel nécessaires à l’expression des permissions selon notre méta-modèle. Les re-
lations entre ces ensembles qui permettent de reconstruire la partie fonctionnelle sont :
– AttributeKind : indique pour chaque attribut de classe s’il est privé ou public
– AttributeOf : indique l’entité fonctionnelle dans laquelle un attribut est encapsulé
– OperationOf, constructorOf et destructorOf : indiquent l’entité fonctionnelle dans laquelle une

opération est encapsulée
– setterOf, getterOf : rattachent les setters et les getters à leurs attributs
La distinction entre les différents types d’opération (OperationOf, constructorOf, destructorOf,
setterOf et getterOf) est indispensable au calcul des permissions en fonction de l’utilisateur
courant. En effet, une permission, associée à un role R et une entité E, et contenant une action
de type �EntityAction�Create, indique que si l’utilisateur courant est affecté au rôle R
alors il a accès à l’opération issue de contructorOf −1(E).
Dans notre méta-modèle de sécurité on peut exprimer des permission de type Read ou Modify
donnant ainsi accès aux opérations de lecture ou de modification. Outre les getters (qui effectuent
des lectures sur les attributs de classes) et les setters (qui effectuent des modifications sur les
attributs de classes) nous donnons la possibilité à l’analyste de sétéréotyper les opérations de
manière spécifique en indiquant s’il s’agit d’opérations de lecture ou de modification. Cela est
représenté par l’ensemble énuméré Stereotypes et la relation StereotypeOps.

Les autres constructions de cette spécification B sont nécessaires à l’expression des permissions.
Chaque permission de l’ensemble PERMISSIONS est associée à un couple (role, entity) où
role ∈ ROLES et entity ∈ ENTITIES. La relation EntityActions représente les permissions
exprimé sur une entité de manière globale (lecture, écriture, création, etc). Quant à la relation
MethodActions, elle définit les permissions spécifiques à certaines opérations de l’entité sécurisée.

Exemple d’illustration

La figure 6.10 exprime une politique de contrôle d’accès associée au modèle fonctionnel de la
figure 6.1. Dans ce diagramme, nous distinguons les permissions associées à l’entité Patient de
celles associées à ManagementAct.
– PatientPerm1 : indique qu’un opérateur peut créer une instance de Patient (�EntityAction�Create),

et exécuter l’opération de modification SetSSN.
– PatientPerm2 : définit les permissions accordées aux membres de l’équipe médicale. Ces der-

niers peuvent consulter l’attribut privé SSN ((�EntityAction�PrivateRead) et peuvent as-
socier de nouveaux actes de soin à un patient (�MethodAction�addManagementAct)

61

Fig. 6.10 – Expression d’une politique de sécurité sur l’exemple de la figure 6.1

– ManagementActPerm1 : permet aux membres de l’équipe médicale de lire et de modifier
uniquement les attributs publics d’un acte de soin.

– ManagementActPerm2 : indique qu’un docteur peut valider un acte de soin en exécutant la
méthode Validate de ManagementAct.

Introduction des données fonctionnelles dans la formalisation du métamodèle

SETS
ENTITIES = {Patient, ManagementAct} ;
Attributes = {SSN, Validated, dateTime, Type} ;
Operations =
{CreatePatient, DeletePatient, Patient AddManagementAct, Patient SetSSN, Patient GetSSN,
Patient DeleteManagementAct, Patient GetManagementActs, Managementact SetdateTime,
Managementact GetdateTime, Managementact SetValidated, Managementact GetValidated,
Managementact SetType, Managementact GetType, Managementact Validate } ;

62

INITIALISATION
AttributeKind := {(SSN 7→ private),

(Validated 7→ private),
(dateTime 7→ public),
(Type 7→ public)}

||
AttributeOf := {(SSN 7→ Patient),

(Validated 7→ ManagementAct),
(dateTime 7→ ManagementAct),

(Type 7→ ManagementAct)}
||

OperationOf := {(CreatePatient 7→ Patient),
(DeletePatient 7→ Patient),
(Patient AddManagementAct 7→ ManagementAct),
(Patient SetSSN 7→ Patient),
(Patient GetSSN 7→ Patient),
(Patient DeleteManagementAct 7→ Patient),
(Patient GetManagementActs 7→ Patient),
(Managementact SetdateTime 7→ ManagementAct),
(Managementact GetdateTime 7→ ManagementAct),
(Managementact SetValidated 7→ ManagementAct),
(Managementact GetValidated 7→ ManagementAct),
(Managementact SetType 7→ ManagementAct),
(Managementact GetType 7→ ManagementAct),
(Managementact Validate 7→ ManagementAct)}

||
constructorOf := {(CreatePatient 7→ Patient)}
||

destructorOf := {(DeletePatient 7→ Patient)}
||

StereotypeOps := {(modifyOp 7→ Patient SetSSN),
(readOp 7→ Managementact GetValidated)}

||
setterOf := {(Patient SetSSN 7→ SSN),

(Managementact SetdateTime 7→ dateTime),
(Managementact SetValidated 7→ Validated),
(Managementact SetType 7→ Type)}

||
getterOf := {(Patient GetSSN 7→ SSN),

(Managementact GetdateTime 7→ dateTime),
(Managementact GetValidated 7→ Validated),
(Managementact GetType 7→ Type)}

Etant donnée que la manipulation des entités fonctionnelles ne s’effectue que par le biais des
opérations de base produites automatiquement ainsi que les opérations complémentaires ajoutées
manuellement à la machine “Functional Model”, alors l’intégration des données fonctionnelles
dans la formalisation du méta-modèle de sécurité implique la prise en compte des étiquettes de
toutes ces opérations.

Introduction des données de sécurité dans la formalisation du méta-modèle

SETS
. . .

PERMISSIONS =
{PatientPerm1, PatientPerm2, ManagementActPerm1, ManagementActPerm2} ;

63

INITIALISATION
. . .

PermissionAssignement := {(PatientPerm1 7→ (Operator 7→ Patient)),
(PatientPerm2 7→ (Team Member 7→ Patient)),
(ManagementActPerm1 7→ (Team Member 7→ ManagementAct)),
(ManagementActPerm2 7→ (Team Doctor 7→ ManagementAct))}

||
EntityActions := {(PatientPerm1 7→ {create, modify}),

(PatientPerm2 7→ {privateRead}),
(ManagementActPerm1 7→ {read, modify})}

||
MethodActions := {(PatientPerm2 7→ {Patient AddManagementAct}),

(ManagementActPerm2 7→ {Managementact Validate})}
||

isPermitted := ∅

Introduction des opérations sécurisées

La relation isPermitted, initialisée à l’ensemble vide et déduite de la formalisation de la poli-
tique de sécurité, sert à retrouver toutes les opérations permises pour un rôle donné. Par exemple,
l’interprétation de PatientPerm2 permet d’introduire dans la relation isPermitted les couples
(Team Member 7→ Patient GetSSN) et (Team Member 7→ Patient AddManagementAct). Ceci
est réalisé au moyen de la clause DEFINITION en B, et d’une opération de calcul de ces per-
mission :

setPermissions = PRE isPermitted = ∅ THEN isPermitted := permissions END ;

Cette relation permet de sécuriser les opérations issues du modèle fonctionnel en leur associant
une garde de la forme : operation ∈ isPermitted[currentRole]. Voici par exemple, l’opération de
création sécurisée associée à la classe Patient.

OPERATIONS
. . .
secure createPatient(obj) =

PRE obj ∈ PATIENTS ∧ obj 6∈ Patients THEN
SELECT

CreatePatient ∈ isPermitted[currentRole]
THEN

createPatient(obj)
END

END ;
. . .

Si l’utilisateur courant dispose d’un rôle ayant un droit de création sur l’entité Patient alors il
pourra animer l’opération secure createPatient. Cette opération fait appel à l’opération de base
du modèle B fonctionnel createPatient et peut par conséquent faire évoluer l’état du système.

Chapitre 7

Formalising dynamic access control
rules

7.1 Integrating astd into the security metamodel

The metamodel shown in Fig. 6.6 can be instantiated in order to define a static access control
policy. The policy is based on authorizations or prohibitions given to users to execute actions
on the IS. However, dynamic access controls may be useful in order to express obligation or
separation of duty (SoD) rules. We propose to use the astd notation (Algebraic State Transition
Diagrams) [FGL+08] to specify such dynamic rules. This aspect of access control is named
dynamic because authorizations can be granted depending on previous executed events. Patterns
were introduced [KFL10] in order to express these rules.
A metamodel combining static and dynamic aspects of an access control policy is proposed in
Fig. 7.1. This metamodel is based on the metamodel described previously and on the astd
metamodel shown in Fig. 7.2 in order to link common concepts. New classes are also introduced
in order to describe elements from obligation or SoD concept.

ASTD
Specification

Event

Parameters
SoD

Obligation
0..1

0..1

1

1

ASTD Meta-Model

Static Security Meta-Model

Permission Action
0..*

1

1

Role User Organization

RoleParam UserParam OrgParam

FuncParam

SecParam

1..*

1

1..*

1

1..*

1

1 1 1

Fig. 7.1 – Méta-modèle de sécurité.

Similarly to the translation from UML diagrams to formal specifications written using the B
language, translation rules from astd to Event-B were developed and are presented in the
following sections. We chose Event-B to benefit from its tool support. However translation into
B is quite similar.

64

65

Fig. 7.2 – Méta-modèle des ASTD.

The final architecture of the secure IS, including static and dynamic aspects, is based on succes-
sive filtering of actions. First, the IS receives the user request as an action, with its parameters
and a security context including the user id, the role and the organization he/she belongs to.
These informations are given to machine Mwf that takes care of dynamic rules of the access
control policy. Then the action and its context are transmitted to Msec to be checked against
static rules. Finally, if static rules allow the execution, the functional machine Mfun receives
the action but can still reject it if it does not conform to functional constraints. In case one of
the machines rejects the action of the user, the system is not updated and an error message is
returned.

7.2 Systematic translation rules from astd to Event-B1

Information Systems (IS) are taking an increasingly important place in today’s organizations.
As computer programs connected to databases and other systems, they induce increasing costs
for their development. Indeed, with the importance of the Internet and their high computer
market penetration, IS have become the de-facto standard for managing most of the aspects
of a company strategy. In the context of IS, formal methods can help improving the reliability,
security and coherence of the system and its specification. The APIS (Automated Production
of Information system) project [F+07] offers a way to specify and generate code, graphical
user interfaces, databases, transactions and error messages of such systems, by using a process
algebra-based specification language. However, process algebra, despite their formal aspect, are
not as easily understandable as semi-formal graphical notations, such as UML [RJB96]. In
order to address this issue, a formal notation combining graphical elements and process algebra
was introduced : Algebraic State Transition Diagrams (astd) [FGL+08]. Using astd, one can
specify the behavior of an IS. The interpreter iastd [SM+10] can efficiently execute astd
specifications. However, there is no tool allowing proof of invariants or property check over

1The main results described in the following sections are presented in [?]

66

an astd specification. This chapter aims to define systematic translation rules from an astd
specification to Event-B [Abr10] in order to model check or prove properties using tools of the
RODIN platform [ABHV06]. Moreover, translation results will allow to bridge other process
algebras (like eb3 [FF09] or CSP [Hoa85]) with Event-B as they share a similar semantics with
astd. Event-B is first introduced to the reader in Section 7.3. An overview of astd and a case
study will be then presented. This case study will help readers unfamiliar with astd to discover
the formalism in Section 7.4. The Event-B machine resulting from translation rules applied to
this case study will be described as well as rules and relevant steps of translation in Section 7.5.
Finally, future work and evolution perspectives will be presented.

7.3 Event-B Background

Event-B [Abr10] is an evolution of the B method [Abr96a] allowing to model discrete systems
using a formal mathematical notation. The modeling process usually follows several refinement
steps, starting from an abstract model to a more concrete one in the next step. Event-B spe-
cifications are built using two elements : context and machine. A context describes the static
part of an Event-B specification. It consists of declarations of constants and sets. Axioms, which
describe types and properties of constants and sets, are also included in the context. A machine
is the dynamic part of an Event-B specification. It has a state consisting of several variables
that are first initialized. Then events can be executed to modify the state. An event can be
executed if it is enabled, i.e. all the conditions prior to its execution hold. Theses conditions are
named guards. Among all enabled events, only one is executed. In this case, substitutions, called
actions, are applied over variables. All actions are applied simultaneously, meaning that an event
is atomic. The state resulting from the execution of the event is the new state of the machine,
enabling and disabling events. Alongside the execution of events, invariants must hold. An in-
variant is a property of the system written using a first-order predicate on the state variables.
In order to ensure that invariants hold, proofs are performed over the specification.

7.4 astd Background

astd is a graphical notation linked to a formal semantics allowing to specify systems such as IS.
An astd defines a set of traces of actions accepted by the system. astd actions correspond to
events in Event-B. Event-B actions and substitutions, as they modify the state of an Event-B
machine, can be binded to the change of state in astd. The astd notation is based on operators
from the eb3 [FSD03] method and was introduced as an extension of Harel’s Statecharts [Har87].
An astd is built from transitions, denoting action labels and parameters, and states that can be
elementary (as in automata) or astd themselves. Each astd has a type associated to a formal
semantics. This type can be automata, sequence, choice, Kleene closure, synchronization over
a set of action labels, choice or interleaving quantification, guard and astd call. One of astd
most important features is to allow parametrized instances and quantifications, aspects missing
from original Statecharts. An astd can also refer to attributes, which are defined as recursive
functions on traces accepted by the astd, as in the eb3 method. Such a recursive function
compares the last action of the trace and maps each possible action to a value of the attribute
it is defining. Computing this value may imply to call the function again on the remaining of
the trace.

67

7.4.1 astd Operators

Several operators, or astd types, are used to specify an IS. We detail them in the following
paragraphs. Operators will be further illustrated in Section 7.4.2 with the introduction of a case
study.

Automata In an astd specification, one can describe a system using hierarchical states au-
tomata with guarded transitions. Each automata state is either elementary or another astd of
whichever type. Transitions can be on states of the same depth, or go up or down of one level
of depth. A transition decorated by a bullet (•) is called a final transition. A final transition
is enabled when the source state is final. As in Statecharts, an history state allows the current
state of an automata astd to be saved before leaving it in order to reuse it later.

Sequence A sequence is applied to two astd. It implies that the left hand side astd will
be executed and will reach a final state before the right hand side astd can start. There is no
immediate equivalent of this operator in Harel’s Statecharts, but its behavior can be reproduced
with guards and final transitions. A sequence astd is noted with a double arrow ⇒.

Choice A choice, noted | allows the execution of only one of its operands, like a choice in
regular expressions or in process algebras. The choice of the astd to execute is made on the
first action executed. After the execution of the first action, the chosen astd is kept until it
terminates its execution. If both operands of a choice astd can execute the first action, then
a nondeterministic choice is made between the two astd. The behavior of a choice astd can
be modeled in Statecharts using internal transition from an initial state, in a similar way to
automata theory with ε transitions.

Kleene Closure As in regular expressions, a Kleene closure astd noted ∗ allows its operand
to be executed zero, one or several times. When the state of its operand is final, a new iteration
can start. There is no similar operator in Statecharts, but the same behavior can be reproduced
with guards and transitions.

Synchronization Over a Set of Action Labels As the name suggests, this operator allows
the definition of a set of actions that both operands must execute at the same time. It is similar

to Roscoe’s CSP parallel operator
‖
X . There are some similarities with AND states of Statecharts

and synchronization astd. A synchronization over the set of actions ∆ is noted | [∆] | . We derive
two often used operators from synchronization : interleaving, noted 9, is the synchronization
over an empty set ; parallel, noted ‖, synchronizes astd over the set of common actions of its
operands, like Hoare’s CSP ‖.

Quantified Interleaving A quantified interleaving models the behavior of a set of concur-
rent astd. It sets up a quantification set that will define the number of instances that can be
executed and a variable that can take a value inside the quantification set. Each instance of the
quantification is linked to a single value, two different instances have two different values. This
feature lacks in Statecharts, as we have to express distinctly each instance behavior, but was pro-
posed as an extension and named “parametrized-and” state by Harel. A quantified interleaving
of variable x over the set T is noted 9 x : T.

Quantified Choice A quantified choice, noted | x : T, lets model that only one instance
inside a set will be executed. Once the choice is made, no more instances can be executed. As in

68

quantified synchronization, the instance is linked to one value of a variable in the quantification
set. An extension of Statecharts named a similar feature “parametrized-or” state.

Guard Usually, guards are applied to transitions. With the guard astd, one can forbid the
execution of an entire astd until a condition holds. The predicate of a guard can use variables
from quantifications and attributes. A predicate P(x) guarding an astd is noted =⇒ P(x)

astd call An astd call simply links to other parts of the specification using the name of ano-
ther astd. The same astd can be called several times, in different locations of the specification.
It allows the designer to reuse astd in the same specification and helps synchronize processes.
An astd call is made by writing the name of the astd called and its parameters (if any).

7.4.2 An astd Case Study

Fig. 7.3 – An astd specification describing a complaint management system.

In order to present features and expressiveness of the astd notation to the reader, Fig. 7.3
introduces the case study that will be used throughout this chapter. This astd models an in-

69

formation system designed to manage complaints of customers in a company. In this system,
each complaint is issued from a customer relatively to a department. This example is inspired
from [Van98]. The main astd, whose type is a synchronization over common actions, describes
the system as a parallel execution of interleaved customers and departments processes. The IS
lifecycle of a given customer is described by the parametrized astd customer (u), the same
applies for the description of the company departments in the astd department (d). In the
initial state, a customer or a department must be created. Then complaints regarding these
entities can be issued. This is described using an astd call. The final transition means that
the event can be executed if the source state is final. In our case, in order to delete a custo-
mer or a department, any related complaints must be closed. Finally, the astd describing the
checking and processing of a complaint c issued by customer c about department d is given
by complaint (c, d , u). After registering a complaint in the system, it must be evaluated by
the company and a questionnaire is sent to the customer in order to detail his/her complaint.
The specification takes into account the possibility that the customer does not answer the ques-
tionnaire with the Timeout(c) event. Then, if the complaint is accepted and the questionnaire
received or timed out, a check is performed. In case of refusal of the complaint, it is archived,
but it can be reactivated later. The only final state is state s8, meaning that the complaint was
archived (solved or not). In this specification, no attribute modification is performed. An astd
only describes traces and has no consequences on updates to be performed against IS data, such
as attributes that are stored in databases. However, an astd can access attribute values to use
them in guards, as shown in both Archive(c) actions.

7.4.3 Motivations

astd are not the only way to specify IS behavior. The UML-B [SB06a] method introduces a
behavior specification in the form of a Statecharts. Using Statecharts, it is easy to describe an
ordered sequence of actions whereas using B, it is easier to model interleaving events. A systema-
tic translation of Statecharts into B machines is proposed by [SZ02]. Compared to Statecharts,
astd offer additional operators to combine astd in sequence, iteration, choice and synchroni-
sation. When a UML-B specification models a system, it can only describe the life-cycle of a
single instance of a class whereas astd specification models the behavior of all instances of all
classes of the system. A new version of UML-B [SBS09] introduces the possibility to refine class
and Statecharts as part of the modeling process, and can translate it into Event-B. The UML-B
approach can describe the evolution of entity attributes using B substitutions, a feature that
astd lacks. csp2B [But00] provides better proofs (on the B machine) and model checking (on the
CSP side) tools than Statecharts but lacks the visual representation of the specification given
by UML Statecharts. It is also limited to a subset of CSP specifications, where the quantified
interleaving operator must not be nested. astd aims to be a compromise in both visual and syn-
chronization aspects. On the other hand, astd lacks proofs and model checking allowed by the
B side of UML-B and csp2B approaches. In order to answer this issue, a systematic translation
of astd specifications into Event-B is proposed.
The choice between classical B and Event-B was made at an early stage by comparing tools
and momentum of both methods. It appears that community efforts and tool development are
currently focused on Event-B. Despite the fact that classical B offers some convenient notation
such as if / then statements or operation calls, Event-B appeared as a good compromise for
our efforts. Classical B translation rules inspired by Event-B rules might be written.

70

Tab. 7.1 – Event-B representation of astd states

astd state State domain Initial State

choice State ∈ { none, first, second } none
sequence State ∈ { left, right } left

Kleene closure State ∈ { neverExecuted , started } neverExecuted
synchronization - -

quantified choice State ∈ { notMade, made } 7→ quantificationset notMade 7→ 0
quantified synch State ∈ quantificationset → stateset initial for all

guard State ∈ {checked, notChecked } notChecked
astd call - -

7.5 Translation

Translation from astd to Event-B is achieved in several steps. Fig. 7.4 presents the architecture
of the translation process. A context derived from astd operators introduces constants and sets
needed to code their semantics. This context is the same in all translations and is described
by Table 7.1. It codes elements from the semantics of all types of astd except automata, and
is inspired of mathematical definition of astd semantics. Constants, sets and axioms defined
in this context may be re-used in other part of the Event-B translation, hence this context is
extended by a translation specific context. Automata states are translated into such a specific
context since automata states depend on the astd specification to translate. For each astd,
a variable and an invariant corresponding to its type are created. The invariant associates the
variable to the set of values it can take, as defined in both contexts. In the following sections,
we provide translation rules for each astd type, generating appropriate contexts and machines.

7.5.1 Automata

The first part of automata translation concerns the static part, the context. Several elements
are introduced in the context : states, initial states, final states and transition functions.

States States from automata astd are represented as constants and grouped into state sets
in order to facilitate later use. Even hierarchical states are represented by a constant.

Initial States Since an astd can be reset by the execution of a Kleene closure, initial states
are defined as separate constants. They are also useful in the initialisation event of the machine
generated in next step of our translation.

ASTD
General context

Translated
context

extends
Translated
machine

sees

ASTD specification

Translation

ASTD operators

Derivation

Fig. 7.4 – The architecture resulting from the translation process.

71

Final Predicates A final predicate is a function taking a state as argument and returning
true or false depending if the state is final or not. The number of arguments depends on the
type of the astd. This predicate is useful in the case of final transitions, sequences or Kleene
closures, when transitions are activated if, and only if, a state is final. Hence, a final predicate
is written for each astd type in the context common to all translations.

Transition Functions A transition function for each action label is generated. It takes as
argument the current state of an automata astd and returns the resulting state. Transition
functions are deterministic and partial.
The generated context for our case study defines 40 constants, 5 sets and 29 axioms. It is not
presented here for the sake of conciseness. Then, for the dynamic part, for each distinct action
label in the translated automata astd, a single event will be produced. If the action has a
guard, a when clause i.e. a guard, is generated. If the astd action has arguments (in the case
of quantified variable for instance), an any clause is built accordingly and a guard specifying a
type for the variable is added. Then a guard testing that the execution of the action is allowed
i.e. the current state is in the domain of the transition function of the event. The modification
of the state is applied by generating a then substitution.
Translation rules for automata astd are presented in Table 7.2. When a transition, an initial
state or a final state is found, the first rule applies. In the case of a final transition, the second
rule then applies. In the second pattern translation, the guard numbered g1 of Table 7.2 is
added to event e that was generated by applying first rule. In our case study, the second rule is
applied for the ProcessComplaint(c) action. The guard added in this case is described by guard
grdAutomata.

grdAutomata : isF inalProcessing(isF inalQuery(StateQuery(c)) 7→
isF inalEvaluate(StateEval(c))) =true

Constants isFinalX and StateX refer to astd X in Fig. 7.3. An interleaved state is final if, and
only if, both of its operand states are final. For this reason, guard grdAutomata checks if both
states of Query and Evaluation astd are final. A pair (x , y) is noted x 7→ y in Event-B.
The action CreateCustomer(u) is translated into the event described below. grd1 describes the
set in which the parameter u can take its value. grd2 verifies that a customer is in a state of the
domain of transition function TransCreateCustomer. act1 describes the state update for action
CreateCustomer(u) : it only modifies the state of customer u according to the transition function
TransCreateCustomer.

Event CreateCustomer =̂

any

u

where

grd1 : u ∈ USERSET

grd2 : StateCustomer(u) ∈ dom(TransCreateCustomer)

then

act1 : StateCustomer(u) := TransCreateCustomer(StateCustomer(u))

end

7.5.2 Sequence

Because of the number of possibilities to determine whether or not a sequence can switch from
left state to right state, an extra event is introduced. This event is similar to an internal event
of the IS and will verify that all the conditions for the switch from left to right side to happen

72

Tab. 7.2 – Automata astd to Event-B translation rules

Automata astd pattern Added to the context Modifications on the machine

0 1
e(x)

aut

[p(y)]

A

SETS
StatesA

CONSTANTS
s0, s1

initA, isFinalA, TransE

AXIOMS
ax1 : partition(

StatesA, {s0}, {s1})
ax2 : initA = s0
ax3 : isFinalA = {s0 �→ FALSE ,

s1 �→ TRUE}
ax4 : TransE = {s0 �→ s1}

Event e �=
any

x
where

g1 : x ∈ XSET
g2 : P(y)
g3 : StateA ∈

dom(TransE)
then

a1 : StateA :=
TransE (StateA)

end

A

0e

aut

B CONSTANTS
isFinalB

AXIOMS
ax1 : isFinalB = . . .

// Depends
on B type

Event e �=
where

g1 : isFinalB(StateB)
= TRUE
. . .

holds and then change the state of the sequence. For example, if an astd named A is a sequence
of astd B and C, the generated event will be called switchSequenceA. Then, in order to ensure
that the current state allows the execution of every events of astd B and C, a guard is added
to each event of B and C to check if the state of astd A is left or right respectively. As for
automata, a final predicate must be generated in the context for astd B state. Translation rule
is described in the following table.

Sequence astd pattern Modifications on the machine

A

B C
0

1

e

2

3

f......

Event switchSequenceA �=
where

g1 : isFinalB(StateB) = TRUE
then

a1 : StateA := right
end

Event e �=
where

g2 : StateA = left
. . .

Event f �=
where

g3 : StateA = right
. . .

7.5.3 Choice

A choice astd can be in three states as described by the general astd context : none when the
choice is not made yet, first or second depending of the side chosen. The translation rule for
a choice astd is presented in the following table. If an astd named A is a choice between astd
B and C, then a guard and an action are added to each event. Events from B will receive guard

73

g1 and action a1. A similar transformation of events from astd C is also needed with guard g2
and action a2.

Choice astd pattern Modifications on the machine

A

B C
0

1

e

2

3

f......

Event e �=
where

g1 : StateA = first ∨ StateA = none
. . .

then
a1 : StateA := first

. . .
Event f �=

where
g2 : StateA = second ∨ StateA = none

. . .
then

a2 : StateA := second
. . .

7.5.4 Kleene Closure

When an iteration of a Kleene closure astd is completed, its operand must be reset to initial
state. For this reason, an additional event is generated. In the IS, this event is internal and
hidden, in the astd specification, the semantics off Kleene operator handles the process, but
in Event-B the reset must be described. This event will be activated when the its operand is
final, and will reinitialize all sub-states in the hierarchy. The following table details the resulting
Event-B machine.

Kleene astd pattern Modifications on the machine

0 1
e

A B

...

...

Event lambdaA �=
where

g1 : isFinalB(StateB) = TRUE
then

a1 : StateB := initB
And all sub states . . .

end
Event e �=

then
a2 : StateA := started

. . .

As presented for automata and sequence, a final predicate must be generated in the context for
astd under the Kleene closure operator.

7.5.5 Synchronization Over a Set of Action Labels

For actions that are not synchronized, nothing is introduced or modified by the translation of
synchronization astd. This is the case for interleaving astd and action labels not common to
both operands of the parallel operator. In the case of a synchronized action, guards from both
operand must be put in conjunction, and substitutions applied conjointly.

74

Synchronization astd pattern Modifications on the machine

A |[{e}]|

B C
0

1

e

2

3

e......

Event e �=
where

gB : guardsfromBastd
gC : guardsfromCastd

. . .
then

a1 : StateB := . . .
a2 : StateC := . . .

. . .

In our case study, the only synchronization astd is main. Common actions of both sides are
only actions appearing in the astd complaint (c, d , u). For each one of the generated events
of complaint (c, d , u), the guards readyInCustomer and readyInDepartment must hold. cc
and dc states correspond to states where the customer and the department respectively are in
the complaint quantified interleaving astd.

readyInCustomer : StateCustomer(AssociationCustomer(c)) = cc

readyInDepartment : StateDepartment(AssociationDepartment(c)) = dc

Theses guards check that the customer associated to the complaint c is in the state allowing
him to complain i.e. created and not deleted, and if the department associated to the complaint
c exists in the IS.

7.5.6 Quantified Interleaving

The quantified interleaving does not introduce additional constraints to events. The following
table shows how variables induced by quantified interleaving are handled in events.

Quantified interleaving astd pattern Modifications on the machine

0 1
e(x)

x : XSETA

...

...

Event e �=
any

x
where

g1 : x ∈ XSET
g2 : StateA(x) = . . .

. . .
then

a1 : StateA(x) := . . .
. . .

Entities and associations patterns are common in eb3 and astd as mentionned in [FSD03].
Such pattern are expressed using interleaving quantifications. In order to code in Event-B the
association between several entities, a table variable must register their link. In our case study,
we can see that a 1-n association between a customer and a complaint is created. When a
complaint is created, an unique customer u is linked to the complaint c. The same applies to
the department associated to the complaint. An Event-B variable is created in order to save the
link between a complaint and a customer (respectively a department) and is updated whenever
a complaint is registered in the system.

75

7.5.7 Quantified Choice

Similarly to the choice operator, the quantified choice implies that for all events using it, a check
is performed about whether the choice was made or not. In the case of an action labeled e and
taking x as a parameter, where x is the variable of a quantified choice astd named A then the
guard g2 described in the following table must hold. The substitution a1 must also be executed
in case this is the first call of an action with this quantified variable. All the events of astd A
will be modified to include this guard and substitution.

Quantified choice astd pattern Modifications on the machine

0 1
e(x)

x : XSETA

...

...

Event e �=
any

x
where

g1 : x ∈ XSET
g2 : StateA = (qNone �→ 0)
∨ StateA = (qSome �→ x)
. . .

then
a1 : StateA := (qSome �→ x)

. . .

7.5.8 Guard

There are two cases for guard state : the guard was checked and held when we executed an
event ; the guard did not hold, and no event was executed. These cases are handled with guard
g1 and substitution a1 for a guard astd named A guarded with predicate P(x). All the events
of astd A will be modified to include this guard and substitution.

Guard astd pattern Modifications on the machine

0 1
e

P(x) =>A

...

...

Event e �=
any

x
where

g1 : StateA = checked ∨
(StateA = notChecked ∧ P(x))
. . .

then
a1 : StateA := checked

. . .

7.5.9 Process call

An astd that calls other astd does not need any constraint over its actions in Event-B. The
translation will be achieved as if the entire called astd was substituted for the ASTD call. We
do not deal with recursive astd calls yet.
When the translation process is completed, we can now access all the tools offered by Rodin to
animate, model check and prove elements of the translated astd specification.

7.6 Animation and Model Checking of the Case Study

The final generated system, a context and a machine, translated from our case study represents
270 lines of Event-B, including 40 constants, 5 sets and 29 axioms for the static part and
7 variants, 7 invariants, 17 events (one for initialization, 13 representing astd actions and 3

76

internal events for Kleene Closure induced resets) representing 57 guards and 33 actions for the
dynamic part. During the construction of translation rules, animation helped to correct rules,
to improve the quality of translation rules and to factor contexts in order to separate static
elements from machine. It was chosen to limit the size of quantification sets to three elements
each. Only three departments, customers and complaints can be registered inside the system at
any time. The screen capture was taken after the execution of 150 events and shows the state of
variables of the machine. In order to informally verify the consistency of the Event-B machine
with the initial astd specification, we generated a set of traces of events executed via the ProB
animator. Then, for each trace, we removed the internal events introduced by the translation
process such as lambdaComplaint(c). Then we interpreted the initial astd specification with
iastd and executed the traces. We could not find a trace of events that could not be interpreted
by iastd. A more formal proof of the consistency of the translation must be performed, but
first results are encouraging. Formal proof of translation rules is work in progress, and will be
based on simulation.
Regarding the Event-B machine, 86 proof obligations were generated and 62 were automati-
cally proved. The 24 remaining are proved manually and involved functional and set operators
that are known for not being proved automatically. The manual proofs raised no specific diffi-
culty. This Event-B specification was model checked for deadlocks and invariant violations using
the consistency checking feature of ProB. More than 111 500 nodes were visited and 226 000
transitions activated. No deadlock nor invariant violation were found. More invariant properties
might be written in order to be proved. Since astd only focuses on event control and not on
event effects on the IS, when an event is executed, there is no way to know only by looking at
the astd specification how IS state will evolve. Hence, no invariant can be generated during
the translation. But it could be interresting to express invariants on astd as it was done with
Statecharts [Sek08]. For instance we could add an invariant to astd Department saying that
whenever transition DeleteDepartment(d) is active, no complaint about this department must
be registred in the system.

7.7 Conclusion and Future Work

We have presented a set of translation rules allowing generation of Event-B contexts and ma-
chines from astd specifications. The animation of the resulting machine using ProB [LB03b]
animator helped to find errors and to tweak translation rules. Kleene closure and sequence ope-
rators were the most tricky to translate since these operators defines the ordering of events
and because they introduce additional events in order to code semantics of astd in Event-B.
A formal proof of the translation rules will be performed in order to entrust the translation
process.
Refinement is one of the most important features of Event-B modelling process. In our approach,
this aspect is missing. Indeed, we are translating an astd specification modelling a concrete
system. Because of that, there is no need to refine the Event-B machine resulting from the
translation process. It would have been relevant to introduce refinement in the translation process
if a similar notion existed in astd, but it is currently not the case. Proof is an important
aspect of Event-B that our approach would like to take advantage of. Alongside with formal IS
specification, we advocate writing security or functional properties during the modeling process.
This way, properties can be checked against the system as soon as it is modeled. Expressing these
properties as Event-B invariants and proving invariant preservation in the translated machine
is an important step of IS specification validation. Another feature of Event-B we do not use
is composition. This may be very useful for the translation of some astd operators such as
synchronization. It could lead to a more modular approach of translation, in a way similar to
astd.

77

It would be interesting to compare the machine resulting of the translation process with a
hand-written Event-B specification for the same system. Indeed, we would like to know if the
automatic prover can do the same job with the hand-written and the translated machine. This
study is work in progress and may result in an evolution of translation rules. Another step that
we currently work on is to implement an astd modeler as a Rodin plugin. Using benefits from
The Eclipse Graphical Modeling Framework (GMF) [Ecl], a graphical editor could be used to
build complete IS specifications. One could interpret them using the iastd [SM+10] interpreter
and then translate them to Event-B on the fly in order to perform model checking or proofs.
This integrated tool would allow a great flexibility and would combine advantages of process
algebra’s power of expression, graphical representation’s ease of understanding and Event-B’s
tools for proving, checking and animating.

Chapitre 8

Efficient Execution of astd
Specifications

The following sections present the implementation of iastd, an interpreter for Algebraic State
Transition diagrams (astd) in OCaml. Information system expected behavior can be specified
using astd, a graphical and formal method based on automata, statecharts and process algebra.
iastd can directly execute a formal model of the system, acting as a controller checking if actions
are executed in accordance with ordering properties expressed in the specification.

8.1 Introduction

Informations Systems (IS) play a central role in today businesses. Their usage, complexity but
also their cost keep increasing. We strongly believe that formal methods can improve the qua-
lity and reduce the cost of IS design. Formal notations being amenable to automated analysis,
they can be used for model-based software development, code generation and efficient interpre-
tation, automated verification and testing, thereby reducing development costs, fostering reuse
and increasing quality. Originally designed for IS, but reusable for other kind of systems, the
Algebraic State Transition Diagrams (astd) notation aims to provide designers with a formal
and graphical method in order to model acceptable behavior of their system. It can be used to
model workflows and its semantics is adapted to model entity life cycle in the system.
In order to provide a tool acting as a controller based on the astd notation, without any need
to adapt or modify the model, we developed iastd, an interpreter for astd. In the following
sections we introduce the astd notation and we present the current implementation of iastd,
its features and its usages. Finally we conclude by addressing the current limitations of iastd
and future works.

8.2 The astd Notation

In formal methods, there are several specification paradigms such as process algebra, logic-based
or state-based languages. In order to specify information systems, the eb3 [FSD03] method was
developed. It features a process algebra similar to CSP [Hoa85] with some IS-oriented additions
such as quantifications. However, it lacks a graphical representation that can help during the
modeling process and that is one of the advantage of UML statecharts.
The astd notation [FGL+08] is a graphical representation linked to a formal semantics created
to specify systems such as IS. An astd defines a set of traces of actions accepted by the system.
astd was introduced as an extension of Harel’s Statecharts [Har87] and is based on operators

78

79

from eb3. An astd is built from transitions, denoting action labels and parameters, and places
that can be elementary (as states in automata theory) or astd themselves. Each astd has a
type associated to a formal semantics. This type can be automata, sequence, choice, Kleene
closure, synchronization over a set of action labels, choice or interleaving quantification, guard
and astd call. Each type of astd is associated with a formal semantics similar to regular
expressions, automata, statecharts and eb3. One of the main important features of astd is to
allow parametrized instances and quantifications, aspects missing from original statecharts. This
means that astd can describe not only the behavior of one instance but of all the entities and
relationships of the system. Reader is invited to consult a formal, mathematical and complete
description of the astd notation in [FGLF08].
Fig. 8.1 is an example of astd specification describing the behavior of a library IS used for
managing members, books and loans of books by members. It was designed with E/R diagram
in mind. The life cycle of a member and a book are described by the corresponding astd. The
relationship between a given book and a member is described in the loan astd. Finally, the
main astd describes the overall behavior, linking all members and all books together.

main, ||

member(mId)

||| mId : int

book(bId)

||| bId : intø ø

member(mId : int), aut

loan(bId,mId)

||| bId : int
Register(mId)

Unregister(mId)

ø

book(bId : int), aut

loan(bId,mId)

 mId : intAcquire(bId)

Discard(bId)

ø

loan(bId : int, mId : int), aut

Renew(bId)

Return(bId)

Lend(bId,mId)

Fig. 8.1 – astd specification for a library IS managing members, books and loans.

Analogously to a labelled transition system (LTS), the representation of a system in astd is
composed of two important parts : (i) a static definition of the possible transitions between
acceptable states, which we call the astd topology ; (ii) the current state of the system. The
topology of an astd refers to the type, the transitions and the way sub-astd are combined.
State is defined for each astd as a mathematical structure denoting the previously executed
events. If an event can be executed, the state of the astd evolves. However, the topology of the
astd remains constant. Once modeled, an astd can be executed by providing an event i.e. a
transition label and its parameters. Before any execution occurs, the astd is in an initial state
defined by its topology. In our library example modeled in Fig. 8.1, at the initial state, the action
register(1) can be executed in order to register the first member of the library. Then a book can
be acquired by executing register(10). Since both book 10 and member 1 are now registered in
the system, lend(10, 1) can be executed if this member wants to lend this book.

8.3 Control Using iastd

Once the designer has specified its system using the astd notation, this specification can be
executed with no modification or any other additional work. The astd specification is one of the
inputs of iastd, an interpreter for the astd notation. iastd was developed using the OCaml
language [Ler98], a functional language of the ML family.

80

Fig. 8.2 – Main behavior of iastd

8.3.1 Main Algorithm

Fig. 8.2 describes the main behavior of iastd. Parsing of the astd specification is performed
as step 1. Some optimizations for faster execution such as transition registration are performed
during steps 2, 3 and 4. Then, the initial state of the specification is computed during step 5.
iastd is now ready to accept input event. iastd can parse a trace of events that will be executed.
For each event and regarding to current state, iastd computes the list of active transitions. If
the event can be executed, iastd computes the new state of the astd and updates data. In
the case that event is not executable, state does not evolve, and iastd skip to the next event.
Step 8 is the most time and resources consuming step. It evaluates all guards and environment
in order to check if the event can be executed or not. In case of non-determinism i.e. if multiple
transitions corresponding to an event can be executed, iastd executes arbitrarily the first active
transition found.
In order to improve performances of step 8, some optimizations have been introduced. These
algorithms are referred as kappa optimization and were originally developed for eb3 in [FF06].
Direct kappa optimization is a method allowing iastd to select the good transition to execute in
a quantification. It efficiently selects the right transition to execute by analyzing the value of the
parameter and the topology of the astd. This optimization reduces the size of the set of possible
values for the quantified variable. Indirect kappa optimization is useful in case transitions do
not have all parameters that could be needed in order to execute an event. In our example
described in Fig. 8.1, the transition return(bId) does not require the parameter mid since there
is an implicit link between a book and the member who lends it. However, regarding execution
efficiency, this parameter can improve performance if it is provided. Indirect kappa optimization
computes the value of such missing parameters.

8.3.2 Other Features

Other features were implemented in iastd. iastd can use a database in order to save the current
state of the interpreted astd in a persistent way. At step 10 of the algorithm of the interpreter,

81

Fig. 8.3 – Screen capture of iastd after execution

iastd stores the value of the new state in the database. This implementation was realized using
a Sqlite database engine [New04]. In case the information system has to be temporally offline,
database persistency can prevent data losses. On the other hand, database storage and retrieval
is less efficient than memory storage in terms of time for data access. Database storage also allows
multiple instances of iastd to distributedly execute the same specification with a shared state
stored in the database. A command line interface was also developed with several flags in order
to activate or disable some of the functionalities of iastd such as database, kappa optimization
or verbose mode for example. We are also working on the implementation of iastd as a service
in order to integrate it in a SOA (Service Oriented Architecture) [BMH05] environment.
Fig. 8.3 is a capture of the command line interface of iastd after the execution of seven events
listed in file i12 over the specification described in file s12. Parameters were added prior to the
execution. The −vv option enables a moderate verbose level (five levels, from silent to debug,
are available). By adding −final , the state of the astd is written after the last event is executed.
In order to activate database storage of states, the −db parameter was used. Finally, the −step
parameter activates a step-by-step mode, where a break point is placed between the execution
of each event.

8.3.3 Usages

iastd can be used as an animator for astd specification in order to test it. One can write
acceptable traces and test that they are correctly executed by the specification. iastd can also
be used as a controller for a production information system. With very few modifications, the
implemented system can call iastd in order to verify that the event can be executed before
any modification to the system is performed. In the case of a new IS, with no implementation
available, iastd can also be used as the core engine of the system but is not sufficient. Indeed,
iastd does not update attributes values of the system. This limitation can be removed by
implementing functions that handle these updates. Another usage for iastd is as an access
control engine that computes, according to a security policy written using the astd notation, if

82

an user is allowed to execute an event in the system. This kind of usage is detailed in the French
SELKIS project1.

8.4 Conclusion, Current Limitations and Future Works

We have presented iastd, an interpreter for the astd notation. Implemented in OCaml, it can
interpret formal specifications with no need to modify, adapt or rewrite them. It can be used as
a controller for IS since the astd notation is adapted to model workflow-based and E/R-based
specifications.In its current implementation, iastd does not accept input during execution. A
complete list of all to-be-executed events must be provided before starting computation. This is
a serious limitation regarding expected usages of iastd, but this problem can be easily addres-
sed with very few modifications to the code of iastd. Another limitation is regarding attributes
of the system. Since iastd does not have access natively to attributes of the system, one must
code by hand some of the functions used to evaluate guards. We are currently developing a
graphical editor for astd specification [AFLM10]. By linking iastd and such editor, it would
be possible to animate astd specification during the specification phase, improving modeling
quality. It would also be possible to implement a graphical interface for iastd in order to vi-
sualize the current state of a specification during execution. Since the astd notation and eb3

approach share several characteristics, it would be possible to integrate automatic error message
generation [MFF09] in iastd in order to provide the user with useful information such as the
reason why his event was not executed.

1http ://lacl.fr/selkis/

Chapitre 9

Proof of Translation Rules

9.1 Introduction

Information Systems (IS) are taking an increasingly important place in today’s organizations.
As computer programs connected to databases and other systems, they induce increasing costs
for their development. Indeed, with the importance of Internet and their high computer market
penetration, IS have become the de-facto standard for managing most of the aspects of a company
strategy. In the context of IS, formal methods can help improving the reliability, security and
coherence. The apis (Automated Production of Information system) project [F+07] offers a
way to specify and generate code, graphical user interfaces, databases, transactions and error
messages of such systems, by using a process algebra-based specification language. However,
process algebra, despite their formal aspect, are not as easily understandable as semi-formal
graphical notations, such as UML [RJB96]. In order to answer this issue, a formal notation
combining graphical elements and process algebra was introduced : Algebraic State Transition
Diagrams (astd) [FGL+08]. Using astd, one can specify the behavior of an IS. Interpreter
iastd can efficiently execute astd specifications. However, there is no tool allowing proof of
invariants or property check over an astd specification. In [MFGL10] we introduced systematic
translation rules from an astd specification to Event-B [Abr10] in order to model check or prove
properties using tools of the RODIN platform [ABHV06]. In the following we prove that our
translation is a good by simulation.

9.2 State translation

In [MFGL10], we introduced a translation mechanism for astd topology. In order to prove that
this mechanism is correct, we introduce a link between the state of an astd and the state of
translated Event-B machine.

9.2.1 Automata

The states of an automaton are of type 〈aut◦,n, h, s〉 where
– n ∈ Name denotes the name of the state.
– h ∈ Name 7→State is a partial function that denotes the last visited sub-state of an automaton ;

it is used to implement the notion of history state introduced in statecharts.
– s ∈ State is the current state of the automaton. It can be a compound state, denoted by type

State, or an elementary state, denoted by elem.
In the Event-B machine corresponding to this astd, a variable was created to model the state
of the automata. Let StateAutomata be the name of this variable. Then, in order to translate

83

84

the state of an astd automata in the corresponding Event-B machine, we must ensure that
StateAutomata = n. Regarding h, the history partial function, there is no need to create a
similar function in Event-B since the value of states is still stored in variables event after leaving
an automaton to an higher state. State s is then translated according to its type.

9.2.2 Sequence

The type of a sequence state, is 〈 ◦, sideS , s〉 where sideS ∈ [fst | snd] and s ∈ State. In the
Event-B machine corresponding to this astd, a variable was created to model the state of the
sequence. Let StateSequence be the name of this variable. Then StateSequence = sideS . State s
is then translated according to its type.

9.2.3 Choice

The type of a choice state is 〈|◦, sideC , s〉 where sideC ∈ (⊥ | 〈left〉 | 〈right〉) and s ∈ (State | ⊥).
Let StateChoice be the name of the variable in the Event-B machine corresponding to this astd
created to model the state of the choice. Then StateChoice = sideC .

9.2.4 Kleene Closure

The type of a closure state is 〈?◦, started?, s〉 where s ∈ State and started? ∈ Boolean Let
StateKleene be the name of the variable in the Event-B machine corresponding to this astd
created to model the state of the choice. Then StateKleene = started?.

9.2.5 Synchronization

The type of a synchronization state is 〈| [] |◦, sl , sr 〉 where sl , sr ∈ State. There is no variable
associated to the state of a synchronization.

9.2.6 Quantified choice

The type of a quantification choice state is 〈|:◦, value, s〉 where value ∈ [⊥ | v] with v ∈ Term.
Let StateQChoice be the name of the variable in the Event-B machine corresponding to this
astd created to model the state of the choice. Then StateQChoice = (qNone 7→ 0) if value = ⊥
or StateQChoice = (qSome 7→ v).

9.2.7 Quantified interleaving

The state of a quantified synchronization is of type 〈| [] | :◦, f 〉 where f ∈ T → State. State of
a quantified synchronization in stored as a function such as StateQSynch(x) returns the state
associated to value x if the quantification state.

9.2.8 Guard

The type of a guard state is 〈⇒◦, started , s〉 where started ∈ Boolean and s ∈ State. If StateGuard
is the name of the variable denoting the state of the astd in the Event-B machine then
StateGuard = started .

85

9.3 Proof by Simulation

Let A be an astd, At its topology and As its state. Let σ be an user query and its parameters
that A can execute, and let A′s be the resulting state of this execution. Let τt and τs be
translation functions from astd topology and structure to Event-B machine and state, let M =
τt(At) the translated machine S = τs(As) and S ′ = τs(A′s) be the current and future state of
M . Let e be an event of M . For any Event-B state s, we define s’ such as s t

 s ′. s ′ is the result
of the execution of a trace of events t = e1, . . . , en with s as initial state.
In order to prove the correctness of our translation, we have to prove the following property :

∃ t ∃S ′, t = e1, . . . , en , τs(As) t
 S ′ : τs(A′s) = S ′ (9.1)

In other words, there is a sequence of events in M (the translation of astd A) that can modify
S (the translated state of astd A) into S ′ (the translation of the state of astd A after the
execution of σ). Fig. 9.1 illustrates the simulation proof.

Fig. 9.1 – Simulation proof.

In the following sub-sections we describes for each transition type in the astd semantics the
simulation proof of the translation. We always consider an astd which name is A. In the
translated Event-B machine, its state is denoted by StateA. If we have a transition labelled
e(−→p) on the astd, we suppose that event e will encode the transition in the Event-B machine.
We consider that the event executed by the astd is σ = e(−→x). In the following, paragraph titles
refer to inference rules of [FGLF08]

9.3.1 Automata

In the following, we describe the six transition types of automata astd. Each one will use the
translation of astd transition into functions in the context of the Event-B machine that are
reused in the events (in both guards and actions). Regarding history functions, since Event-B
variables encoding sub states are not modified when leaving a nested astd, there is no need to
save the state into a dedicated history function.

aut1

Inference rule aut1 describes the execution of a local transition. In order to prove (9.1), we have
to exhibit a trace of events t that complies with the constraints defined in the previous section.

86

As = 〈aut◦,n1, h, s〉
A′s = 〈aut◦,n2, h ′, init(ν(n2))〉

τs(As) = {StateA = n1 , StateN 2 =?}
τs(A′s) = {StateA = n2 , StateN 2 = initN 2} (9.2)

We know that we have δ((loc,n1,n2), σ, g , final?) since the astd can execute σ. The Event-B
event e is thus coded as following (omitting the parameters that do not interfere here) :

Event e =̂

where

g1 : StateA ∈ dom(TransE)
g2 : g
g3 : isF inalA(StateA) // depending on the value of final?

then

a1 : StateA := TransE(StateA)
a2 : StateN := initN

Thus, the transition function TransE associated to event e is such as

(n1 7→ n2) ∈ TransE

For that reason, we can execute event e when in state τs(As). The new state is defined by
actions a1 and a2. Thus S ′ = {StateA = n2 , StateN 2 = initN 2}. For that reason we have

τs(As)
{e}
 S ′ = τs(A′s). Thus, t = {e} is an acceptable trace for the simulation.

aut2

Inference rule aut2 describes the execution of a transition going to a deeper astd but not to an
history state. In this case, we have the following system :

As = 〈aut◦,n1, h, s〉
A′s = 〈aut◦,n2, h ′, (aut◦,n2[

, hinit , init(ν(n2[
)))〉

τs(As) = {StateA = n1 , StateN 2 =?}
τs(A′s) = {StateA = n2 , StateN 2 = n2[

} (9.3)

Event e resulting from the translation of the transition is :

Event e =̂

where

g1 : StateA ∈ dom(TransE)
g2 : g
g3 : isF inalA(StateA)
g4 : StateA ∈ dom(toSubE)

then

a1 : StateA := TransE(StateA)
a2 : StateN := toSubE(StateA)

87

with

(n1 7→ n2) ∈ TransE

(n1 7→ n2[
) ∈ toSubE

Thus, we have S ′ = {StateA = n2 , StateN 2 = n2[
} as current state after the execution of e.

t = {e} is an acceptable trace for the simulation.

aut3

Inference rule aut3 describes the execution of a transition going to a deeper astd in shallow
history state. In this case, we have the following system :

As = 〈aut◦,n1, h, s〉
A′s = 〈aut◦,n2, h ′, (aut◦,n2[

, hinit , init(ν(n2[
)))〉

τs(As) = {StateA = n1 , StateN 2 = n2[
, StateN 2b =?}

τs(A′s) = {StateA = n2 , StateN 2 = n2[
, StateN 2b = InitN 2b} (9.4)

Event e resulting from the translation of the transition is :

Event e =̂

where

g1 : StateA ∈ dom(TransE)
g2 : g
g3 : isF inalA(StateA)

then

a1 : StateA := TransE(StateA)
a2 : StateNb := InitNb

with

(n1 7→ n2) ∈ TransE

Thus, we have S ′ = {StateA = n2 , StateN 2 = n2[
, StateN 2b = InitN 2b} as current state after

the execution of e. t = {e} is an acceptable trace for the simulation.

aut4

Inference rule aut4 describes the execution of a transition going to a deeper astd in deep history
state. In this case, we have the following system :

As = 〈aut◦,n1, h, s〉
A′s = 〈aut◦,n2, h ′, h(n2)〉

τs(As) = {StateA = n1 , StateN 2 = n2[
, StateN 2b = x}

τs(A′s) = {StateA = n2 , StateN 2 = n2[
, StateN 2b = x} (9.5)

Event e resulting from the translation of the transition is :

88

Event e =̂
where

g1 : StateA ∈ dom(TransE)
g2 : g
g3 : isF inalA(StateA)

then
a1 : StateA := TransE(StateA)

with

(n1 7→ n2) ∈ TransE

Thus, we have S ′ = {StateA = n2 , StateN 2 = n2[
, StateN 2b = x} as current state after the

execution of e since e does not modify StateN 2 and other sub-states. t = {e} is an acceptable
trace for the simulation.

aut5

Inference rule aut5 describes the execution of a transition going to a shallower astd. In this
case, we have the following system :

As = 〈aut◦,n1, h, s〉
A′s = 〈aut◦,n2, h ′, init(ν(n2))〉

τs(As) = {StateA = n1 , StateN 1 = x , StateN 2 =?}
τs(A′s) = {StateA = n2 , StateN 1 = x , StateN 2 = InitN 2} (9.6)

Event e resulting from the translation of the transition is :

Event e =̂
where

g1 : StateA ∈ dom(TransE)
g2 : g
g3 : isF inalA(StateA)
g4 : StateN ∈ dom(fromSubE)

then
a1 : StateA := TransE(StateA)
a2 : StateN := InitN

with

(n1 7→ n2) ∈ TransE

Thus, we have S ′ = {StateA = n2 , StateN 2 = InitN 2} as current state after the execution of
e, with no modification of StateN 1, in order to keep state in history. t = {e} is an acceptable
trace for the simulation.

aut6

Inference rule aut6 describes the execution of a transition staying into a deeper astd. It does
not modify state of current astd itself. A new inference rule is called right after this one.

89

9.3.2 Sequence

seq 1

Inference rule seq 1 describes the execution of a transition staying in the first side of a sequence
astd. In this case, we have the following system :

As = 〈 ◦, fst, s〉
A′s = 〈 ◦, fst, s ′〉

τs(As) = {StateA = fst}
τs(A′s) = {StateA = fst} (9.7)

Event e resulting from the translation of the transition is :

Event e =̂

where

g... : ...
gSeq : StateA = fst

then

a... : ...

with guards and actions from sub-astd translations.

Thus, we have S ′ = {StateA = fst} as current state after the execution of e. t = {e} is an
acceptable trace for the simulation. A new inference rule is called right after this one.

seq 2

Inference rule seq 2 describes the execution of a transition switching from the first side of a
sequence astd (called B) to the second side (called C). In this case, we have the following
system :

As = 〈 ◦, fst, s〉
A′s = 〈 ◦, snd, s ′〉

τs(As) = {StateA = fst}
τs(A′s) = {StateA = snd} (9.8)

Event e resulting from the translation of the transition is :

Event e =̂

where

g... : ...
gSeq : StateA = snd

then

a... : ...

Event switchSequenceA =̂

where

90

g1 : isF inalB(StateB) = TRUE

g2 : StateA = fst

then

a1 : StateA := snd

a2 : StateC := InitC

end

with guards and actions from sub-astd translations.

Since { StateA = fst}, we have to execute switchSequenceA in order to have { StateA = snd}.
Then we can execute e in order to modify the sub-state of the astd. Thus, we have S ′ =
{StateA = snd} as current state after the execution of switchSequenceA followed by e. Condition
from the inference rule ensuring that fstis final is verified by guard g1 t = {switchSequenceA, e}
is an acceptable trace for the simulation. A new inference rule is called right after this one.

seq 3

Inference rule seq 3 describes the execution of a transition staying in the second side of a sequence
astd. It is similar to seq 1 and only differs by the substitution of fst by snd. A new inference
rule is called right after this one.

9.3.3 Choice

|1

Inference rule |1 describes the execution of the first transition of a choice astd located in the
left side. In this case, we have the following system :

As = 〈|◦,⊥,⊥〉
A′s = 〈|◦, left, s ′〉

τs(As) = {StateA = none}
τs(A′s) = {StateA = left} (9.9)

Event e resulting from the translation of the transition is :

Event e =̂

where

g1 : StateA = left ∨ StateA = none
. . .

then

a1 : StateA := left

. . .

Thus, we have S ′ = {StateA = left} as current state after the execution of e. t = {e} is an
acceptable trace for the simulation. A new inference rule is called right after this one.

91

|2

Inference rule |2 describes the execution of the first transition of a choice astd located in the
right side. In this case, we have the following system :

As = 〈|◦,⊥,⊥〉
A′s = 〈|◦, right, s ′〉

τs(As) = {StateA = none}
τs(A′s) = {StateA = right} (9.10)

Event e resulting from the translation of the transition is :

Event e =̂

where

g1 : StateA = right ∨ StateA = none
. . .

then

a1 : StateA := right

. . .

Thus, we have S ′ = {StateA = right} as current state after the execution of e. t = {e} is an
acceptable trace for the simulation. A new inference rule is called right after this one.

|3

Inference rule |3 describes the execution a transition of a choice astd located in the left side
that is not the first transition executed. In this case, we have the following system :

As = 〈|◦,⊥,⊥〉
A′s = 〈|◦, left, s ′〉

τs(As) = {StateA = left}
τs(A′s) = {StateA = left} (9.11)

Proof is similar to |1. t = {e} is an acceptable trace for the simulation. A new inference rule is
called right after this one.

|4

Inference rule |4 describes the execution of a transition of a choice astd located in the right side
that is not the first transition executed. In this case, we have the following system :

As = 〈|◦,⊥,⊥〉
A′s = 〈|◦, right, s ′〉

τs(As) = {StateA = right}
τs(A′s) = {StateA = right} (9.12)

Proof is similar to |2. t = {e} is an acceptable trace for the simulation.

92

9.3.4 Kleene Closure

?1

Inference rule ?1 describes the execution of the first transition of a kleene closure astd or the
execution of a transition as a new iteration. In this case, we have the following system :

As = 〈?◦, started?, s〉
A′s = 〈?◦, true, s ′〉

τs(As) = {StateA = started?}
τs(A′s) = {StateA = true} (9.13)

Events e and lambdaA resulting from the translation of the transition is :

Event lambdaA =̂

where

g1 : isF inalB(StateB) = TRUE

then

a1 : StateB := initB
And all sub states . . .

end

Event e =̂

then

a1 : StateA := TRUE
. . .

Depending on the value of started?, the proof is different.
If started? = true then the execution of e is part of a new iteration of the astd B since we
have the premiss finalb(s) in the inference rule. This means that the astd B must be reseted
before e can be executed. e can only be executed when B is in its initial state. After the
execution of labdaA, we have { StateA = true, StateB = initB }. We can now execute e. Hence
t = {lambdaA, e} is an acceptable trace for the simulation.
If started? = false then the execution of e is the first transition to be executed by the astd.
For that reason S = {StateA = false, StateB = initB}. e can be executed. Hence t = {e} is an
acceptable trace for the simulation.

?2

Inference rule ?2 describes the execution of a transition staying into a deeper astd. It does not
modify state of current astd itself. A new inference rule is called right after this one.

9.3.5 Synchronization

| [] |1

Inference rule | [] |1 describes the execution of a transition in the left side of the astd. Since this
event is not synchronized, it is only present in the left side of the astd. Hence, only the state
corresponding to the left astd will evolve. A new inference rule is called right after this one.

93

| [] |2

Inference rule | [] |2 describes the execution of a transition in the left side of the astd. Since this
event is not synchronized, it is only present in the left side of the astd. Hence, only the state
corresponding to the left astd will evolve. A new inference rule is called right after this one.

| [] |3

Inference rule | [] |3 describes the execution of a transition in both the left and right sides of the
astd. Since this event is synchronized, guards from the sub-astd are put in conjunction and its
actions modify both states as if there were executed separately. Two inference rules are called
right after this one.

9.3.6 Quantified choice

|:1

Inference rule |:1 describes the execution of the first transition of a quantified choice astd, when
the quantified variable value has not been chosen yet. In this case, we have the following system :

As = 〈|:◦,⊥, 〉
A′s = 〈|:◦, v , s ′〉

τs(As) = {StateA = (qNone 7→ 0)}
τs(A′s) = {StateA = (qSome 7→ v)} (9.14)

Event e(x) resulting from the translation of the transition is :

Event e =̂

any

x

where

g1 : x ∈ T
g2 : StateA = (qNone 7→ ) ∨ StateA = (qSome 7→ x)

. . .

then

a1 : StateA := (qSome 7→ x)
. . .

Since S = {StateA = (qNone 7→ 0)} satisfy g2 and because v ∈ T is a premiss of the inference
rule, we have S ′ = {StateA = (qSome 7→ v)} as current state after the execution of e(v).
t = {e(v)} is an acceptable trace for the simulation. A new inference rule is called right after
this one.

|:2

Inference rule |:2 describes the execution of a transition of a quantified choice astd when the
quantified variable value has already been chosen. In this case, we have the following system :

94

As = 〈|:◦, v , s〉
A′s = 〈|:◦, v , s ′〉

τs(As) = {StateA = (qSome 7→ v)}
τs(A′s) = {StateA = (qSome 7→ v)} (9.15)

Event e(x) resulting from the translation of the transition is similar to the previous section
Since S = {StateA = (qSome 7→ v)} satisfy g2 and because v ∈ T is a premiss of the inference
rule, we have S ′ = {StateA = (qSome 7→ v)} as current state after the execution of e(v).
t = {e(v)} is an acceptable trace for the simulation. A new inference rule is called right after
this one.

9.3.7 Quantified interleaving

| [] | :1

Inference rule |:1 describes the execution of a transition of a quantified interleaving astd. In
this case, we have the following system :

As = 〈| [] | :◦, f 〉
A′s = 〈| [] | :◦, f<+{v 7→ s ′}〉

τs(As) = {StateA(v) = ?}
τs(A′s) = {StateA(v) = s ′} (9.16)

Event e(x) resulting from the translation of the transition is :

Event e =̂

any

x

where

g1 : x ∈ XSET
g2 : StateA(x) = . . .

. . .

then

a1 : StateA(x) := . . .
. . .

Hence, if e(v) is executed, only StateA(v) is modified. The new value of StateA(v) depends on
the next inference rule to be called.

| [] | :2

This inference rule is currently not supported by the translation mechanism. We only translate
the quantified interleaving i.e. with no synchronization of common actions.

95

9.3.8 Guard

⇒1

Inference rule ⇒1 describes the execution of the first transition of a guard astd. In this case,
we have the following system :

As = 〈⇒◦, false, init(b)〉
A′s = 〈⇒◦, true, s ′〉

τs(As) = {StateA = false}
τs(A′s) = {StateA = true} (9.17)

Event e(x) resulting from the translation of the transition is :

Event e =̂

where

g1 : (StateA = true) ∨ g
. . .

then

a1 : StateA := true
. . .

In this case, S = {StateA = false}, hence the guard g must hold. After the execution of e
StateA = true. t = {e} is an acceptable trace for the simulation. A new inference rule is called
right after this one.

⇒2

Inference rule⇒2 describes the execution of any but the first transition of a guard astd. In this
case, we have the following system :

As = 〈⇒◦, true, s〉
A′s = 〈⇒◦, true, s ′〉

τs(As) = {StateA = true}
τs(A′s) = {StateA = true} (9.18)

Hence, StateA is not modified by the execution of e. t = {e} is an acceptable trace for the
simulation. A new inference rule is called right after this one.

Annexe A

Spécifications B issues d’un modèle
fonctionnel

Nous considérons uniquement les classes Patient et ManagementAct avec une relation de
composition indiquant les actes de soins associés à chaque patient.

Fig. A.1 – Extrait du diagramme de classes de l’étude de cas IFREMMONT

MACHINE

Functional Model
SETS

PATIENTS ;
MANAGEMENTACTS ;
SSNs ;
Types ;
dateTimes

VARIABLES

Patients, patient SSN,
ManagementActs,
patientActs,
managementact validated,
managementact Type,
managementact dateTime

INVARIANT

Patients ⊆ PATIENTS ∧
ManagementActs ⊆ MANAGEMENTACTS ∧

96

97

patientActs ∈ ManagementActs → Patients ∧
patient SSN ∈ Patients 7� SSNs ∧
managementact validated ∈ ManagementActs → BOOL ∧
managementact Type ∈ ManagementActs 7→ Types ∧
managementact dateTime ∈ ManagementActs 7→ dateTimes ∧
dom(managementact validated B {TRUE}) ⊆ dom(managementact Type) ∧
dom(managementact validated B {TRUE}) ⊆ dom(managementact dateTime)

INITIALISATION

Patients := ∅ ||
ManagementActs := ∅ ||
patientActs := ∅ ||
patient SSN := ∅ ||
managementact validated := ∅ ||
managementact Type := ∅ ||
managementact dateTime := ∅

OPERATIONS

createPatient(obj) =
PRE

obj ∈ PATIENTS ∧
obj 6∈ Patients

THEN

Patients := Patients ∪ {obj}
END ;

deletePatient(obj) =
PRE

obj ∈ PATIENTS ∧
obj ∈ Patients ∧
TRUE 6∈ managementact validated[patientActs −1 [{obj}]]

THEN

Patients := Patients - {obj} ||
ManagementActs := ManagementActs - patientActs −1 [{obj}] ||
managementact validated := patientActs −1 [{obj}] C− managementact validated ||
managementact Type := patientActs −1 [{obj}] C− managementact Type ||
managementact dateTime := patientActs −1 [{obj}] C− managementact dateTime ||
patientActs := patientActs B− {obj} ||
patient SSN := {obj} C− patient SSN

END ;
patient SetSSN(obj) =

PRE obj ∈ PATIENTS ∧ obj ∈ Patients THEN

ANY ssn WHERE

ssn ∈ SSNs ∧ ssn 6∈ ran(patient SSN)
THEN

98

patient SSN(obj) := ssn
END

END ;
ssn ← patient GetSSN(obj) =

PRE obj ∈ PATIENTS ∧ obj ∈ Patients THEN

ssn := patient SSN(obj)
END ;

patient AddManagementAct(obj) =
PRE obj ∈ PATIENTS ∧ obj ∈ Patients THEN

ANY ma WHERE

ma ∈ MANAGEMENTACTS ∧ ma 6∈ ManagementActs ∧
ma 6∈ dom(patientActs)

THEN

ManagementActs := ManagementActs ∪ {ma} ||
patientActs := patientActs ∪ {(ma 7→ obj)} ||
managementact validated(ma) := FALSE

END

END ;
patient DeleteManagementAct(obj) =

PRE obj ∈ PATIENTS ∧ obj ∈ Patients THEN

ANY ma WHERE

ma ∈ MANAGEMENTACTS ∧ ma ∈ ManagementActs ∧
ma ∈ patientActs −1 [{obj}] ∧
managementact validated(ma) = FALSE

THEN

ManagementActs := ManagementActs - {ma} ||
patientActs := {ma} C− patientActs ||
managementact validated := {ma} C− managementact validated ||
managementact dateTime := {ma} C− managementact dateTime ||
managementact Type := {ma} C− managementact Type

END

END ;
managementacts ← patient GetManagementActs (obj) =

PRE obj ∈ PATIENTS ∧ obj ∈ Patients THEN

managementacts := patientActs −1 [{obj}]
END ;

validated ← managementact Getvalidated(obj) =
PRE obj ∈ MANAGEMENTACTS ∧ obj ∈ ManagementActs THEN

validated := managementact validated(obj)
END ;

managementact SetType(obj) =

99

PRE

obj ∈ MANAGEMENTACTS ∧
obj ∈ ManagementActs ∧
managementact validated(obj) = FALSE

THEN

ANY type WHERE

type ∈ Types
THEN

managementact Type(obj) := type
END

END ;
type ← managementact GetType(obj) =

PRE obj ∈ MANAGEMENTACTS ∧ obj ∈ ManagementActs THEN

type := managementact Type(obj)
END ;

managementact SetdateTime(obj) =
PRE

obj ∈ MANAGEMENTACTS ∧
obj ∈ ManagementActs ∧
managementact validated(obj) = FALSE

THEN

ANY datetime WHERE

datetime ∈ dateTimes
THEN

managementact dateTime(obj) := datetime
END

END ;
datetime ← managementact GetdateTime(obj) =

PRE obj ∈ MANAGEMENTACTS ∧ obj ∈ ManagementActs THEN

datetime := managementact dateTime(obj)
END ;

managementact Validate(obj) =
PRE

obj ∈ MANAGEMENTACTS ∧
obj ∈ ManagementActs ∧
managementact validated(obj) = FALSE ∧
obj ∈ dom(managementact Type) ∧
obj ∈ dom(managementact dateTime)

THEN

managementact validated(obj) := TRUE

END

END

Annexe B

Spécifications B issues du modèle de
sécurité

MACHINE
UserAssignements

SETS
ROLES = {Team Doctor, Nurse, Operator, Team Member, Regulator} ;
USERS = {Bob, Paul, Martin, Jack, none}

VARIABLES
roleOf,
Roles Hierarchy,
currentUser

INVARIANT
Roles Hierarchy ∈ ROLES ↔ ROLES ∧
roleOf ∈ USERS → P (ROLES) ∧
closure1(Roles Hierarchy) ∩ id(ROLES) = ∅ ∧
currentUser ∈ USERS

INITIALISATION
roleOf := {(Bob 7→ {Team Doctor}),

(Paul 7→ {Operator}),
(Martin 7→ {Nurse}),
(Jack 7→ {Regulator}),
(none 7→ ∅)} ||

Roles Hierarchy := {(Team Doctor 7→ Team Member),
(Nurse 7→ Team Member)} ||

currentUser := none
OPERATIONS

changeUser(user) =
PRE

user ∈ USERS
THEN

currentUser := user
END

END

100

101

MACHINE

RBAC Model

INCLUDES

Functional Model,

UserAssignements

SETS

ENTITIES = {Patient, ManagementAct} ;

Attributes = {SSN, Validated, dateTime, Type} ;

Operations = {CreatePatient, DeletePatient, Patient AddManagementAct, Patient SetSSN, Patient GetSSN,

Patient DeleteManagementAct, Patient GetManagementActs, Managementact SetdateTime, Managementact GetdateTime,

Managementact SetValidated, Managementact GetValidated, Managementact SetType, Managementact GetType,

Managementact Validate

} ;

KindsOfAtt = {public, private} ;

PERMISSIONS = {PatientPerm1, PatientPerm2, ManagementActPerm1, ManagementActPerm2} ;

ActionsType = {read, create, modify, delete, privateRead, privateModify} ;

Stereotypes = {readOp, modifyOp}
VARIABLES

AttributeKind, AttributeOf, OperationOf,

constructorOf, destructorOf, setterOf, getterOf,

PermissionAssignement, EntityActions,

MethodActions, StereotypeOps,

isPermitted

INVARIANT

AttributeKind ∈ Attributes → KindsOfAtt ∧
AttributeOf ∈ Attributes → ENTITIES ∧
OperationOf ∈ Operations → ENTITIES ∧
constructorOf ∈ Operations 7� ENTITIES ∧
destructorOf ∈ Operations 7� ENTITIES ∧
setterOf ∈ Operations 7� Attributes ∧
getterOf ∈ Operations 7� Attributes ∧
StereotypeOps ∈ Stereotypes ↔ Operations ∧
setterOf ∩ getterOf = ∅ ∧

PermissionAssignement ∈ PERMISSIONS → (ROLES × ENTITIES) ∧
EntityActions ∈ PERMISSIONS 7→ P (ActionsType) ∧
MethodActions ∈ PERMISSIONS 7→ P (Operations) ∧

isPermitted ∈ ROLES ↔ Operations

DEFINITIONS

allEntityActions == {pp, at | pp ∈ PERMISSIONS ∧ at ∈ ActionsType

∧ pp ∈ dom(EntityActions) ∧ at ∈ EntityActions(pp)} ;

PermEntitiesCreation == ran({create} / (allEntityActions −1 ; PermissionAssignement)) ;

PermOpCreation == (PermEntitiesCreation ; constructorOf −1) ;

102

PermEntitiesDestruction == ran({delete} C (allEntityActions −1 ; PermissionAssignement)) ;

PermOpDestruction == (PermEntitiesDestruction ; destructorOf −1) ;

PermEntitiesPRead == ran({privateRead} C (allEntityActions −1 ; PermissionAssignement)) ;

PermOpPRead == (PermEntitiesPRead ; (getterOf ; AttributeOf) −1) ;

publicGetters == getterOf B dom(AttributeKind B {public}) ;

PermEntitiesRead == ran({read} C (allEntityActions −1 ; PermissionAssignement)) ;

PermOpRead == (PermEntitiesRead ; (publicGetters ; AttributeOf) −1) ;

PermEntitiesPModify == ran({privateModify} C (allEntityActions −1 ; PermissionAssignement)) ;

PermOpPModify == (PermEntitiesPModify ; (setterOf ; AttributeOf) −1) ;

publicSetters == setterOf B dom(AttributeKind B {public}) ;

PermEntitiesModify == ran({modify} C (allEntityActions −1 ; PermissionAssignement)) ;

PermOpModify == (PermEntitiesModify ; (publicSetters ; AttributeOf) −1) ;

PermEntitiesAbsoluteRead == ran({privateRead, read} C (allEntityActions −1 ; PermissionAssignement)) ;

PermEntitiesAbsoluteModify == ran({privateModify, modify} C (allEntityActions −1 ; PermissionAssigne-
ment)) ;

PermOpReadOps == (PermEntitiesAbsoluteRead ; (StereotypeOps[{readOp}] C OperationOf) −1) ;

PermOpModifyOps == (PermEntitiesAbsoluteModify ; (StereotypeOps[{modifyOp}] C OperationOf) −1) ;

PermOpMethodAction == {ro, op | ro ∈ ROLES ∧ op ⊆ Operations ∧
ro ∈ dom((MethodActions −1 ; PermissionAssignement)[{op}]) } ;

PermOpMethodActions == {ro, op | ro ∈ ROLES ∧ op ∈ Operations ∧ op ∈ union(PermOpMethodAction[{ro}])} ;

currentRole == (roleOf(currentUser) ∪ ran(roleOf(currentUser) C closure1(Roles Hierarchy))) ;

permissions == PermOpCreation ∪
PermOpDestruction ∪
PermOpPRead ∪
PermOpReadOps ∪
PermOpRead ∪
PermOpPModify ∪
PermOpModifyOps ∪
PermOpModify ∪
PermOpMethodActions

INITIALISATION

AttributeKind := {(SSN 7→ private),

(Validated 7→ private),

(dateTime 7→ public),

(Type 7→ public)}

103

||
AttributeOf := {(SSN 7→ Patient),

(Validated 7→ ManagementAct),

(dateTime 7→ ManagementAct),

(Type 7→ ManagementAct)}
||
OperationOf := {(CreatePatient 7→ Patient),

(DeletePatient 7→ Patient),

(Patient AddManagementAct 7→ ManagementAct),

(Patient SetSSN 7→ Patient),

(Patient GetSSN 7→ Patient),

(Patient DeleteManagementAct 7→ Patient),

(Patient GetManagementActs 7→ Patient),

(Managementact SetdateTime 7→ ManagementAct),

(Managementact GetdateTime 7→ ManagementAct),

(Managementact SetValidated 7→ ManagementAct),

(Managementact GetValidated 7→ ManagementAct),

(Managementact SetType 7→ ManagementAct),

(Managementact GetType 7→ ManagementAct),

(Managementact Validate 7→ ManagementAct)}
||
constructorOf := {(CreatePatient 7→ Patient)}
||
destructorOf := {(DeletePatient 7→ Patient)}
||
StereotypeOps := {(modifyOp 7→ Patient SetSSN),

(readOp 7→ Managementact GetValidated)}
||
setterOf := {(Patient SetSSN 7→ SSN),

(Managementact SetdateTime 7→ dateTime),

(Managementact SetValidated 7→ Validated),

(Managementact SetType 7→ Type)}
||
getterOf := {(Patient GetSSN 7→ SSN),

(Managementact GetdateTime 7→ dateTime),

(Managementact GetValidated 7→ Validated),

(Managementact GetType 7→ Type)}
||
PermissionAssignement := {(PatientPerm1 7→ (Operator 7→ Patient)),

(PatientPerm2 7→ (Team Member 7→ Patient)),

(ManagementActPerm1 7→ (Team Member 7→ ManagementAct)),

(ManagementActPerm2 7→ (Team Doctor 7→ ManagementAct))}
||
EntityActions := {(PatientPerm1 7→ {create, modify}),

(PatientPerm2 7→ {privateRead}),
(ManagementActPerm1 7→ {read, modify})}

||
MethodActions := {(PatientPerm2 7→ {Patient AddManagementAct}),

(ManagementActPerm2 7→ {Managementact Validate})}
||

104

isPermitted := ∅
OPERATIONS

setPermissions = PRE isPermitted = ∅ THEN isPermitted := permissions END ;

secure createPatient(obj) =

PRE obj ∈ PATIENTS ∧ obj 6∈ Patients THEN

SELECT

CreatePatient ∈ isPermitted[currentRole]

THEN

createPatient(obj)

END

END ;

secure deletePatient(obj) =

PRE obj ∈ PATIENTS ∧ obj ∈ Patients THEN

SELECT

DeletePatient ∈ isPermitted[currentRole]

THEN

deletePatient(obj)

END

END ;

secure patient SetSSN(obj) =

PRE obj ∈ PATIENTS ∧ obj ∈ Patients THEN

SELECT

Patient SetSSN ∈ isPermitted[currentRole]

THEN

patient SetSSN(obj)

END

END ;

ssn ← secure patient GetSSN(obj) =

PRE obj ∈ PATIENTS ∧ obj ∈ Patients THEN

SELECT

Patient GetSSN ∈ isPermitted[currentRole]

THEN

ssn ← patient GetSSN(obj)

END

END ;

secure patient AddManagementAct(obj) =

PRE obj ∈ PATIENTS ∧ obj ∈ Patients THEN

SELECT

Patient AddManagementAct ∈ isPermitted[currentRole]

THEN

patient AddManagementAct(obj)

END

END ;

secure patient DeleteManagementAct(obj) =

PRE obj ∈ PATIENTS ∧ obj ∈ Patients THEN

SELECT

Patient DeleteManagementAct ∈ isPermitted[currentRole]

THEN

patient DeleteManagementAct(obj)

END

105

END ;

managementacts ← secure patient GetManagementActs(obj) =

PRE obj ∈ PATIENTS ∧ obj ∈ Patients THEN

SELECT

Patient GetManagementActs ∈ isPermitted[currentRole]

THEN

managementacts ← patient GetManagementActs(obj)

END

END ;

validated ← secure managementact Getvalidated(obj) =

PRE obj ∈ MANAGEMENTACTS ∧ obj ∈ ManagementActs THEN

SELECT

Managementact GetValidated ∈ isPermitted[currentRole]

THEN

validated ← managementact Getvalidated(obj)

END

END ;

secure managementact SetType(obj) =

PRE obj ∈ MANAGEMENTACTS ∧ obj ∈ ManagementActs THEN

SELECT

Managementact SetType ∈ isPermitted[currentRole]

THEN

managementact SetType(obj)

END

END ;

type ← secure managementact GetType(obj) =

PRE obj ∈ MANAGEMENTACTS ∧ obj ∈ ManagementActs THEN

SELECT

Managementact GetType ∈ isPermitted[currentRole]

THEN

type ← managementact GetType(obj)

END

END ;

secure managementact SetdateTime(obj) =

PRE obj ∈ MANAGEMENTACTS ∧ obj ∈ ManagementActs THEN

SELECT

Managementact SetdateTime ∈ isPermitted[currentRole]

THEN

managementact SetdateTime(obj)

END

END ;

datetime ← secure managementact GetdateTime(obj) =

PRE obj ∈ MANAGEMENTACTS ∧ obj ∈ ManagementActs THEN

SELECT

Managementact GetdateTime ∈ isPermitted[currentRole]

THEN

datetime ← managementact GetdateTime(obj)

END

106

END ;

secure managementact Validate(obj) =

PRE obj ∈ MANAGEMENTACTS ∧ obj ∈ ManagementActs THEN

SELECT

Managementact Validate ∈ isPermitted[currentRole]

THEN

managementact Validate(obj)

END

END ;

changeCurrentUser(user) =

PRE user ∈ USERS ∧ isPermitted 6= ∅ THEN

changeUser(user)

END

END

Bibliographie

[ABHV06] Jean Raymond Abrial, Michael Butler, Stefan Hallerstede, and Laurent Voisin.
An open extensible tool environment for Event-B. Lecture Notes in Computer
Science, 4260 :588, 2006.

[Abr96a] Jean Raymond Abrial. The B-Book : Assigning Programs to Meanings. Cambridge
University Press, 1996.

[Abr96b] J.R. Abrial. The B-Book. Cambridge Univ. Press, 1996.

[Abr10] Jean-Raymond Abrial. Modeling in Event-B. Cambridge University Press, 2010.

[ACCBCB08] Fabien Autrel, Frédéric Cuppens, Nora Cuppens-Boulahia, and Céline Coma-
Brebel. MotOrBAC 2 : a security policy tool. In SARSSI’08 : 3e conf. Sécurité
des Architectures Réseaux et des Systèmes d’Information, 2008.

[AFLM10] Paul Amar, Marc Frappier, Cecile Lartaud, and Jeremy Milhau. Integrating
ASTD in the Rodin platform. In Rodin User and Developer Workshop 2010.
University of Duesseldorf, September 2010.

[AK06] A. E. Abdallah and E. J. Khayat. Formal Z Specifications of Several Flat Role-
Based Access Control Models. In Proceedings of the 30th Annual IEEE/NASA
Software Engineering Workshop (SEW’06), pages 282–292, 2006.

[AP03] N. Amálio and F. Polack. Comparison of Formalisation Approaches of UML
Class Constructs in Z and Object-Z. In Proceedings of the Formal Specification
and Development in Z and B (ZB’03), pages 339–358. LNCS 2651 Springer, 2003.

[Arg03] In AFADL’2003, pages 3–18, January 2003.

[BBM03] Philippe Bon, Jean-Louis Boulanger, and Georges Mariano. Semi formal mo-
delling and formal specification : UML & B in simple railway application. In
ICSSEA’03, 2003.

[BCDE09a] D. A. Basin, M. Clavel, J. Doser, and M. Egea. Automated Analysis of Security
Design Models. Information and Software Technology, Special issue on Model
Based Development for Secure Information Systems, Elsevier, 51, Issue 5, 2009.

[BCDE09b] David A. Basin, Manuel Clavel, Jürgen Doser, and Marina Egea. Automated
analysis of security-design models. Inf. & Softw. Technology, 51(5) :815–831,
2009.

[BDL06] David Basin, Jürgen Doser, and Torsten Lodderstedt. Model driven security :
From uml models to access control infrastructures. ACM TOSEM, 15(1) :39–91,
2006.

[BDT06] D. Basin, J. Doser, and T. Lodderstedt. Model Driven Security : From UML
Models to Access Control Infrastructures. Proceedings of the ACM Transactions
on Software Engineering and Methodology (TOSEM’06), 15(1) :39–91, 2006.

[BGG+93] Richard Boulton, Andrew Gordon, Mike Gordon, John Harrison, John Herbert,
and John Van Tassel. Experience with embedding hardware description languages

107

108

in HOL. In Victoria Stavridou, Thomas F. Melham, and R. T. Boute, editors,
Proceedings of the IFIP TC10/WG 10.2 International Conference on Theorem
Provers in Circuit Design : Theory, Practice and Experience, volume A-10 of IFIP
Transactions A : Computer Science and Technology, pages 129–156, Nijmegen,
The Netherlands, 1993. North-Holland.

[BMH05] P.F. Brown, R. Metz, and B.A. Hamilton. Reference Model for Service Oriented
Architecture 1.0. 2005.

[Bos95] A. Boswell. Specification and Validation of a Security Policy Model. Proceedings
of the IEEE Transactions on Software Engineering, 21(2) :63–68, 1995.

[But00] Michael Butler. csp2b : A practical approach to combining CSP and b. Formal
Aspects of Computing, 12(3) :182–198, November 2000.

[CPP+05] Samuel Colin, Dorian Petit, Vincent Poirriez, Jérôme Rocheteau, Rafael Marcano,
and Georges Mariano. BRILLANT : An Open Source and XML-based platform
for Rigourous Software Development. In Bernhard K. Aichernig and Bernhard
Beckert, editors, SEFM, pages 373–382. IEEE Computer Society, 2005.

[CW87] D. D. Clark and D. R. Wilson. A comparison of commercial and military computer
security policies. In IEEE Symp. on Security and Privacy, 1987.

[DDR03] D.F.Ferraiolo, D.R.Kuhn, and R.Chandramouli. Role-Based Access Control.
Computer Security Series. Artech House, 2003.

[DLCP00] S. Dupuy, Y. Ledru, and M. Chabre-Peccoud. An Overview of RoZ : A Tool
for Integrating UML and Z Specifications. In Proc. 12th Conf. on Advanced in-
formation Systems Engineering (CAiSE’2000), pages 417–430. LNCS, Vol. 1789,
2000.

[Ecl] Eclipse Consortium. Eclipse graphical modeling framework (gmf).

[F+07] Benôıt Fraikin et al. Synthesizing information systems : the apis project. In Co-
lette Rolland, Oscar Pastor, and Jean-Louis Cavarero, editors, First Internatio-
nal Conference on Research Challenges in Information Science (RCIS), page 12,
Ouarzazate, Morocco, April 2007.

[Fac95] 1995.

[FF06] Benôıt Fraikin and Marc Frappier. Efficient interpretation of large quantifications
in a process algebra. In 4th International Workshop on Modelling, Simulation,
Verification and Validation of Enterprise Information Systems (MSVVEIS-2006),
Proceedings. INSTICC Press, May 2006.

[FF09] B. Fraikin and M. Frappier. Efficient symbolic computation of process expressions.
Science of Computer Programming, 2009.

[FGL+08] M. Frappier, F. Gervais, R. Laleau, B. Fraikin, and R. St-Denis. Extending
statecharts with process algebra operators. Innovations in Systems and Software
Engineering, 4(3) :285–292, 2008.

[FGLF08] Marc Frappier, Frédéric Gervais, Régine Laleau, and Benôıt Fraikin. Alge-
braic state transition diagrams. Technical Report 24, Université de Sherbrooke,
Département d’informatique, Sherbrooke, Québec, Canada, June 2008.

[FKV91] Martin D. Fraser, Kuldeep Kumar, and Vijay K. Vaishnavi. Informal and formal
requirements specification laguages : Bridging the gap. IEEE Transactions on
Software Engineering, 17(5) :454–465, 1991.

[FSD03] Marc Frappier and Richard St-Denis. eb3 : an entity-based black-box specification
method for information systems. Software and System Modeling, 2(2) :134–149,
2003.

109

[FSG+01] D. F. Ferraiolo, R. S. Sandhu, S. I. Gavrila, D. R. Kuhn, and R. Chandramouli.
Proposed NIST standard for Role-based Access Control. In ACM Transactions
on Information and System Security (TISSEC’-01), pages 224–274, 2001.

[GBR07a] M. Gogolla, F. Büttner, and M. Richters. USE : A UML-based Specification
Environment for Validating UML and OCL. Sci. of Comput. Program., 69 :27–
34, 2007.

[GBR07b] Martin Gogolla, Fabian Büttner, and Mark Richters. USE : A UML-based spe-
cification environment for validating UML and OCL. Sci. Comput. Program.,
69(1-3) :27–34, 2007.

[Hal94] A. Hall. Specifying and Interpreting Class Hierarchies in Z. In Proceedings of the
Z User Workshop, pages 120–138. Springer/BCS, 1994.

[Har87] D. Harel. Statecharts : A visual formalism for complex systems. Science of
computer programming, 8(3) :231–274, 1987.

[HLMK04] Lotfi Hazem, Nicole Levy, and Rafael Marcano-Kamenoff. In Jacques Julliand,
editor, AFADL’2004 - Session Outils, 2004.

[Hoa85] Charles Antony Richard Hoare. CSP–Communicating Sequential Processes.
Prenctice Hall, 1985.

[Ida06] Akram Idani. PhD thesis, Université de Grenoble 1 – France, Novembre 2006.

[IL10] Akram Idani and Mohamed-Amine Labiadhand Yves Ledru. 15(3), 2010.

[ISO02] ISO. Information technology – Z formal specification notation – Syntax, type
system and semantics, 2002.

[Jac06] Daniel Jackson. Software Abstractions : logic, language and analysis. MIT Press,
2006.

[Jür04] J. Jürjens. Secure Systems Development with UML. Springer, 2004.

[KFL10] Pierre Konopacki, Marc Frappier, and Regine Laleau. Expressing access control
policies with an event-based approach. Technical Report TR-LACL-2010-6, LACL
(Laboratory of Algorithms, Complexity and Logic), University of Paris-Est (Paris
12), 2010.

[Lan92] Kevin Lano. Z++. In Susan Stepney, Rosalind Barden, and David Cooper, edi-
tors, Object Orientation in Z, Workshops in Computing, pages 105–112. Springer,
1992.

[Lan95] Kevin Lano. Formal Object-Oriented Development. Springer-Verlag New York,
Inc., USA, 1995.

[Lan98] Kevin Lano. Logical specification of reactive and real-time systems. Journal of
Logic and Computation, 8(5) :679–711, 1998.

[LB03a] M. Leuschel and M. Butler. ProB : A Model Checker for B. In FME 2003 : Formal
Methods Europe, volume 2805 of Lecture Notes in Computer Science, pages 855–
874. Springer-Verlag, 2003.

[LB03b] Michael Leuschel and Michael Butler. ProB : A model checker for b. In FME
2003 : Formal Methods, volume 2805 of Lecture Notes in Computer Science, pages
855–874. Springer Berlin / Heidelberg, 2003.

[LB08] Michael Leuschel and Michael J. Butler. ProB : an automated analysis toolset
for the B method. STTT, 10(2) :185–203, 2008.

[LCA04] Kevin Lano, David Clark, and Kelly Androutsopoulos. UML to B : Formal Veri-
fication of Object-Oriented Models. In Integrated Formal Methods, volume 2999
of Lecture Notes in Computer Science, pages 187–206. Springer, 2004.

110

[Led02] Hung Ledang. PhD thesis, 2002.

[Led06] Y. Ledru. Using Jaza to Animate RoZ Specifications of UML Class Diagrams. In
Proc. 30th Annual IEEE/NASA Software Engineering Workshop (SEW-30 2006).
IEEE CS Press, 2006.

[Ler98] X. Leroy. The OCaml programming language. At http ://caml. inria. fr, 1998.

[LM00] Régine Laleau and Amel Mammar. An Overview of a Method and Its Support
Tool for Generating B Specifications from UML Notations. In 15th IEEE Inter-
national Conference on Automated Software Engineering, pages 269–272, 2000.
IEEE Computer Society Press.

[Mam02] Amel Mammar. PhD thesis, CNAM-Paris, Novembre 2002.

[Mar02] Rafael Marcano. PhD thesis, 2002.

[Mar03] S. Martin. The Best of Both Worlds Integrating UML with Z for Software Spe-
cifications. Journal of Computing and Control Engineering, 14 :8–11, 2003.

[Mey01] Eric Meyer. Développements formels par objets : utilisation conjointe de B et
d’UML. PhD thesis, Université de Nancy 2, Mars 2001.

[MFF09] J. Milhau, B. Fraikin, and M. Frappier. Automatic Generation of Error Messages
for the Symbolic Execution of eb3 Process Expressions. In Integrated Formal Me-
thods : 7th International Conference, IFM 2009, Düsseldorf, Germany, February
16-19, 2009, Proceedings, volume 5423 de Lecture Notes in Computer Science,
pages 337–351. Springer Berlin/Heidelberg, 2009.

[MFGL10] Jérémy Milhau, Marc Frappier, Frédéric Gervais, and Régine Laleau. Systematic
translation rules from astd to event-b. In Integrated Formal Methods - 8th Interna-
tional Conference, IFM 2010, Nancy, France, October 11-14, 2010. Proceedings,
volume 6396 of Lecture Notes in Computer Science, pages 245–259. Springer,
2010.

[ML06] Amel Mammar and Régine Laleau. A formal approach based on UML and B for
the specification and development of database applications. Automated Software
Engineering, 13(4) :497–528, 2006.

[MSGC07] S. Morimoto, S. Shigematsu, Y. Goto, and J. Cheng. Formal verification of secu-
rity specifications with common criteria. In Proceedings of the 22nd Annual ACM
Symposium on Applied Computing (SAC’07), pages 1506–1512, 2007.

[New04] Chris Newman. SQLite (Developer’s Library). Sams, Indianapolis, IN, USA, 2004.

[Ngu98] Hong Phuong Nguyen. PhD thesis, CNAM-Paris, 1998.

[OSS06] D. OKALAS OSSAMI. Construction Simultanée de Spécifications Multi-Vues
UML et B. PhD thesis, LORIA -Université Nancy2, 2006.

[Pas95] PhD thesis, Université de Rennes 1, Juillet 1995.

[PSS08] D. Power, M. Slaymaker, and A. Simpson. On Formalizing and Normalizing
Role-Based Access Control Systems. The Computer Journal, 2008.

[RBL+90] J. Rumbaugh, M. Blaha, W. Lorensen, F. Eddy, and W. Premerlani. Object-
Oriented Modeling and Design. Prentice Hall, 1990.

[Reg02] Hdr, 2002.

[RJB96] James Rumbaugh, Ivar Jacobson, and Grady Booch. The unified modeling lan-
guage. University Video Communications, 1996.

[SB04] Colin Snook and Michael Butler. U2B-A tool for translating UML-B models
into B. In J. Mermet, editor, UML-B Specification for Proven Embedded Systems
Design, 2004.

111

[SB06a] C. Snook and M. Butler. UML-B : Formal modeling and design aided by
UML. ACM Transactions on Software Engineering and Methodology (TOSEM),
15(1) :122, 2006.

[SB06b] Colin Snook and Michael Butler. UML-B : Formal modeling and design aided by
UML. ACM Transactions on Software Engineering and Methodology (TOSEM),
15(1) :92–122, 2006.

[SB06c] Colin Snook and Michael Butler. UML-B : Formal modeling and design aided by
UML. ACM Transactions on Software Engineering Methodology, 15(1) :92–122,
2006.

[SBS09] Mar Yah Said, Michael Butler, and Colin Snook. Language and tool support for
class and state machine refinement in UML-B. In FM 2009 : Formal Methods, vo-
lume 5850 of Lecture Notes in Computer Science, pages 579–595. Springer Berlin
/ Heidelberg, 2009.

[SCFY96] Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein, and Charles E. Youman.
Role-based access control models. IEEE Computer, 29(2) :38–47, 1996.

[SDA05] K. Sohr, M. Drouineaud, and G. Ahn. Formal Specification of Role-based Security
Policies for Clinical Information Systems. In Proceedings of the 20th Annual ACM
Symposium on Applied Computing, pages 332–339, 2005.

[SDAG08] Karsten Sohr, Michael Drouineaud, Gail-Joon Ahn, and Martin Gogolla. Analy-
zing and managing role-based access control policies. IEEE Trans. Knowl. Data
Eng., 20(7) :924–939, 2008.

[Sek08] E. Sekerinski. Verifying Statecharts with State Invariants. In 13th IEEE Inter-
national Conference on Engineering of Complex Computer Systems, pages 7–14.
IEEE, 2008.

[SM+10] K. Salabert, J. Milhau, et al. iASTD : un interpréteur pour les ASTD. In AFADL
2010, Poitiers, France, 2010.

[Smi95] Graeme Smith. The Object-Z Specification Language. Advances in Formal Me-
thods Series. Kluwer Academic Publishers, 1995.

[Spi92] J. M. Spivey. The Z Notation : A reference manual (2nd ed.). Prentice Hall, 1992.

[SZ02] Emil Sekerinski and Rafik Zurob. Translating statecharts to b. In Integrated
Formal Methods, volume 2335 of Lecture Notes in Computer Science, pages 128–
144. Springer Berlin / Heidelberg, 2002.

[TRA+09] Manachai Toahchoodee, Indrakshi Ray, Kyriakos Anastasakis, Geri Georg, and
Behzad Bordbar. Ensuring spatio-temporal access control for real-world appli-
cations. In SACMAT 2009, 14th ACM Symp. on Access Control Models and
Technologies. ACM, 2009.

[UML04] In Jacques Julliand, editor, AFADL’2004 - Session Outils, 2004.

[Utt05a] M. Utting. JAZA : Just Another Z Animator. 2005.

[Utt05b] Mark Utting. Jaza User Manual and Tutorial, 2005.
http ://www.cs.waikato.ac.nz/˜marku/jaza/.

[Van98] W. M. P. Van Der Aalst. The application of Petri nets to workflow management.
The Journal of Circuits, Systems and Computers, 8(1) :21–66, 1998.

[VDM92] VDM++ : a formal specification language for object-oriented designs. In Pro-
ceedings of the seventh international conference on Technology of object-oriented
languages and systems, pages 63–77, Hertfordshire, UK, 1992. Prentice Hall In-
ternational (UK) Ltd.

112

[WK98] Jos B. Warmer and Anneke G. Kleppe. The Object Constraint Language : Precise
Modeling With UML. Addison-Wesley, October 1998.

[WN04] Martin Wildmoser and Tobias Nipkow. Certifying Machine Code Safety : Shallow
versus Deep Embedding. In K. Slind, A. Bunker, and G. Gopalakrishnan, editors,
Theorem Proving in Higher Order Logics (TPHOLs 2004), volume 3223, pages
305–320, 2004.

[YHHZ06] C. Yuan, Y. He, J. He, and Z. Zhou. A Verifiable Formal Specification for RBAC
Model with Constraints of Separation of Duty. In Proceedings of the Information
Security and Cryptology (Inscrypt’06), pages 196–210. LCNS 4318, Springer, 2006.

	1 Introduction
	2 Synthèse des travaux de couplage d’UML et de notations formelles
	2.1 Introduction
	2.2 Couplage d'UML et B

	3 Taking into account functional models in the V&V of security design models
	3.1 Introduction
	3.2 Tools for V&V of role-based authorisation constraints
	3.2.1 USE for the validation of security policies
	3.2.2 SecureMova

	3.3 Motivating example
	3.4 Using testing and verification techniques
	3.4.1 Some solutions to explore
	3.4.2 Support of history-based constraints

	3.5 Conclusion

	4 Specification security-design models using Z
	4.1 Introduction
	4.2 Illustrative example : medical information system
	4.3 Translating the functional model into Z
	4.4 The security kernel
	4.4.1 Permissions
	4.4.2 Role hierarchy
	4.4.3 Action hierarchy
	4.4.4 Roles, users and sessions
	4.4.5 Putting it all together

	4.5 Linking functional and security models
	4.6 Validating and Animating Secure Operations
	4.6.1 Normal behaviour
	4.6.2 Analysing a malicious behaviour

	4.7 Related Work
	4.8 Conclusion and future work

	5 Validation of security policies by the animation of Z specifications
	5.1 Introduction
	5.2 The meeting scheduler
	5.3 State of the art tools
	5.3.1 RBAC and SecureUML
	5.3.2 USE for the validation of security policies
	5.3.3 SecureMOVA

	5.4 The need for dynamic analyses
	5.5 A toolset based on Z
	5.5.1 Input models
	5.5.2 Diagrams for the security model
	5.5.3 Linking both formal models

	5.6 Animation of the specification
	5.6.1 Queries on the security model
	5.6.2 Dynamic analyses : nominal behaviours
	5.6.3 Further dynamic analyses
	5.6.4 Studying an attack scenario

	5.7 Conclusion

	6 Formalisation du contrôle d'accès statique en B
	6.1 Principes de la traduction
	6.2 Formalisation en B du modèle fonctionnel
	6.2.1 Intégration des opérations de base dans le diagramme de classes
	6.2.2 Traduction des classes
	6.2.3 Traduction des attributs de classes
	6.2.4 Traduction des associations
	6.2.5 Prise en compte de l'héritage de classes
	6.2.6 Amélioration du modèle fonctionnel

	6.3 Transformation du modèle de sécurité
	6.3.1 Approche proposée
	6.3.2 Affectation d'utilisateurs aux rôles (relation User_Assignement)
	6.3.3 Affectation de permissions aux rôles (relation Permission_Assignement)

	7 Formalising dynamic access control rules
	7.1 Integrating astd into the security metamodel
	7.2 Systematic translation rules from astd to Event-B
	7.3 Event-B Background
	7.4 astd Background
	7.4.1 astd Operators
	7.4.2 An astd Case Study
	7.4.3 Motivations

	7.5 Translation
	7.5.1 Automata
	7.5.2 Sequence
	7.5.3 Choice
	7.5.4 Kleene Closure
	7.5.5 Synchronization Over a Set of Action Labels
	7.5.6 Quantified Interleaving
	7.5.7 Quantified Choice
	7.5.8 Guard
	7.5.9 Process call

	7.6 Animation and Model Checking of the Case Study
	7.7 Conclusion and Future Work

	8 Efficient Execution of astd Specifications
	8.1 Introduction
	8.2 The astd Notation
	8.3 Control Using iastd
	8.3.1 Main Algorithm
	8.3.2 Other Features
	8.3.3 Usages

	8.4 Conclusion, Current Limitations and Future Works

	9 Proof of Translation Rules
	9.1 Introduction
	9.2 State translation
	9.2.1 Automata
	9.2.2 Sequence
	9.2.3 Choice
	9.2.4 Kleene Closure
	9.2.5 Synchronization
	9.2.6 Quantified choice
	9.2.7 Quantified interleaving
	9.2.8 Guard

	9.3 Proof by Simulation
	9.3.1 Automata
	9.3.2 Sequence
	9.3.3 Choice
	9.3.4 Kleene Closure
	9.3.5 Synchronization
	9.3.6 Quantified choice
	9.3.7 Quantified interleaving
	9.3.8 Guard

	A Spécifications B issues d'un modèle fonctionnel
	B Spécifications B issues du modèle de sécurité

