
ANR programme ARPEGE 2008

Systèmes embarqués et Grandes Infrastructures

Projet SELKIS : Une méthode de développement
de systèmes d’information médicaux sécurisés :

de l’analyse des besoins à l’implémentation.

ANR-08-SEGI-018

Février 2009 - Décembre 2011

Implementation of Web Services for
Security Enforcement

Livrable numéro 4.2

Gouenou Coatrieux
Télécom Bretagne - LaTIM Inserm U650

Michel Embe Jiague
LACL

Stéphane Morucci
SWID

February 2011

2

Abbreviations

AOP Aspect Oriented Programming

ASTD Algebraic State Transition Diagram

BPEL Business Process Execution Language

ESB Enterprise Service Bus

HTTPS Hypertext Transfer Protocol Secure

IdP Identity Provider

IS Information System

JAX-WS Java API for XML-Based Web Services

PDP Policy Decision Point

PEM Policy Enforcement manager

PEP Policy Enforcement Point

RBAC Role Based Access Control

SAML Security Assertion Markup Language

SAML2 Security Assertion Markup Language 2

SOA Service Oriented Architecture

SOAP Simple Object Access Protocol

SP Service Provider

SSO Single Sign On

WS Web Service

WSDL Web Services Description Language

XACML eXtensible Access Control Markup Language

XML eXtensible Markup Language

XSD XML Schema Document

3

Contents

Abbreviations 2

List of Figures 5

1 Context 6

2 Medecom 6

2.1 Delegated Authentication . 6
2.1.1 Security Policies . 6
2.1.2 Architecture . 6
2.1.3 Workflow . 7
2.1.4 Web Services . 7

2.1.4.a WS located at the SAML SSO Server 7
2.1.4.b WS located at the IdP Server . 9

2.2 Delegated Authorization . 10
2.2.1 Security Policies . 10
2.2.2 Architecture . 10
2.2.3 Workflow . 11
2.2.4 Web Services . 12

2.2.4.a WS located at the SAML SSO Server 12
2.2.4.b WS located at the IdP Server . 12
2.2.4.c WS located at the Authorization Server 13
2.2.4.d WS located at the SAML Authorization Server 14

2.3 Image Integrity and Authenticity Control using Watermarking Technologies . . . 14

3 Ifremmont Implementation 16

3.1 Delegated Authorization . 16
3.1.1 Security Policies . 16
3.1.2 Architecture . 16
3.1.3 Workflow . 17
3.1.4 Web Services . 17

3.1.4.a WS located at the Authorization Server 17
3.1.4.b WS located at the SAML Authorization Server 17

4 A PEM Implementation for ASTD Security Policies 20

4.1 Implementation of the PEP . 20
4.2 Implementation of the PDP . 21

5 Annexes 23

5.1 Policies . 23
5.1.1 Medecom . 23

5.1.1.a Roles . 23
5.1.1.b Resources . 23

4

5.1.1.c Actions . 23
5.1.1.d Security Policy . 25

5.1.2 Res@mu . 25
5.1.2.a Roles . 25
5.1.2.b Resources . 27
5.1.2.c Actions . 27
5.1.2.d Security Policy . 27

References 28

5

List of Figures

1 Authentication delegation for Medecom . 7
2 Authentication delegation workflow for Medecom 8
3 Role hierarchy . 10
4 Authorization delegation in Medecom . 11
5 Role hiverarchy using MotOrBAC Flex application 15
6 Authorization delegation for Res@mu . 16
7 Authorization delegation workflow for Res@mu 17
8 Enforcing a policy in a SOA environment . 20
9 PEP sequence diagram . 20
10 SOAP handlers . 21
11 PDP sequence diagram . 21
12 jsASTD, a lightweight interpreter in a BPEL process 22

1 Context

In the SELKIS project, security enforcement is achieved using Web Services (WSs) that are
customized by a trusted external process. In this document, we detail identified WS, their
implementation and how they are orchestrated inside Med.e.com and Ifremont softwares. We
also show how policies are deployed to security components. An alternative approach to security
enforcement in Information System (IS) is presented in Section 4. This approach relies on
a formal language to express security policies and an automated mechanism that derives an
enforcement framework for Service Oriented Architecture (SOA) applications.

We are relying on a proven concept, namely delegating security mechanisms to dedicated and
specific entities. We are going further by making it possible to manage these security entities
using concrete policies that meet high level requirements, thanks to an advanced derivation
mechanism.

In this document, some common security requirements are implicit.

Confidentiality:
To ensure confidentiality properties, all communications between components rely on Hypertext
Transfer Protocol Secure (HTTPS). If necessary, we can release some constraints by requiring
that only communications with the user (and therefor, communications from an untrusted zone)
be made over HTTPS.

Integrity:
To ensure integrity properties, all messages between components rely on digital signatures.
Alternatively, we could require that only communications from/to an untrusted zone are signed.

Availability:
All components of the system are protected enough to avoid denial of services.

Authenticity:
All components in this system have enough information to mutually authenticate. Trusted keys
have already been distributed to all components of the system.

Non-repudiation:
All information are logged, signed and encrypted to establish authenticity and non-repudiation.

2 Medecom

2.1 Delegated Authentication

2.1.1 Security Policies

The security policies that applies here are quite simple and do not need to be derived using a
complex mechanism from a high level security requirement. This security policy just states that
a user must be authenticated to access Medecom resources. The user authenticates using his
login and his password.

2.1.2 Architecture

Figure 1 details how authentication is delegated inside Medecom Web application.
The User makes an initial request to the Medecom application (the Service Provider (SP)) and
is redirected to an authentication server (the Identity Provider (IdP)) using the secured Security

Implementation of WS for Security Enforcement 6

2.1 Delegated Authentication

Figure 1: Authentication delegation for Medecom

Assertion Markup Language 2 (SAML2) protocol. The User is then authenticated on a dedicated
server and redirected with the necessary credentials back to the Medecom software.
For this mechanism to occur properly, we introduced two specific servers and a PHP client
library to be integrated inside Medecom’s Web application.

• The PHP client library is in charge of receiving (non-authenticated) incoming requests,
generating SAML2 Authentication Requests and parsing Security Assertion Markup Language
(SAML) Authentication Responses. In fact, this library is a proxy that forwards requests
and responses to the SAML Single Sign On (SSO) Server, which parses and generates
SAML messages.

• The second server is the authentication server (Auth Server) which is in charge of receiving
and parsing SAML2 Authentication Requests, and generating SAML2 Responses.

2.1.3 Workflow

Figure 2 depicts the UML representation of the corresponding workflow.
This simple workflow is hard-coded inside Medecom/SAML SP softwares. There is no need of
a workflow engine to manage this process.

2.1.4 Web Services

The following WS have been implemented and are available for deployment.

2.1.4.a WS located at the SAML SSO Server

The SAML SSO server offers two WS (see Table 1). It also offers two others WS for authorization
management that are detailed later in this document.

Implementation of WS for Security Enforcement 7

2.1 Delegated Authentication

Figure 2: Authentication delegation workflow for Medecom

Table 1: WS located at the SAML SSO Server

Function Input Output Description

Generate
SAML
SSO re-
quest

Method: GET
/?resource=<resource
name>
or
Method: GET /

SAML2 signed au-
thentication request.

Use case: The User wants to access a resource
identified by its name. The User is not yet au-
thenticated. The SP needs to send a SAML2
Authentication request to the IdP.
WS purpose: this WS generates a signed
SAML request on behalf of the SP.
The SP forwards this request to the IdP.
The resource parameter is optional but if pro-
vided, the WS creates a mapping between the
SAML request identifier and the resource the
user wants to access.

Handle
SAML
SSO re-
sponse

Method: POST
/?action=sso response
&SAMLResponse=
<response>

Key-value form re-
sponse. Parameters:
status: ok/error
entityID: < the
SamlIdpServer that
authenticated the
user> nameID:<an
identifier that rep-
resents the user>
resource:<resource>

Use case: the SP received a SAML SSO re-
sponse from a SamlIdpServer and it does not
know how to handle it.
WS purpose: this WS receives and parses a
SAML2 Authentication Response (generated
by the IdP).
The SP parses this key-value form to deter-
mine if the user is authenticated or not. If
a mapping exists between a resource and the
initial SAML request ID, then the key-value
form response value is this resource. For in-
stance, it will be used by the SP in order to
redirect the user to this resource.

The SAML SSO Server offers a specific protocol, simple enough to facilitate implementations
for multiple technologies (Ruby, PHP, CGI, etc...). It is then possible to have a simple library at
the client side using simple WS to communicate to a Java server that handles all the necessary
SAML2 mechanisms.

Implementation of WS for Security Enforcement 8

2.1 Delegated Authentication

2.1.4.b WS located at the IdP Server

In this context, this WS receives SOAP+SAML authentication requests from a SP (see Table 2).
It relies on a user database to authenticate users and returns signed SAML assertions to the SP.

It also handles other types of requests that are detailed later.

Table 2: WS located at the IdP Server

Function Input Output Description

Handle
SAML
SSO re-
quest

Method: GET or
POST /do/samlsso?
SAMLRequest=
<request>

HTML form for the
user to authenticate.

Use Case: An anonymous user is redirected
to the SamlIdpServer with a base 64 encoded
SAML Authentication request.
WS purpose: Parses and interprets SAML2
Authentication requests. The SAML IdP
Server initiates a user session to handle SSO.
In case of user/password authentication, this
WS generates a form that is displayed to the
user.
Since this WS implies user interaction, it may
not be considered as a real WS.

Handle
SAML
SSO re-
quest

Method: GET or
POST /do/samlsso?
SAMLRequest=
<request>
Session identifier from
IdP Server inside
cookie.

SAML2 authentica-
tion response.

Use Case: An authenticated user is redi-
rected to the SamlIdpServer with a base 64
encoded SAML Authentication request. Sam-
lIdPServer authenticates the user and redi-
rects the user to the SP with a base 64 en-
coded SAML response.
This WS is the same as above. It differs in the
sense that the incoming request also contains
credentials related to a previous successful au-
thentication. In this case, an HTML form is
not necessary (SSO mechanism).

Authenticate
user

Method: POST Pa-
rameters: - Login -
Password (In session:
calling service, I.e.
SP)

SAML2 authentica-
tion response.

WS purpose: this WS is in charge of authen-
ticating the user. The IdP server holds all
the necessary information to check credentials
provided by the user. Upon successful au-
thentication, the user is redirected to calling
SP using a SAML2 authentication response.

Handle
SAML sin-
gle logout
protocol

Method: GET or
POST /do/singlelo-
gout

SAML2 Logout re-
quest

Use Case: Logout of a user from multiple ser-
vices. This use case is the exact opposite of
the SSO mechanism.
WS purpose: Parses and interprets a SAML
logout request. The SAML IdP Server inval-
idates the user session. This WS generates a
SAML2 Logout response.

Implementation of WS for Security Enforcement 9

2.2 Delegated Authorization

2.2 Delegated Authorization

2.2.1 Security Policies

We used the security policy document from Medecom in order to define a policy expressed in
the OrBAC model with organizations, roles, activities, views, contexts entities. We defined two
organizations “Server” and “Medecom Server”. The first one defines abstract entities, hierar-
chies and rules, the second one affects concrete entities from the Medecom application (in PHP)
to abstract entities. The organization “Medecom Server” is a sub-organization of “Server” and
inherits all rules, entities etc. previously defined.

Our authorization server reads eXtensible Access Control Markup Language (XACML) policies,
the MotOrBAC tool can be used in order to write the policy and then XACML policies are
generated. It is also possible to write the OrBAC policy in a text format and then to translate
it into XACML policies (or into a RDF file which can be read by MotOrBAC).

(Cf annexes)

This policy does not define subjects empowered into roles because the Medecom Application
handles these affectations. New users or roles can be created and this policy does not need to be
updated. There is a limited number of actions and objects (URL resources) in the application,
and they are affected to either views or activities. For instance the “users profiles” object is
used in the “Administration” view.

Figure 3 shows the role hierarchy defined in the policy designed using the MotorBac Flex ap-
plication. We can see there is a default role, every user empowered into a role will be also
empowered into this default role. Then we distinguish two roles “Unauthenticated User” and
“Utilisateur” which is a default role for any authenticated user of the application.

Figure 3: Role hierarchy

2.2.2 Architecture

Figure 4 details how authorization is delegated inside Medecom Web application when an au-
thenticated user wants to access a resource.

Implementation of WS for Security Enforcement 10

2.2 Delegated Authorization

Figure 4: Authorization delegation in Medecom

Medecom policies are defined using the MotOrBAC tool and corresponding XACML policies
are generated. The authorization server will evaluate requests against these policies. In the
Medecom application resources are web pages such as a profile page or list of studies, actions can
be adding, editing etc. Each time a user wants to perform an action on a resource, the OrBAC
XACML PHP module sends an XACML request to the authorization server which contains the
user, role, action and resource attributes. For instance the user can be “medecom” with the role
“Administrateur” wanting to perform the action “add” on the resource “user profiles”.

From the security policy, “add” is considered as the activity “Ajouter” which is sub-activity
of “Administrer”. The resource “user profiles” is used in the view “Administration”. The
permission “administrateur p0” applies and then access is permit. The authorization server
returns its decision “Permit” to the OrBAC XACML PHP module and the application enforces
this decision: the user is allowed to add a new profile.

If a prohibition rule applies then the decision is “Deny” and the application refuses the user
action. When the authorization server dodn’t find any rule to apply (either permission or
prohibition) then its decision is “NotApplicable”. In a closed policy a “NotApplicable” decision
is considered as a “Deny” decision by the Medecom Application. The last decision result is
“Indeterminate” which occur when the authorization server encounters an error such as conflicts
between permissions and prohibitions if the policy has not been well-defined.

2.2.3 Workflow

This simple workflow is hard-coded inside Medecom/SAML SP softwares without using a work-
flow engine to manage this process. When the user wants to perform an action on a resource, the
Medecom application sends an XACML request to the authorization server. The latter evaluates
the request against the XACML policies and returns its decision to the Medecom application.
The XACML policies used by the authorization server are generated from the MotOrBAC tool.

Implementation of WS for Security Enforcement 11

2.2 Delegated Authorization

2.2.4 Web Services

The following WS have been implemented and are ready for deployment. The Medecom appli-
cation already handles authorization (access to pages, role affectation, etc.). Whereas this is
coded in the PHP application, and it was possible to access some administration pages without
being an administrator.

When we delegated access control to our authorization server, it fixed this security flaw, each
time a user wants to perform an action (such as read) a request is sent to the authorization
server. Moreover when authorization is delegated, if the policy changes we only have to edit the
policy at the authorization server. There is no need to edit the PHP code of the application.

2.2.4.a WS located at the SAML SSO Server

In this context, the SAML SSO server delegates authorization to an authorization server, and
returns the decision it received from it. There is another WS located at the SAML SSO server
in order to handle the SAML name id mapping when the authorization server wants to share
an identifier with the IdP which authenticated the user. All those WS are described in Table 3.

Table 3: WS located at the SAML SSO Server

Function Input Output Description

Evaluate
autho-
rization
request

Method: POST
/?action=authz
&nameID=<user>
&providerID=
<provider> &resour-
ceID= <resource>
&organization=
<organization>

Key-value form
response parame-
ters. decision:Permit
decision:Deny deci-
sion:NotApplicable de-
cision:Indeterminate

Use case: SP delegates authorization and
sends an authorization request to the autho-
rization server.
WS purpose: This WS generates an XACML
request and delegates the authorization to a
SAML Authorization server. It will get a
XACML decision. This WS will generate a
key-value response with this decision param-
eter.

Handle
SAML
name id
mapping
request

Method: POST
/?action=
nameid mapping
&SAMLRequest=
<request>

SAML response that
contains a new en-
crypted NameID iden-
tifier.

Use case: When evaluating an XACML re-
quest, the authorization server may want
some attributes about the user but it did not
share a identifier with the IdP. So the au-
thorization server asks the SAML SSO server
a new identifier about this user only shared
with the IdP.
WS purpose: This WS already shares an iden-
tifier about this user with the IdP. It will send
a SAML name id mapping request to IdP and
will receive a new identifier, encrypted with
the public Policy Decision Point (PDP) key.
So the SAML SSO server cannot read it, this
identifier will be only shared between SAML
IdP and the authorization server.

2.2.4.b WS located at the IdP Server

During the authorization workflow, two WS are available at the IdP server. One WS can handle
SAML name id mapping requests from the SP in order to share a common identifier with the
authorization. The other WS can handle SAML attribute requests from the authorization server.
All those WS are described in Table 4.

Implementation of WS for Security Enforcement 12

2.2 Delegated Authorization

Table 4: WS located at the IdP Server

Function Input Output Description

Handle
SAML
attribute
request

Method: POST /do/-
queryAttributes

SAML response with
attributes (such as
role).

Use case: Some attributes may be necessary
when the authorization server evaluates an
XACML request. It will send a SAML at-
tribute request to the SAML IdP server.
WS purpose: This WS returns attributes
about the NameID identifier in the request.

Handle
SAML
name id
mapping
request

Method: GET or
POST /do/singlelo-
gout

SAML response with
a new encrypted
NameID identifier.

Use case: A SP shares an identifier about this
user with the IdP. And the SP shares an iden-
tifier about this user with the authorization
server. But no identifier about this user is
shared between the IdP server and authoriza-
tion server. So SP asks a identifier represent-
ing this user that will be shared between the
IdP server and the PDP server.
WS purpose: This WS generates a new iden-
tifier representing the user. This identifier is
encrypted using the authorization public key.
And a SAML response containing this new
identifier is returned to the SP.

2.2.4.c WS located at the Authorization Server

We propose four WS located at the authorization server. The main WS can evaluate XACML
request. The three other WS are not implemented yet, they will be used by the administration
part, such as updating the policy or setting contexts. All those WS are described in Table 5.

Table 5: WS located at the Authorization Server

Function Input Output Description

Evaluate
request

Method: GET or
POST /<policy
name>/?req=<request>

Key-value form
response parame-
ters. decision:Permit
decision:Deny deci-
sion:NotApplicable de-
cision:Indeterminate

Use case: SP delegates authorization and
sends an XACML request to the authoriza-
tion server.
WS purpose: The XACML base 64 en-
coded request is evaluated against the policy
<policy name> (if existing). This WS gener-
ates a key-value form response with a decision
parameter.

Update/Deploy
policy

(not yet implemented) (not yet implemented) Use case: MotOrBAC tool edits a policy and
it wants to deploy or update the policy on the
authorization server.

Ecosystem
API

(not yet implemented) (not yet implemented) Use case: an emergency context in a hospital
is enabled. Some rules will apply with this
context.
WS purpose: contexts are enabled or dis-
abled, the authorization server decision will
depend on these contexts when evaluating
XACML requests.

Access logs (not yet implemented) (not yet implemented) Use case: Audit system needs the access logs
generated by the authorization server when it
evaluated requests.

Implementation of WS for Security Enforcement 13

2.3 Image Integrity and Authenticity Control using Watermarking Technologies

2.2.4.d WS located at the SAML Authorization Server

We also propose five WS located at the SAML authorization server. The main WS can evaluate
XACML request. The three other WS are not implemented yet, they will be used by the
administration part, such as updating the policy or setting contexts. The difference with the
previous authorization server is that this server handles SAML requests. XACML requests are
embedded into SOAP+SAML requests and can be digitally signed and encrypted. All those WS
are described in Table 6.

Table 6: WS located at the SAML Authorization Server

Function Input Output Description

Evaluate
signed
request

Method: POST
/<policy name>/

XACML+SAML+SOAP
Message is signed

Use case: SP delegates authorization and
sends a SOAP+SAML+XACML request to
the authorization server in the POST body
content. Request is signed.
WS purpose: The XACML request is eval-
uated against the policy <policy name> (if
provided). This WS generates an XACML
decision embedded in a SAML+SOAP mes-
sage.

Evaluate
encrypted
and signed
request

Method: POST
/<policy
name>/encrypted

XACML+SAML+SOAP
Message is signed and
encrypted

Use case: SP delegates authorization and
sends a SOAP+SAML+XACML request to
the authorization server in the POST body
content. Request is signed and encrypted.
WS purpose: The XACML request is eval-
uated against the policy <policy name> (if
provided). This WS generates an XACML
decision embedded in a SAML+SOAP mes-
sage.

Update/
Deploy
policy

(not yet implemented) (not yet implemented) Use case: MotOrBAC tool edits a policy and
it wants to deploy or update the policy on the
authorization server.

Ecosystem
API

(not yet implemented) (not yet implemented) Use case: an emergency context in a hospital
is enabled. Some rules will apply with this
context.
WS purpose: contexts are enabled or dis-
abled, the authorization server decision will
depend on these contexts when evaluating
XACML requests.

Access logs (not yet implemented) (not yet implemented) Use case: Audit system needs the access logs
generated by the authorization server when it
evaluated requests.

2.3 Image Integrity and Authenticity Control using Watermarking Technolo-
gies

For medical image content protection, we propose a set of services based on the lossless wa-
termarking of some security attributes into the images. These services, called by the image
applications in connection or not with WS allows verifying the image integrity and its origin
(authenticity). The access to the watermark and image integrity/authenticity checking is con-
ducted by a watermarking module. Services request depends on the knowledge of a secret key
(Ks), a public key (Kpu) and a private key (Kpr). The watermark verification relies on ks
and Kpu, and its update on Ks and Kpr, Kpu. The first implementation of our watermarking
algorithm has not been yet integrated into the telemedicine platforms.

Implementation of WS for Security Enforcement 14

2.3 Image Integrity and Authenticity Control using Watermarking Technologies

Table 7: Image Integrity and Authenticity Control using Watermarking Technologies

Function Input Output Description

Image pro-
tection

Image to be protected,
service requested (in-
tegrity, authenticity or
both), image unique
identifier and keys
(Ks, Kpr,Kpu),

The watermarked im-
age, success embed-
ding flag, message re-
ally embedded.

Use case: The image application requests the
watermarking module to protect an image. It
provides its keys and the protection service
requested (integrity, authenticity or both of
them). If authenticity protection is requested,
it should give the image UID.
Service purpose: the image is watermarked
and protected in terms of integrity, authen-
ticity or both.

Image pro-
tection ver-
ification

Image to be con-
trolled, requested
service (checking of
integrity, authentic-
ity or both), image
unique identifier and
keys, access to the
unwatermarked image

The unwatermarked
image, success read-
ing flag, embedded
message, value of the
image integrity and
authenticity.

Use case: The image application requests the
watermarking module to verify the image in-
tegrity, or authenticity or both of them. If au-
thenticity verification is requested, it should
give the image UID for the checking. It can
also require the unwatermarked image.
Service purpose: the watermarked image is
protected in terms of integrity, authenticity
or both.

Image pro-
tection up-
date

Image to be re-
protected, requested
service to update
(checking of integrity,
authenticity or both),
image unique identifier
and keys.

The watermarked im-
age, update success
flag, message really
embedded.

Use case: The image application requests the
watermarking module to update the image
protection. It provides its keys and the pro-
tection service requested to be updated (in-
tegrity, authenticity of both). If authenticity
update protection is requested, it should give
the image UID.
Service purpose: the image is re-watermarked
or the watermark content is updated as in the
case of an image transmission.

Figure 5: Role hiverarchy using MotOrBAC Flex application

Implementation of WS for Security Enforcement 15

3 Ifremmont Implementation

3.1 Delegated Authorization

3.1.1 Security Policies

(cf Annexes)

In this policy, rules are defined for the roles “User”, “Regulator”, “Parm” and “TeamMember”.
The default role has no rights on the management acts. A “Regulator” is a doctor at the call
center, he can give medical advices, instructions, prescriptions or diagnostics to patients. A
“Parm” can only gives medical advices to patients. A “TeamMember” is a prehospital actor
who is sent to the patient, he can access medical information about the patient if he participates
to the intervention.

Figure 5 shows the role hierarchies defined in the policy using the MotOrBAC Flex application.
The default role is “User” and other roles inherit from it.

3.1.2 Architecture

Figure 6 details how authorization is delegated inside Res@mu application when an authenticated
user wants to access a resource. Security policies are defined with MotOrBAC, then XACML
policies are generated and are used by the authorization server.

Figure 6: Authorization delegation for Res@mu

We use the Java Spring AOP framework — AOP stands for Aspect Oriented Programming —
in order to delegate access control when requesting Res@mu services. For instance, if a user
calls the “getPatientInfos” method on a “Patient” object, then an XACML request is sent to
the authorization server. The Res@mu application handles the user authentication and role
affectation such as “TeamMember”. The authorization server evaluates the request against the
XACML policies generated with MotOrBAC and returns a decision. The latter can be either
“Permit”, “Deny”, “NotApplicable” or “Indeterminate”.

Implementation of WS for Security Enforcement 16

3.1 Delegated Authorization

3.1.3 Workflow

Figure 7: Authorization delegation workflow for Res@mu

This simple workflow depicted in Figure 7 is hard-coded inside Ifremmont Res@mu software.
There is no need of a workflow engine to manage this process. Using AOP, access control is
injected in the service layer, and a XACML request embedded in each SAML message sent to
the authorization server. Only the “Permit” decision allows granting access to resources.

3.1.4 Web Services

The following WS have been implemented and are available for deployment.

3.1.4.a WS located at the Authorization Server

We propose four WS located at the authorization server (see Table 8). The main WS can
evaluate XACML requests. The three other WS are not implemented yet, they will be used by
the administration part, such as updating the policy or setting contexts.

3.1.4.b WS located at the SAML Authorization Server

We also propose five WS located at the SAML authorization server (see Table 9). The main WS
can evaluate XACML request. The three other WS are not implemented yet, they will be used
by the administration part, such as updating the policy or setting contexts. The difference with
the previous authorization server is that this server handles SAML requests. XACML requests
are embedded into SOAP+SAML requests and can be signed and encrypted.

Implementation of WS for Security Enforcement 17

3.1 Delegated Authorization

Table 8: WS located at the Authorization Server

Function Input Output Description

Evaluate
request

Method: GET or
POST /<policy
name>/?req=
<request>

Key-value form
response parame-
ters. decision:Permit
decision:Deny deci-
sion:NotApplicable de-
cision:Indeterminate

Use case: SP delegates authorization and
sends an XACML request to the authoriza-
tion server.
WS purpose: The XACML base 64 en-
coded request is evaluated against the policy
<policy name> (if provided). This WS gener-
ates a key-value form response with a decision
parameter.

Update/
Deploy
policy

(not yet implemented) (not yet implemented) Use case: MotOrBAC tool edits a policy and
it wants to deploy or update the policy on the
authorization server.

Ecosystem
API

(not yet implemented) (not yet implemented) Use case: an emergency context in a hospital
is enabled. Some rules will apply with this
context.
WS purpose: contexts are enabled or dis-
abled, the authorization server decision will
depend on these contexts when evaluating
XACML requests.

Access logs (not yet implemented) (not yet implemented) Use case: Audit system needs the access logs
generated by the authorization server when it
evaluated requests.

Implementation of WS for Security Enforcement 18

3.1 Delegated Authorization

Table 9: WS located at the SAML authorization server

Function Input Output Description

Evaluate
signed
request

Method: POST
/<policy name>/

XACML+SAML+SOAP
Message is signed

Use case: SP delegates authorization and
sends a SOAP+SAML+XACML request to
the authorization server in the POST body
content. Request is signed.
WS purpose: The XACML request is eval-
uated against the policy <policy name> (if
provided). This WS generates an XACML
decision embedded in a SAML+SOAP mes-
sage.

Evaluate
encrypted
and signed
request

Method: POST
/<policy
name>/encrypted

XACML+SAML+SOAP
Message is signed and
encrypted

Use case: SP delegates authorization and
sends a SOAP+SAML+XACML request to
the authorization server in the POST body
content. Request is signed and encrypted.
WS purpose: The XACML request is eval-
uated against the policy <policy name> (if
provided). This WS generates an XACML
decision embedded in a SAML+SOAP mes-
sage.

Update/
Deploy
policy

(not yet implemented) (not yet implemented) Use case: MotOrBAC tool edits a policy and
it wants to deploy or update the policy on the
authorization server.

Ecosystem
API

(not yet implemented) (not yet implemented) Use case: an emergency context in a hospital
is enabled. Some rules will apply with this
context.
WS purpose: contexts are enabled or dis-
abled, the authorization server decision will
depend on these contexts when evaluating
XACML requests.

Access logs (not yet implemented) (not yet implemented) Use case: Audit system needs the access logs
generated by the authorization server when it
evaluated requests.

Implementation of WS for Security Enforcement 19

4 A PEM Implementation for ASTD Security Policies

Another rigorous approach to policy enforcement is being explored through the use of a formal
language to express security policies and automatic translation procedures to derive enforcement
frameworks. The approach focuses on the authorization part of security/policy enforcement.
The overall architecture is presented in Figure 8. The main components of the enforcement
framework are the Policy Enforcement Point (PEP) and the PDP. The PEP interacts with
the WS clients, the IS itself as a more or less coordinated set of WS and the PDP to enforce
authorization decisions inferred by the PDP from the security policy. The implementation of
both components are described in the two following sections.

PDP

Client

Enterprise Service Bus

Service
DB

1

2

4

5

1: A client sends a request to a service
2: The service receives the request
3: The service executes the request
4: The service returns a response
5: The client receives the response

Core
BPEL+BPEL

Engine

PEP

3 Security
DB

Figure 8: Enforcing a policy in a SOA environment

4.1 Implementation of the PEP

:PDP :IS

E(x1, ..., xn)

adMessage(E, u, r, x1, ..., xn)

granted

E(x1, ..., xn)

response

response

mcMessage(completed?)

:User :PEP

denied

empty response

else

alt

Figure 9: PEP sequence diagram

Figure 9 depicts the sequence of messages between the application’s user and the PEP on
one hand and the PEP and the PDP on the other hand. When the user request a service
E(x1, ..., xn) from the IS, the request is intercepted by the PEP. The latter then proceed by
sending an authorization’s request to the PDP with the message adMessage(E, u, r, x1, ..., xn).
The authorization request contains the requested service name E, the user identity u, his acting

Implementation of WS for Security Enforcement 20

4.2 Implementation of the PDP

role r and the service parameters x1 to xn since they may be required by the security policy. In
the use case considered in our prototype implementation, only the user identity and its roles are
of interest in the regards of the security policy. The PDP may respond to the authorization’s
request with authorization decision granted or denied. In the first case, the PEP will let the
initial user request flow to the IS and which response will be transmitted back to the user
through the PEP. In the second case (the authorization is denied), the initial request is not
executed by the IS.

SOAPHandler
SOAPMessageContext

handleMessage(SOAPMessageContext)
ServiceSOAPHandler

Extracts access control
parameters, requests
authorization from the PDP,
eventually lets the initial
requests of the client
through

handleMessage(SOAPMessageContext)
ClientSOAPHandler

Adds access control
parameters to the
SOAP message of
the client request

Figure 10: SOAP handlers

The PEP is implemented by two WS handlers. Since the implementation of the IS relies Java
API for XML-Based Web Services (JAX-WS)1, those handlers are plain Simple Object Access
Protocol (SOAP) handlers placed between the WS client and the Enterprise Service Bus (ESB)
on one hand and the ESB and the WS itself on the other hand. Figure 10 describes the handlers
hierarchy implemented in our prototype.

4.2 Implementation of the PDP

:PDP :SACFilter

adMessage(E, u, r, x1, ..., xn)

adMessage(E, u, r, x1, ..., xn)

:PEP

true

:DynACFilter

adMessage(E, u, r, x1, ..., xn)

autorisationDecision?

autorisationDecision?

false

false

alt

Figure 11: PDP sequence diagram

Figure 11 depicts the sequence of messages between the PEP and the PDP on one hand, and
the PDP et its filters on the other and. Our implementation relies on two filters in order to
render an authorization decision:

• a static filter, implemented as a set of RBAC compliant database relations and the corre-
sponding Java code to query those relations;

1http://jcp.org/en/jsr/detail?id=224

Implementation of WS for Security Enforcement 21

http://jcp.org/en/jsr/detail?id=224

4.2 Implementation of the PDP

• a dynamic filter, implemented by a BPEL process exposed as a WS.

The current PDP implementation uses both filters and synthesizes an authorization decision
through a conjunction of the response from the two filters. The scenario in Figure 11 shows a
dynamic filter that returns a negative response. The dynamic filter implemented as a BPEL
process is derived from a formal Algebraic State Transition Diagram (ASTD) specification.

In [1], a two-step translation procedure is described. From an ASTD security policy specification
with building blocks derived from patterns, the procedure creates a BPEL filtering process and
the required WSDL and XSD documents since the process is deployed on the ESB as a WS.
In another approach [2], the dynamic filter is implemented by a BPEL containing a lightweight
Javascript interpreter for ASTD specifications. Also embedded within the process, is the security
policy specification encoded as an XML variable and provided as the first input of the lightweight
Javascript. Figure 12 describes the input as well as the output of the Javascript interpreter.

BPEL process

jsASTD

new state

state

policy

authorization
decisionactionaction authorization

decision

Figure 12: jsASTD, a lightweight interpreter in a BPEL process

Implementation of WS for Security Enforcement 22

5 Annexes

5.1 Policies

5.1.1 Medecom

5.1.1.a Roles

Table 10: Roles

Role Description Tasks

Radiologist Radiologist in a town or in the radiol-
ogy service of an hospital.

Performs the ultrasound examinations
Writes and validates reports
Diagnoses

Manipulator Medical electroradiology manipulator. Welcomes patients in the exam room
Get images
Prints images

Medical secretary Medical secretary is responsible for wel-
coming patients and prints medical
records on the information system of
HIS (Hospital Information System).

Welcomes patient
Prints smedical reports
Makes appointments

Prescriber General practitioner or specialist Analyses results
Completes medical reports

Administrator Administrator is responsible for system
information

Software management
User management
Hardware management

5.1.1.b Resources

Table 11: Resources

Resource Description

Exams/series (worklist) Table with the list of patients exams.

Profiles Profiles define access rights based on roles.

Users User information such as attributes, password, username.

User settings An user can modify a subset of his attributes (password, email, etc).

Cache and SMTP Cache is a folder that contains all the images.

Log files and audits Log files collect information about server processes. Audit centralizes
information about user authentication, access to an examination etc.

Statistics Statistics such as how many online users.

User registration Register form for a new user.

5.1.1.c Actions

Implementation of WS for Security Enforcement 23

5.1 Policies

Table 12: Actions

Action Description

Create/Add The user creates or add a resource.

Read The user reads a resource.

Modify The user modifies a resource.

Delete The user deletes a resource.

Search The user searches a resource using filters.

Email notification The user triggers a notification for a prescriber when a new examination is
available.

Register The user fills the register form.

Export The user exports a resource to a PDF file.

Download The user downloads a resource on his computer.

Implementation of WS for Security Enforcement 24

5.1 Policies

5.1.1.d Security Policy

Table 13: Security policy

Resource Role Action Context

Exams/series (worklist)
Radiologist
Manipulator
Administrator

Read
Search
Delete
Email notification

Medical secretary Read
Search
Email notification

Prescriber Read
Search

Only his patients

Profiles
Users

Administrator Read
Add
Delete
Modify
Search

User settings Radiologist
Manipulator
Medical secretary
Prescriber
Administrator

Read
Modify

Cache and SMTP Administrator Read
Modify

Log files and audits Administrator Read
Search

Statistics Radiologist
Administrator

Read

User registration Prescriber Add/Create

5.1.2 Res@mu

5.1.2.a Roles

Implementation of WS for Security Enforcement 25

5.1 Policies

Table 14: Roles

Role Description Tasks

User Generic role for any user accessing the Res@mu system. Generic user, no task

Administrator Administrator is responsible for system information.

SystemEngineer Responsible for the technical tasks of the software.

SamuDirector Responsible for actions of his teams. Only performs ad-
ministrative tasks in order to satisfy legal or medical obli-
gations.

CallCenterMember Person who picks up the phone when someone calls the
SAMU and may perform management acts.

Operator The first person who picks up the phone, this person has
no medical formation and is responsible for collecting pa-
tient’s information. This person has no access to medical
records.

PARM Operator who has received a medical formation. This
person can give medical advices.

Gives medical advices

Doctor Doctors can perform management acts. They can be a
regulator or a team doctor.

Regulator After an Operator or PARM collects informations about
the patient, the call is assigned to a Regulator (Doctor).
The latter can send a team to the patient.

Accesses medical records
Performs management acts

TeamMember Rescue TeamMember sent to the patient. Access to medical records
Perform management acts

Rescuer Rescuer is a TeamMember with a minimal medical for-
mation.

Nurse Ambulance technician with a medical formation, can per-
form management acts under the doctor responsibility.

TeamDoctor Doctor in a team sent to the patient. He is responsible
for the management acts performed by his team.

Implementation of WS for Security Enforcement 26

5.1 Policies

5.1.2.b Resources

Table 15: Resources

Resource Description

PatientView List of management acts on patients.

ManagementAct A management act such as medical advice, prescription or instruction.

Patient Medical record and information about the patient.

5.1.2.c Actions

Table 16: Actions

Action Description

Get patient information Get medical record and management acts of a patient.

Validate Validate a management act.

Add/Create Create a management act.

Modify Modify a management act.

5.1.2.d Security Policy

Table 17: Security policy

Resource Role Action Context

Patient view
TeamMember Create ManagementAct Participate in the intervention
PARM Add valid ManagementAct Participate in the intervention and

management act is an instruction or
prescription or a medical advice.

Regulator Add valid ManagementAct Participate in the intervention and
management act is a medical ad-
vice.

Management act

User No access (prohibition)
PARM Read Only read medical advices.
Regulator Read

TeamMember
Validate A team member can only validate

his management acts.
Read Participate in the intervention.
Modify ManagementAct has not been not

validated.

Patient TeamMember Read Participate in the intervention.

Implementation of WS for Security Enforcement 27

REFERENCES

References

[1] M. Embe Jiague, M. Frappier, F. Gervais, R. Laleau, and R. St-Denis. From ASTD ac-
cess control policies to WS-BPEL processes deployed in a SOA environment. In The 1st
International Symposium on Web Intelligent Systems & Services, WISS 2010, volume to be
published, 2010.

[2] M. Embe Jiague, F. Gervais, R. Laleau, and R. St-Denis. A BPEL Implementation of a
Security Filter. In PhD Symposium at the 8th IEEE European Conference on Web Services,
2010.

Implementation of WS for Security Enforcement 28

	Abbreviations
	List of Figures
	1 Context
	2 Medecom
	2.1 Delegated Authentication
	2.1.1 Security Policies
	2.1.2 Architecture
	2.1.3 Workflow
	2.1.4 Web Services

	2.1.4.a WS located at the SAML SSO Server
	2.1.4.b WS located at the IdP Server
	2.2 Delegated Authorization
	2.2.1 Security Policies
	2.2.2 Architecture
	2.2.3 Workflow
	2.2.4 Web Services

	2.2.4.a WS located at the SAML SSO Server
	2.2.4.b WS located at the IdP Server
	2.2.4.c WS located at the Authorization Server
	2.2.4.d WS located at the SAML Authorization Server
	2.3 Image Integrity and Authenticity Control using Watermarking Technologies
	3 Ifremmont Implementation
	3.1 Delegated Authorization
	3.1.1 Security Policies
	3.1.2 Architecture
	3.1.3 Workflow
	3.1.4 Web Services

	3.1.4.a WS located at the Authorization Server
	3.1.4.b WS located at the SAML Authorization Server
	4 A PEM Implementation for ASTD Security Policies
	4.1 Implementation of the PEP
	4.2 Implementation of the PDP

	5 Annexes
	5.1 Policies
	5.1.1 Medecom

	5.1.1.a Roles
	5.1.1.b Resources
	5.1.1.c Actions
	5.1.1.d Security Policy
	5.1.2 Res@mu

	5.1.2.a Roles
	5.1.2.b Resources
	5.1.2.c Actions
	5.1.2.d Security Policy
	References

