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1 Introduction

1.1

We consider a particular case of Markov decision processes, briefly MDP, (e. g. see [Put90]) from
the point of view of computational complexity. This case concerns stationary processes with
perfect (totally observed) and imperfect (partially observed) information with finite number of
states and actions, and under concrete cost criteria. The motivation is, on the whole, standard,
i. e. the analysis of situations where the processes entailed by our actions are predictable only
with some probability. The common in these problems is that we consequently make decisions to
undertake certain actions that change the state of the system, with a goal to reach some desirable
state or to realize some behavior. As neither the exact result of the action nor the current state
are known precisely, we are in the situation with two-fold uncertainty: we are subjected to
probabilistic deviations from the planned results, and we get only partial information about the
state where we arrive at.
The traditional formalization considers a finite set of states, a finite set of actions permissible at a
state, with every action implying changing the system to another state with a known probability.
We slightly deviate from the usual terminology to facilitate our applications, giving, however,
references to classical terminology from, e. g. [Put90], [Ber76] .
The states of a decision process can be interpreted as vertices of a graph whose directed edges
go from a vertice to all other reachable ones with non zero probability by some action. In
other words, we act on a coloured digraph supplied with a function describing the probability
to deviate from an edge chosen to go along. A policy , or a strategy, is a function from strings
of colors (histories of realizations) to actions. While being realized, the policy traverses vertices,
and the colour of a reached vertex is the only new information available at this vertex. The
problem is to construct a policy to fulfil some task. One of the simplest tasks to carry out, is to
reach target vertices from a source vertex with maximum probability.
Our specific motivations go back to robotics (e. g.[dRDF92], [DF93]) and to some applications
related to analysis of programs. One computer science application is model-checking of timed
probabilistic transition systems against respective logics, e. g. see [CY95], [BS98].
The first goal was to analyse the complexity of constructing policies optimal in different classes
of policies, and as one of the further goals, to look at the complexity of optimal policies for
situations with more diverse uncertainty. Different models of uncertainty, e. g. [Col87], [Val79],
[Pap85], [PY91], [DKP91], [Zal92] remain separated.

1.2

In the next section 2 we give the basic notions from the theory of Markov decision processes
related to the problems under consideration, and then specify the criteria of optimality of policies
interesting from the point of view of our motivations, and make precise some computational
aspects. Here we also introduce a type of graphs convenient for describing concrete processes.
In this paper we use mainly as criterion the probability to reach target states from a starting
state, maybe under some constraints on admissible behaviors.
Then in section 3 the complexity of the case of total observability (bijective coloring) is surveyed.
We clarify the questions of the comlexity of constructing optimal policies. From the point of
view of the used technical tools these results could be considered as ”almost” known, though
they were never explicitly stated in papers on traditional MDP, and moreover the related proofs
from that papers are very long.
In section 4 we consider another criterion of quality of policies motivated by robot motion
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planning and model-checking, and described in terms of constraints on the admissible behavior
of the system. For example, we may demand that the system firstly goes to the state x then to
y and then to z, and exactly in this order. Formally, constraints on the behavior are given by a
language of admissible sequences (paths) of states (or colors). The basic criterion considered here
is the probability to follow admissible paths starting from a source vertex. We restrict ourselves
to behaviors described by regular (deterministic finite automaton) languages, for standard larger
classes of languages the problem becomes computationally hard. For the same reason only the
case of perfect information is analyzed. Here we show that optimal policies are not Markovian
in general situation, but they can be found among finite memory ones. This class of policies
seems to be of interest in more general settings. We prove that optimal finite memory policies
can be found in polytime. Subsection 4.7 points out some limits on the power of finite memory
policies. We prove that in the case of partial information, when an optimal policy exists (for
infinite horizon), maybe no finite memory policy is optimal (opposite to the case of perfect
information).

In section 5 we show that though randomized policies are not better than deterministic ones
for finite horizon for the class of history remembering policies, they can be better in the class of
finite memory ones.

In a short section 6 for the case of total uncertainty (unobservability) we strengthen corollary 2
from [PT87], and show that even very weak approximations to optimal policies are NP-hard.

Section 7 treats the case of unobservability bounded by a fixed parameter. In terms of colors
this means that the number of vertices of the same color is bounded by the parameter. In
other words, the set of states is partitioned into classes, the number of elements in every class
is bounded by the parameter, and at any moment of execution of a policy we know only the
class which the actual state belongs to. The parameter, say m, is called the multiplicity of
coloring. We show that even for m = 3 constructing an optimal policy is NP-hard. But for
any m polytime approximations are possible. Finally, relations with Max Word problem are
discussed.

2 Main Notions

2.1 Uncertainty Model.

We consider only finite state Markov decision processes (MDP) that are defined by stationary
conditions of functioning, see [Put90]. Complexity analysis of infinite or non stationary processes
depend on the way of representing the infinite sets involved (say, as blackbox, algorithm of this
or that type etc.). ‘Being stationary’ means here that all the sets and functions characterizing
the process, such as the sets V , C, A and the functions clr, ρ, r introduced below, do not depend
on time which is considered to be discrete. The latter means that the state of the system changes
in moments of time enumerated by natural numbers.
A MDP is a tuple of the form

(V, A, C, clr, ρ, r), or (V, A, C, clr, ρ, r, s),

where
• V is a finite set of states of a system to control; the states are also interpreted as vertices

of a graph representing the system.
• C is a finite set of colors that represent the observable information.
• clr : V → C is the colouring function. It defines a partition of the states into classes

clr−1(c), c ∈ C, which characterizes uncertainty of determining the current state (that is th
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type of observability).
• A is a finiteset of actions. We may consider that every state v ∈ V has its own set Av of

actions. To evitate pathological cases we assume the the whole set of actions is polynomially
bounded by the number |V | of states.
• ρ : V × V × A → [0, 1] is the transition probability function. It is usually supposed that

for all α ∈ A and u ∈ V • s is a probability distribution over the states called the initial
distribution. It may be concentrated in one state, then we speak about initial state.∑

v∈V

ρ(u, v, α) = 1. (1)

• r : V × A → R is the reward function. When positive its value r(v, α) can be thought of
as income gained by the action α in the current state v, and when negative as cost to pay for
the same action.
For briefness we will also write ρ(uv, α) in place of ρ(u, v, λ).

The set A may be interpreted as a set of actions or moves or even decisions, and the function ρ
describes the probabilities of deviations: ρ(uv, λ) is the probability to arrive at v from u if the
action α has been made. For example, one can think of A as local names of outcoming edges,
and ρ gives the probability to follow an edge other than the chosen one.
Sometimes it is more convenient to attribute the reward to edges: r(uv, α) is the reward received
if the state of the system is u, action α is selected, and the system is in the state v at the next
moment of time. In terms of this reward function the one considered above can be represented
as

r(x, α) =
∑

y∈V

r(xy, α) · ρ(xy, α).

For specific applications, it may be convenient to consider formally more general settings for
MDP. For example, one can attribute for each state v is own set Av of actions. To reduce
such a presentation to the initial one we take A =

⋃
v∈V Av and extend ρ in the obvious way:

ρ(uv, α) = 0 for α 6∈ Au.
To avoid some trivialities, we assume |A| is polynomially bounded with respect to |V |.
When treated as a part of input of algorithms, ρ is supposed to have rational values and to be
represented as a usual table of its values.

Remark. Another generalization apt for some applications in model checking [?] presume to
distinguish different ways of transition from one state to another. More precisely, we apppend
one more object to the syntactic representation of MDP, namely, a set of edges E and 2 maps
− and + from E to V giving the tail e− and the head e+ of e ∈ E. In this setting the transition
probability ρ′ is a mapping from E × A to R. And, clear, we define in an approriate way the
notion of a path representing the mode of changing the states. And again we can reduce such a
model to the one given above within some additional complexity cost. We add to V vertices ξe

for every edge e, and extend ρ: ρ(ξ−e ξe, α) = ρ′(e, α), ρ(ξeξ
+
e , α) = 1, ρ(xy, α) = 0 for all other

pairs xy of states not related by edges from E, α ∈ A.

To underline the view of MDP as a graph we will call it also MDP-graph. Interpreting this
structure as a directed graph with the set of vertices V and edges uv defined by the condition
∃α ∈ Aρ(uv, α) > 0 is convenient, especially for describing examples, and will be used below.

2.2 Policies.

A (deterministic) policy on a MDP-graph G a is a function σ : C+ → A, where C+ denote the set
of all non empty words over alphabet C. So the policies are history remembering policies in the
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terminology of the theory of Markov decision processes. Later we will define also probabilistic
policies.
Notations for listes of states or, in other words, for paths in a MDP-graph G:
• Pk

x,y the set of all paths starting at the vertex x and ending at the vertex y and having k
exactly vertices.
• Pk

x the set of all paths in the graph G having exactly k vertices and starting from x.
• Pk(T ) the set of all paths in the graph G having exactly k vertices and containing a vertex

from T ⊆ V .
• Pk=df

⋃
x∈V Pk

x .
• first(P ) denotes the first letter of the word P , last(P ) denotes the last letter of the

word P , and P [i, j] denotes the subword of P composed of letters on positions from i to j the
extremities included.

Assume that a starting distribution s ∈ V is given. I. e. the system can be in a state x with
probability s(x). The ”semantics” of a policy σ is given by the probabilistic distributions Bσ

on Pk defined as follows:

Bσ(v1 . . . vk−1vk) = s(v1) ·
k−1∏

i=1

ρ(vivi+1, σ(clr(v1 . . . vi)), (2)

where clr(v1 . . . vi) = clr(v1) . . . clr(vi). Informally speaking, Bσ(P ) is the probability to follow
a given path P of the length k when executing σ which acts on the basis on the colors observed
during its execution.
Notice that we denote by Bσ many different probabilistic distributions on different discrete
spaces. Thus, to avoid confusion we have to apply Bσ only to a subset of one Pk. It will be
clear from the context on what set Bσ is being considered.
In fact, one can look at the probabilistic measures generated by a policy σ from a more general
point of view. Consider the tree T ∞ of all infinite paths of G having as a root some special verex
not in G. Then with probability s(v) one can arrive at v before executing σ, so all vertices of G
are direct descendants of this special vertex as well as of any other one. Every finite path P of
T ∞ starting from the root determines the set of infinite paths with the prefix P which measure
is Bσ(P̃ ), where P̃ denotes P without the first vertex. Then in a standard way one can define
a probability distribution on the sigma-algebra of Borel sets of infinite paths of T ∞ generated
by these set determined by finite paths.

The semantics of a policy can be treated from another point of view, namely, via considering a
policy as a family of transformations of the set D(V ) of probabilistic distributions on V . The
probability of being at a vertex v after exactly k steps of executing σ is

σk(s)(v) =
∑

u∈V

s(u) ·
∑

P∈Pk
u & last(P )=v

Bσ(P ).

For a fixed string of colours c1 . . . ck we define also the conditional probability

σ
c1...ck

(s)(v) =
∑

u∈V

s(u) ·
∑

P∈Pk
u & last(P )=v & clr(P )=c1...ck

Bσ(P ).

Remark. If to follow our motivations one can notice that the history of actions, i. e. the se-
quence of chosen actions is an available information, and thus may be included into the argument
of σ. One can define the semantics of this type of policies in a similar way as above. However, it
is easy to show that for every policy of this ‘generalized’ type there exists a policy that depends
only on the colours of visited vertices and determines the same probabilistic distribution on the
set of paths.
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2.3 Reliable Moves and Vertices. Simple Graphs.

An action α ∈ A is called reliable at v along vw, w ∈ V if ρ(vw, α) = 1. Such an edge vw will
be denoted by lbl(α, v). Such edges will be also called reliable. A vertex is said to be reliable if
every action is reliable at this vertex. A vertex is random if the function ρ does not depend on
action on all the edges outcoming from this vertex.
A MDP-graph where every vertex is either random or reliable will be called simple. Such graphs
are convenient to describe, and in particular, they will be used in our examples. On our drawings
we use the notations shown on the Figure 1,

λ θ p1) 2) 3) 4) trap5)

Figure 1: Representation of reliable and random edges and vertices.

where
1) is a reliable vertex coloured by colour c.
2) random vertex coloured by colour c.
3) reliable edge that corresponds to actions λ and θ.
4) edge outcoming from a random vertex; p is the value of ρ (that does not depend on actions).
5) trap, i. e. a vertex where all actions lead back to itself.

One can show that the simple model (even under stronger constraints) is as powerful as the
original one.

2.4 Criteria of Quality of Policies.

General definitions of criteria can be found in texts on Markov decision processes, e. g. [Put90],
[Ber76]. Here, by a criterion we mean a function from the set of policies to real numbers that
depends only on the probabilistic distribution defined by a policy. We define below the particular
criteria considered in the paper, and just mention a criterion that probably was not considered
and that may be of theoretical interest.

(1) Expected reward received in k steps. It is the most common traditional criterion (or a set
of criteria). For an initial distribution s and the number of admissible steps (i. e. time) k we
define

Ers
k(σ) =

∑

v1...vk∈Pk

Bσ(v1 . . . vk) · (
∑

1≤i<k

r(vivi+1, σ(clr(v1 . . . vi))).

(1a) Reliability: probability to reach target in not more than k steps. It is a particular case of
the expected reward (1). Let T ⊆ V be a target set to reach. This criteria, denoted here by
Rs,T

k (σ), is defined as the probability to reach any vertex from T starting at s in not more than
k steps of execution of σ. When s and T are clear from the context we drop them and use the
notation Rk(σ). This criterion corresponds to the reward 1 on all the edges coming to T . We
will often refer to this criterion as policy reliability.

(2) Probability of realizing a given behaviour. Let L be a set of paths interpreted as a set of
allowed realizations. The criterion RL

k (σ) is the probability to follow only realizations from L
(cf. [BBS95], similar criterion was also considered in [?]) , see section 4.
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(3) Entropy of location. This criterion could be of theoretical interest:

Hk(σ) =
∑

v∈V

σk(s)(v) · ln σk(s)(v).

To maximize this criterion means to minimize the entropy (i. e. the uncertainty) of the location
after k steps of executing σ.
For criterion Rs,T

k (σ) one can consider also its limit version Rs,T
∞ (σ) = limk→∞Rs,T

k (σ). Notice
that the criterion Rs,T

k (σ) is non decreasing on k, and hence the limit does exist.
For any other criterion R we can consider R∞ = supkRk.
Hearafter we consider mainly the criteria Rs,T

k , k ∈ N ∪ {∞}, i. e. the probability to reach T
from s in not more than k steps (for natural k) or its limit version (k = ∞). If values of some
of the parameters k, s or T are clear from the context they will be omitted.
Notation: popt

k (v, T ) =df sup{Rv,T
k (σ) : σ is a policy}. Thus, popt

k (v, T ) is the ‘optimal’ proba-
bility to reach T from v in not more than k steps.
To make the notion of strategy more constructive we introduce a notion of universal strategy
which may look a bit cumbersome. To get some intuition, imagine we got lost in a forest or
a city, and are seeking to reach some goal. On what information would we base our decision
where to go? We would use a map (MDP-graph in our context) that, however, does not allow us
to recognize directions for sure. Evidently, our decisions depend on our purpose, that is on the
criterion to value possible results of our actions (criterion Rr below), and that may be rather
complex and contain, say, a description of regions that we would not cross, or the time at our
disposal. We would also take into account the history of our wandering (a string W of colors).
We assume that possible criteria Rr are encoded as strings r of some language X . Given a class
of MDP-graphs G and a class of criteria X , a universal strategy (for G and X ) is an algorithm
σ whose input is of the form G = ((V, A,C, clr, ρ, s), r,W ), where G ∈ G, r ∈ X and W ∈ C+,
and whose output is an action from A. For fixed G and r, a universal strategy σ determines a
strategy σG,r : C+ → A.
The semantics of a universal strategy σ is the family of semantics of strategies σG,r.
As it was noticed at the beginning of this subsection there are different general notions of criteria
of quality of policies. One simple observation is that many criteris are particular cases of the
following general criterion RF

k (σ), where F is a function, F : Ps → R:

RF
k (σ) =

∑

P∈Ps,k

F (P ) ·Bσ
k(P ).

2.5 Optimal Policies.

Speaking about optimal policies we distinguish not only criterion with respect to which we
consider the optimality, but as well distinguish the amount of time given to optimize the value
of the criterion. If the time is bounded by a natural number we speak about finite horizon,
and we are interested in the limit behavior of our policies we speak about infinite horizon. In
notation that will be distinguished as respectively Rk and R∞.
From the point of view of observability we distinguish the cases of

– total observability (or perfect information) when the coloring clr is bijective;
– bounded unobservability when there is a constant M0 such that |clr−1(c)| ≤ M0 for all

c ∈ C;
– total unobservability when |C| = 1;
- partial observability which represents the general case of coloring.
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A policy σ is maximum with respect to a criterion R, or R-maximum if for every policy σ′ we
have R(σ′) ≤ R(σ). In a dual way one can define minimum policies.
Obviously, an Rk-maximum policy does exist for every finite k since the number of policies that
differ for the first k steps is finite. However, there is no R∞-maximum policy in the example
described by Figure 2. Indeed, the actions after an odd number of steps are made at random

trap

target

c1

c1

c2

c2

1/2

1/2

down

right

right

Figure 2: No maximum policy

vertices, and they do not influence the further behaviour. Before we make the action right after
an even number of steps for the first time, we observe only the colour c2, and after this action
we arrive either at trap or at target . Thus, any policy is characterized by one integer 2n: the
number of steps after which we decide to go right. One can see that R∞-quality of this policy
is 1− 2−n.
In the known example given by Figure 3 the first action of an Rk-maximum policy differs from

trap

s=x0

. . .
1/2

1

1/2
1/2

1/2

1/2

1/21/2

1

1/2

a0

target
x1 x2 xn-1

xn

Figure 3: Slow convergence to the maximum probability

the first action of Rm-maximum policies for all m < k with k being exponentially greater than
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the size of the graph.
Execution of k steps of a policy σ determines a probabilistic distribution of the current position
σ|c1...ck

(s) (under the condition that colours of visited vertices constitute the sequence c1 . . . ck),
see subsection 2.2. In many cases this distribution is the only information needed for policy.
Namely, we say that a policy σ is PT-policy (PT from probability and time dependent) if there
exists a function f : D(V )× N→ A such that

σ(c1 . . . ck) = f(σ|c1...ck
(s), k).

(Remind that D(V ) is a probabilistic distribution over V , see subsection 2.2.) E. g., one can
prove the following proposition:

Proposition 1 For every policy σ and for every k there exists a PT-policy σ′ such that Rk(σ′) ≥
Rk(σ).

2.6 NP-hardness of Computing the Reliability of a policy.

For the case of bijective coloring, as it is known [Kal83], [Put90] and will be discussed later,
that an optimal policy can be found among Markov policies and in polytime. Nevertheless
calculating Rk(σ) for a particular policy σ maybe computationally hard even for the case of
total observability. It can be shown by the following simple reduction of 3SAT problem to the
mentioned one.
To make the construction easier to understand we represent a 3SAT -formula over n variables
x1, . . . , xn as a table. Let

F =
∧

1≤i≤m

∨

1≤j≤3

zi,j (3)

be such a formula where zi,j are literals, i. e. elements of the set Z = {x1, . . . , xn, x1, . . . , xn}.
The table representation of F is shown on fig. 4. In this table of height 3 and length m the ith

z1,1 z2,1 ........ zm,1

z1,2 z2,2 ........ zm,2

z1,3 z2,3 ........ zm,3

Figure 4: 3CNF -formula F as a table

column corresponds to the ith clause (disjunction) of the formula (4).
A pair z1, z2 of literals is said to be contrary iff z1 ⇔ z2.
We assume that no clause (column) in the formulas under consideration contains a contrary pair
of literals.
A path in F is a horizontal path P in the table composed by picking up one literal of every clause,
in other words, P is a list of literals of the form (z1,j1 , z2,j2 , . . . zm,jm), 1 ≤ ji ≤ 3, 1 ≤ i ≤ m.
We interpret such a path as an assignment of its literals by the value true, which may be
inconsistent with the repect to the variables. If such a path does not contain a contrary (and
thus contradictory) pair of literals, it gives a boolean model of the 3CNF -formula. We call a
path in F without contrary pairs open or satisfying path, and a path with a contrary pair of
literals closed or contradictory path.

[hbt]
For a given formula F we build the MDP-graph shown on the figure 5. The vertical triplets

of vertices correspond to the columns of the table (figure 4). More precisely, one can consider a
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...

.

.

.

..

.. ..

trap

1/3

1/3

1/3

1/3

1/3

1/3

1/3

1/3
1/3

1/3

1/3

1/3

z

z

z

zz

m,1

m,2

m,3z

z

z
target

z2,31,3

1,2

1,1 2,1

2,2

Figure 5: Reduction of 3SAT to computing the reliability of a policy.

vertex of the ith triplet labeled by zi,j in the graph of figure 5 either as a vertex with color zi,j

or as a vertex with the name (i, j, zi,j) (in the latter case the MDP-graph has bijective coloring).
Assume that our MDP-graph has 2 actions {up, down}. The dashed edges are random, in
other words, when the policy under definition, denote it by ξ, chooses any action, when being
in a vertex with outgoing dashed edges, it goes to one of the vertices of the next ‘column’ with
probability 1/3. On the contrary, the solid edges are reliable, i. e. the policy goes along the
edge going to target if the action up has been chosen, and to trap if down has been chosen. The
choice of actions is being done as follows. In all columns except the last one, i. e. corresponding
to (zm,1 ∨ zm,2 ∨ zm,1), the policy makes any action, and at a vertex of the last column it choses
up is the path covered by it by this moment is open, and down otherwise. It is clear that F is
satisfiable iff Rk(ξ) > 0. So, the reduction gives more that we have claimed.

3 Optimal Policies under Total Observability (Bijective Color-
ing))

In section we consider Er- and R-criterion for the case of bijective coloring, i. e. total observ-
ability. We assume that C = V and clr = id.

3.1 M- and T-policies.

The notion of Markov policies, stationary (M-policies) and non stationary (T-policies) are for-
mulated below. They prove to be sufficient to represent optimal policies in the case of total
observability.
A policy σ is called M-policy if it depends on the last colour of the argument only, i. e. if there
exists a function σ′ : C → A such that

∀W : σ(W ) = σ′(last(W )).
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A policy σ is called T-policy if it depends on the last colour and the length of its input (time)
only, i. e. there exists a function σ′ : C × N→ A such that

∀W : σ(W ) = σ′(last(W ), | W |),

where | W | denotes the length of W .
When speaking about an M- or T-policy we mean its argument being of the form (v) or (v, m)
respectively, where v ∈ V and m ∈ N. The underlying interpretation is v = last(W ) and
m = |W |.
It is clear that M-policies correspond to stationary Markov chains, and T-policies to non-
stationary ones. Sufficient information on Markov chains can be found in [KS60], [Fel68]. We
start with computing R-criterion for T-policies and then describe how to construct optimal
T-policies by backward dymanic programming.

3.2 Computation of Reliability of T-policies

Let σ be a T-policy and k be a natural number. As we are interested in computing R(σ, k), we
can transform G in the following way. Glue all the vertices of T into one and redirect the edges
coming out of T back to T . Now the probability to reach this vertex from v ∈ V by one action
α ∈ A is

∑
t∈T ρ(vt, α). Denote the new vertex by the same letter T . Now it is an absorbing

vertex. Denote the new graph by the same letter G. So, all policies acting on G that reach T
stay there forever. But the value of R(σ, k) will be the same as for the original graph.
Now look at σ in this new G. The policy σ determines the Markov chain with transition
probabilities

pvw(k, k + 1) = ρ(vw, σ(v, k)),

here and below pvw(k, m) denotes the probability to reach w at the moment of time m if the
policy is in v at the moment of time k; we assume that pvw(k, k) = If v 6= w Then 0 Else 1.
It is clear that for all k ≤ l ≤ m the probabilities pvw(k,m) satisfy the (Kolmogorov-Chapman,
see [Fel68]) equations:

pvw(k, m) =
∑

k≤l≤m

∑

0≤l≤m

∑

u∈V

pvu(k, l) · puw(l, m). (4)

We will use the following particular case of the equations (4):

psv(0,m) =
∑

u∈V

psu(0,m− 1) · puv(m− 1,m). (5)

Under the assumed conditions, we can express the reliabilty of our policy in terms of pvw(k,m):

R(σ, k) =
∑

0≤i≤k

psT (0, i). (6)

Thus, the equalities (5) and (6) reduce the problem of computing R(σ, k) to computing the
probabilities psv(0,m) for v ∈ V , 0 ≤ m ≤ k. But the equality (5) gives an evident polytime
algorithm to accomplish the calculations.
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3.3 Optimal T-policies.

A policy is everywhere maximum (minimum) if it is maximum (minimum) for every starting
state.
The following result is known (e. g. see [Ber76] or [Put90]) and easily provable by usual dynamic
programming which proceeds backward in time starting from the target T .

Proposition 2 Policies everywhere R-maximum/minimum for a finite horizon for the class of
MDP-graphs with bijective coloring can be found among T-policies, and there is an algorithm that
constructs an everywhere optimal T-policy for a given MDP-graph and a natural k in polytime.
(The time of the algorithm can be estimated as: mboxO(k2 · |V |2 · (L + fanout(G))), where L is
the maximum length of the values of ρ and fanout(G)=maxv∈V |{u : ∃α ∈ A (ρ(vu, α) > 0)}|.)
Proof. The theorem is proved by the backward dymanic programming algorithm T-MAX of
Fig. 6. This algorithm constructs a maximum T-policy. A minimum T-policy can be constructed
by a similar algprithm, moreover a similar algorithm constructs maximum Er-policy, and in
particular, maximum or minimum R-policies. To get this algorithm we are to change the sum
to maximize in line 4. Firstly, we prove by induction on k that the algorithm is correct, and
then estimate its complexity. ¤
The construction of optimal T-policies is useful for estimaing R-criterion and for constructing
M-policies.
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T-MAX: Algorithm for Constructing Maximum T-policy
INPUT: a MDP-graph G of the form as above, and a natural k. Without loss of
generality we assume that every vertex v of G has a ”reliable loop”, namely for a
distinguished action ω: ρ(vv, ω) = 1).
OUTPUT: a T-policy σ with Rv,T

k (σ) maximum (for all v ∈ V ) with respect to all the
policies making not more than k steps, and the maximum probabilities {p(v, k)}v∈V to
reach T from v by σ in not more than k steps.

CommentThe algorithm constructs maximum T-policies σi, 1 ≤ i ≤ k, such that
σi tries to reach T from any given vertex v in not more than i steps. It proceeds by
induction on i ≤ k, and together with the maximum policies σi the algorithm computes
their probabilities p(v, i) = Rv,T

i (σi) to reach T from v in not more than i steps.

Begin
CommentInitialization;
1: ForAllv ∈ V Do

p(v, 0):= Ifv ∈ T Then1 Else0;
CommentRecursion on i;
2: Fori := 1 Tok Do
3: ForAllv ∈ V Do

Begin
4: find an action λ such that ζλ=df

∑
w∈V ρ(vw, λ) · p(w, i− 1) −→

over A
max;

5: σi(v, 1) := λ;
6: p(v, i) := ζλ;

End;
7: ForAll1 < j ≤ i ForAllv ∈ V Do

σi(v, j) := σi−1(v, j − 1);
end for;

end T-MAX;

Figure 6: Algorithm T-MAX for constructing an everywhere maximum T-policy.
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3.4 Computation of R-criterion for Markov policies.

We continue to consider the case of total observability. For computing probability characteristics
of M-policies the classical theory of finite Markov chains can be, obviously, applied.

3.4.1 Computation of Transient Vertices.

In definitions we can consider T as a set of vertices for generality. We say that a vertex v ∈ V \T
is transient (with respect to T ) for a T-policy τ and k ∈ N if τ reaches T from v with a positive
probability in not more than k steps. Similarly, we say that a vertex v ∈ V \T is transient for a
M-policy σ if σ reaches T from v with a positive probability in some number of steps. Denote
the set of transient vertices for T-policy τ and k ∈ N by V TR(τ, k), and the set transient vertices
of M-srategy σ by V TR(σ).
Let σ be a M-policy acting on a MDP-graph of the form as above. Firstly, we notice that the
set V TR(σ) of transient states (vertices) can be found in polynomial time. The problem can be
reduced to the problem of finding transient vertices of a T-policy for some k. That is implied
by the observation that an M-policy can be treated as T-policy for all k. If a realization of σ,
leading from a vertex v to a vertex in T , exists with a positive probability, then with a positive
probability there exists an acyclic realization connecting the same vertices. But the length of an
acyclic realization is not more than the number of vertices of the graph. Thus the set of transient
vertices of a T-policy σ for |V | steps constitute the set of transient vertices for M-policy σ. But
the set of transient vertices of an arbitrary T-policy τ for a given k can be found by an algorithm
similar to T-MAX. We represent a procedure to do it under the name T-TRANS, see Figure 7.

Lemma 1 For every T-policy τ and natural k, as well as for every M-policy σ, their sets of
transient vertices V TR(τ, k) and V TR(σ) can be found in polytime.

The classical theory of Markov chains gives rather efficient algorithms to compute R(σ, k) for a
finite k for a T-policy σ and (for infinite k) for an M-policy σ. Let a MDP-graph G be given.
The case s ∈ T is trivial, and we assume s 6∈ T .

3.4.2 Computation of Reliability of M-policies

Let σ be an M-policy acting on a MDP-graph G.
By puv (for u, v ∈ V ) we denote the transition probabilities of σ, i. e. ρ(uv, σ(u)). Denote
by Q the transition matrix of the Markov chain σ on the set of transient vertices V TR(σ),
that is Q = (puv)u,v∈V TR(σ). Without loss of generality we can consider that our chain has 2
absorbing states: one corresponding to T , and denoted by T , and the other corresponding to
V \ (T ∪V TR(σ)), and denoted by P . Lemma 1 says that all the mentioned sets can be found in
polytime. As was noticed above limn→∞ Qn = 0 because the chain leaves the set V TR(σ). This
implies that the matrix 1 − Q is invertible. The matrix N = (1 − Q)−1 permits to accomplish
computing of reliability of σ and some other characterics, see proposition 3 below.
Following [KeSn60] denote by M v(ϕ) and Dv(ϕ) the expectation and variance of a random
variable ϕ for the chain σ starting from v.
Notations:
• ξ is vector-column of 1 of appropriate dimension.
• Asquare is the matrix (in particular, vector) whose elements are squares of the respective

elements of A.
• t is the time (number of steps) when σ rests in V TR(σ).

Propositions 3.3.5 and 3.3.8 from [KeSn60] give



14

T-TRANS: Algorithm for constructing the set of transient vertices of a T-policy

INPUT: a MDP-graph G of the form as above, a T-policy τ and a natural k.
OUTPUT: the set V TR(τ, k) of transient vertices of τ for k and probabilities pτ (v, k)
for v ∈ V to reach T from v by τ in not more than k steps.

comment The algorithm computes the probabilities pτ
j (v, i)(forall v ∈ V , i + j ≤ k)

to reach T from v by τ in not more than i steps if τ has arrived at v after j steps (and
it is to accomplish the step j + 1).

Begin
CommentInitialization;
1: ForAll j ∈ [0, k] ForAll v ∈ V Do
2: pτ

j (v, 0) := If v ∈ T Then 1 Else 0;
CommentRecursion on i, j, such that i + j ≤ k;
3: For j := k down to 0 Do
4: For i := 1 to k − j do
5: ForAllv ∈ V do
6: pτ

j (v, i) :=
∑

w∈V ρ(vw, τ(v, j + 1)) · pτ
j+1(w, i− 1);

endfor
endfor;

7: ForAllv ∈ V do
8: pτ (v, k) := pτ

0(v, k);
9: V TR(τ, k) := {v ∈ V \ T : pτ (v, k) > 0};
end T-TRANS

Figure 7: Algorithm T-TRANS

Proposition 3 Whatever be M-policy σ
– {M v(t)}v∈V TR(σ) = N · ξ;
– {Dv(t)}v∈V TR(σ) = (2N − 1) ·N · ξ − (N · ξ)square;
– the probabilities of absorption in a ∈ {T, P} for starting states in V TR(σ) are given by the

vector N · ρa, where ρa = (pua)u∈V .

The cited formulas give an algorithm to compute rather efficiently not only R(σ) but also the
expectation and variance of time to reach T from s. More detailed analysis of the behaviour of
σ can be found in [KeSn60].

3.5 Optimal M-policies.

We say that a policy σ is everywhere R-maximum if it is R-maximum for every starting state.
The following theorem is known (see [Put90], Theorem 7.7 or [Kal83]) even for the general case
of positive/negative rewards. In our case it can be proven by a direct combinatorial argument.
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Theorem 1 For every MDP-graph with bijective coloring an everywhere Rs,T
∞ -maximum, and

as well as everywhere Rs,T
∞ -minimum, policy does exist among M-policies.

Proof. Firstly, we prove the existence of a maximum policy. Let pk(v) = popt
k (v, T ), where

v ∈ V \ T and k ∈ N, i. e. pk(v) is the probability to reach T from v in not more than k
steps by an Rv,T

k -maximum policy. Let p(v) = popt∞ (v, T ) = supk pk(v). Clearly, we have the
monotonicity: pk(v) ≤ pk+1(v) ≤ p(v) and thus, p(v) = limk→∞ pk(v).
Let

z(α, v) = p(v)−
∑

vu∈E

ρ(vu, α) · p(u).

Clear, z(α, v) ≥ 0. A action α is admissible at v ∈ V if z(α, v) = 0.
Define a sequence of sets Vi ⊆ V , Vi ⊆ Vi+1 by induction. Let V0 = T and

Vi+1 = Vi ∪ {u ∈ V : ∃α ∈ A∃ v ∈ Vi (ρ(uv, α) > 0 and α is admissible at u)}.

Denote V̂ =
⋃

i Vi. Intuitively, V̂ consists of the vertices from where T is reachable with non
zero probability using only admissible moves. Our nearest purpose is to show that the sequence
Vi exhausts all the vertices with non zero probability to reach T .

Lemma 2 If v 6∈ V̂ then p(v) = 0.

Proof. Reasoning by contradiction, assume p(v) > 0. Define

δ = min{z(α, w) : w ∈ V & α ∈ A & z(α,w) 6= 0}

and choose k such that pk(v) ≥ p(v)
2 and p(v)− pk(v) ≤ δ·p(v)

3 .

Consider an Rv,T
k -maximum policy σ. Recall that pk(v) = Rv,T

k (σ). Denote by Q ⊆ Pv the set
of realizations P such that |P | ≤ k, the action σ(P ) is not admissible at last(P ) and for every
proper prefix P ′ of P the action σ(P ′) is admissible at last(P ′).
Every realization of σ that leads from v to T has a prefix from Q since v 6∈ V̂ . Thus we have
pσ(Q) ≥ pk(v) and

pk(v) =
∑

P∈Q

pσ(P ) · pk−|P |(last(P )). (7)

Here we use that σ is Rv,T
k -maximum, and thus, if σ leads to a vertex u in i < k steps with non

zero probability then pk−i(u) = Ru,T
k−i(σ). On the other hand,

p(v) ≥
∑

P∈Q

pσ(P ) · p(last(P )). (8)

Informally speaking, this means that executing several steps of a policy can only spoil the total
probability to reach T , and in no case increases it. Subtracting the inequality (7) from (8) , we
get

p(v)− pk(v) ≥
∑

P∈Q

pσ(P ) · (p(last(P ))− pk−|P |(last(P )).

Taking into account that ∑

P∈Q

pσ(P ) ≥ pk(v) ≥ p(v)
2
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we conclude that p(last(P0))−pk−|P0|(last(P0)) ≤ 2
3 ·δ for some P0 ∈ Q. Let u = last(P0), m =

k − |P0| and α = σ(P0). Recall that α is not admissible, thus

p(u) ≥ δ +
∑

w∈V

ρ(uw, α) · p(w). (9)

On the other hand, σ is Rk-maximum and α is a move of σ, hence

pm(u) =
∑

w∈V

ρ(uw, α) · pm−1(w). (10)

Subtracting (10) from (9), we get

p(u)− pm(u) ≥ δ +
∑

w∈V

ρ(uw, α) · (p(w)− pm−1(w)),

that leads us to a contradiction with p(u)− pm(u) ≤ 2
3 · δ. (Recall that p(w) ≥ pm−1(w) for all

w).

The case of minimum policy can be treated in a similar way (see subsection 3.6.4). ¤
Let d(v) = min{i : v ∈ Vi} for v ∈ V̂ . We define an M-policy σ by setting σ(v) = α , v ∈ V̂ ,
where α is some action admissible at v and such that ρ(vu, α) 6= 0 for some u ∈ Vd(v)−1 (that
exists by the definition of Vd(v)). Then we define σ somehow on V \ V̂ (T is unreachable from
V \V̂ and thus, it does not matter how to define σ on this set). We show that σ is R∞-maximum.
Notice that p(s) ≥ R∞(σ′) for every policy σ′ (by the definition of p(s)). Thus it suffices to
show that p(s) = R∞(σ). We will prove that p(v) = Rv,T

∞ (σ) for all v ∈ V ′ = V̂ \T by standard
arguments from the theory of finite Markov chains.
Denote q(v) = Rv,T∞ (σ), auv = ρ(uv, σ(u)) , u, v ∈ V ′ and bv =

∑
t∈T ρ(vt, σ(v)). Consider the

following system of linear equations for variables xv, v ∈ V ′:

xv = bv +
∑

u∈V ′
avu · xu, v ∈ V ′. (11)

Both {p(v)} and {q(v)} satisfy the system (11). Hence p(v) = q(v), v ∈ V ′, since the system
(11) has a unique solution. Indeed, the corresponding homogeneous linear system has the matrix
1 − Π where 1 is the unit matrix and Π = {auv}u,v. Using the definition of V ′, one can easily
show that Πk → 0, k →∞, and thus 1−Π is invertable. ¤

3.6 Polytime Algorithms for Constructing maximum and minimum M-policies.

The following theorem is, in fact, known (see [Kal83], 3.5). In our case it can be proven rather
simply using a known reduction to linear programming (e. g. see [Put90]).

Theorem 2 For MDP-graphs with bijective coloring an everywhere maximum M-policy can be
computed in polytime

We start with some preliminary considerations from theory of finite Markov chains.
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3.6.1 Linear Equations for Limit Probabilities

Let σ be a M-policy. It defines a (stationary) Markov chain with a finite number of states. The
relation ‘σ reaches w from v with a positive probability’ defines the division of the set V into
strongly connected components which are partially ordered (see [KeSn60]). Each component
is either an ergodic set ( where the chain stays forever with probability 1), or a set transient
with respect to the union of the ergodic sets (from where we come out with probability 1). A
singleton ergodic set is an absorbing state. Without loss of generality, here we consider T as an
absorbing state for all the policies under consideration (in formulas T will be often teated as a
singleton set).
• aβ

x = ρ(xT, β) =
∑

t∈T ρ(xt, β).
• aβ

xy = ρ(xy, β),
where x, y ∈ V , β ∈ A.
For a given M-policy σ one can write the evident (see [Fel68], Ch.XV) equations for the limit
probabilities to reach T moving only in a set of vertices W ⊆ V \ T before having reached T :

px = aσ(x)
x +

∑

y∈W

aσ(x)
xy · py, x ∈ W, (12)

where px are the probabilities to reach T from x by σ not leaving W before this. The system (12)
will be denoted by Eqσ(W ). One can easily notice that

Lemma 3 For every M-policy σ its limit probabilities px to reach T from x ∈ W not leaving
W , satisfy the system Eqσ(W ) whatever be W ⊆ V \ T .

The system Eqσ(W ) may have more than one solution for some W ⊆ V \T . But on the transient
vertices of a policy the probabilities are defined uniquely by the subsystem restricted to these
vertices.

Lemma 4 For every M-policy σ the system Eqσ(V TR(σ)) has a unique solution.

Proof. Classical fact. See [KeSn60], th.3.2.1. Let Q be the transition matrix of the Markov
chain defined by σ on the set of its transient vertices (states). As the process leaves the set of
transient vertices with probability 1, Qn → 0 when n →∞. Thus, the matrix of the system i. e.
the matrix 1−Q, where 1 is the unit matrix, is invertible. ¤
A vertex v ∈ V \ T is transient (with respect to T ) if there exists a policy that reaches T from v
with a positive probability. Denote by V TR the set of transient vertices.
A vertex is a trap if no policy leads to T from it with positive probability. Thus, all the vertices
are of the 2 types: a pithole, i. e. a trap or a vertex of T , or a transient vertex. The pitholes
are of 2 types : the target T and the traps which we denote by TRAPS.
Denote by pσ

x the probability to reach T from x by an M-policy σ. Now we use a geometric
representation for the limit probabilities. Denote by RW , where W is a finite set, a |W |-
dimensional real space whose coordinates are named by the elements of W . For W ⊆ V the
space RW is canonically embedded into RV . The set of limit probabilities {pσ

x}x∈V TR(σ) of a
policy σ determines a point in RV TR(σ) which will be denoted by P σ. It is clear that for a
maximum policy γ we have V TR(γ) = V TR. Moreover, all the maximum policies γ determine
the same point P γ in RV TR, this point will be denoted by Γ.

Lemma 5 The set V TR of transient vertices and the set TRAPS can be found in polynomial
time.

Proof. Given by the algorithm T-TRANS, see lemma 1. ¤
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3.6.2 Reduction to Linear Programming.

The next step of the construction is crucial. For an arbitrary M-policy σ consider the system of
inequalities (cf. (12)) :

px ≥ aσ(x)
x +

∑

y∈V TR(σ)

aσ(x)
xy · py, x ∈ V TR(σ), (13)

System (13) defines a convex polyhedron in RV TR(σ) that we denote by Dσ.
We say that a point X ∈ Q is a minimum point of a polyhedron Q ⊆ RH , where H is a finite set,
if every Y ∈ Q satisfies the inequalities Y −X ≥ 0, i. e. all the differences of the corresponding
coordinates are non negative. (Clearly, not more than one minimum point may exist.)

Lemma 6 For every policy σ the point P σ has positive coordinates and is the minimum point of
Dσ. In particular, Γ is the minimum point of all the polyhedrons Dγ for the maximum M-policies
γ.

Proof. The point P σ = {px}x∈V TR(σ) has positive coordinates by its definition. Let Q =
{qx}x∈V TR(σ) be an arbitrary point of Dσ. We have the system of equations Eqσ(V TR(σ)) for
P σ, and the system of inequalities

qx ≥ aσ(x)
x +

∑

y∈V TR(σ)

aσ(x)
xy · qy, x ∈ V TR(σ), (14)

for Q = {qx}x∈V TR(σ). Subtract equations of Eqσ(V TR(σ)) from the corresponding inequalities
of (14). Using the notation dx = qx − px we get

dx ≥
∑

y∈V TR(σ)

aσ(x)
xy · dy, x ∈ V TR(σ). (15)

It is clear that for some x ∈ V TR(σ) we have positive a
σ(x)
x . And even more, from every

point of V TR(σ) the policy reaches some x with this property. Now consider the system of
inequalities (15) for {dx}x∈V TR(σ). Suppose that dx < 0 for some x ∈ V TR(σ). Let z be such
that dz = min{dx : x ∈ V TR(σ)}. We have

dz ≥
∑

y∈V TR(σ)

aσ(z)
zy · dy ≥ dz ·

∑

y∈V TR(σ)

aσ(z)
zy . (16)

If the sum
∑

y∈V TR(σ) a
σ(z)
zy is less than 1 then we get a contradiction dz > dz. Hence the sum of

a
σ(y)
zy is 1, and we get the equalities dz = dy for all y ∈ V TR(σ) such that a

σ(z)
zy > 0. Applying

the same procedure to these y we shall arrive at a situation with the sum less than 1 (since
V TR(σ) is transient), and thus to the contradiction dz > dz. Hence dx ≥ 0 for all x ∈ V TR(σ).
¤
Now consider the polyhedron D defined by the system of inequalities

px ≥ aλ
x +

∑

y∈V TR

aλ
xy · py, x ∈ V TR, λ ∈ A. (17)

Clear, the size of the system (17) is polynomial with respect to the input. For every maximum
policy γ the polyhedron Dγ contains D. This polyhedron reduces our problem to a linear
programming problem described below.
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Lemma 7 Γ is a vertex of D.

Proof. Let γ be a maximum policy. As it was noticed above Γ = P γ . Since D ⊆ Dγ and Γ is
the minimum point of Dγ , it suffices to prove that Γ ∈ D.
Assume that Γ 6∈ D. Then for some z ∈ V TR and some λ ∈ D we have

pγ
z < aλ

z +
∑

y∈V TR

aλ
zy · pγ

y . (18)

Consider the policy τ defined as γ on the vertices x 6= z, and as λ on z, i. e.
τ(x) = if x 6= z then γ(x) else λ.

The limit probabilities of τ satisfy the system

pz = aλ
z +

∑

y∈V TR

aλ
zy · py, (19)

px = aγ(z)
x +

∑

y∈V TR

aγ(x)
xy · py, x ∈ V TR \ {z}, (20)

i. e. if pτ
x = px, x ∈ V TR then (19)–(20).

Claim 1. The limit probabilities of τ constitute the only solution of the system (19)–(20).
The straight line (20) and the hyperplane (19) have at least one common point, namely, the
point {pτ

x}x∈V TR of the limit probabilities of τ (lemma 3), and the hyperplane cannot contain
the line because the line contains the point Γ and the hyperplane does not contain it by the
assumption.

Claim 2. The policy τ is better than γ.
Let Φ denote the mapping from RV TR to itself defined by the right parts of the equations (19)–
(20). This function Φ is non-decreasing, i. e.

(X ≤ Y ⇒ Φ(X) ≤ Φ(Y )),

and for points X with coordinates between 0 and 1, i. e. such that 0 ≤ X ≤ 1,

Φ(X) ≤ Φ(1) ≤ 1,

here 0 and 1 are vectors whose components are zeros and ones respectively. Consider the
sequence

Γ, Φ(Γ), . . . ,Φi(Γ), . . . ,

where Φi+1(X) = Φ(Φi(X)). Since Γ < Φ(Γ), and Φ is monotonous, the sequence Φi(Γ) con-
verges to the solution of the system (19)–(20), i. e. to the limit probabilities of τ . That proves
claim 2.

This contradicts to γ being a maximum policy. ¤

Proposition 4 Γ is the unique point on D that minimizes (on D) the linear function
∑

x∈V TR px.

Proof. It is implied by the fact that D ⊆ Dγ , lemma 7, and lemma 6. ¤
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3.6.3 An algorithm

Proof of the theorem. A maximum policy can be found by the following polytime algorithm:
1. Find the set V TR, see lemma 5.
2. Find the minimum point Γ of the linear function

∑
x∈V TR px over the convex polyhedron D

by any polytime algorithm for linear programming (e. g. see [PaSt82]).
3. Construct the sets {λx}x∈V TR and U by the following procedure:
U ← T ; -- Initialization
While V TR \ U 6= ∅ Do
Choose x from V TR \ U and an action λx such that
γx = aλx

x +
∑

y∈V TR aλx
xy · γy

with aλx
x 6= 0 or aλx

xy 6= 0 for some y ∈ U (*);
Put x in U ;

end while;
4. Define the output policy σ by the equations: σ(x) = λx for x ∈ V TR.

Claim. The policy defined by the algorithm is a maximum policy.
Firstly, notice that while-loop exhausts the set V TR and then stops. Indeed, suppose V TR\U
is not empty (i. e. V TR has not been exhausted). If one admits that there are no edges from
V TR \ U to U then one concludes that T is not reachable from some vertices of V TR, namely,
from V TR \U . A contradiction. Hence, some maximum policy σ leads from a vertex of this set
to U . For this σ there are x and λx such that (*). But P σ = Γ, hence the algorithm can find x
and λx satisfying (*).
The policy σ defined by the equations σ(x) = λx for x ∈ V TR is maximum. Indeed, the system
Eqσ(V TR(σ)) has a unique solution (Lemma 4). But V TR(σ) = V TR because of conditions
(*), and Γ is a solution of this system. So we have P σ = Γ. It proves that σ is a maximum
policy. ¤
Remark 1. The point Γ may represent exponentially many policies, see figure 8 Remark 2.

Figure 8: An example of a graph for which Γ repre-
sents exponentially many policies

The polyhedron D maybe degenerated, see figure 9. In this example, moves are certain, so any
M-policy choosing an edge to t is an R-maximum one.

3.6.4 Constructing minimum M-policy.

Intuitively, it is clear that that the problem of minimum policy can be reduced to the problem
of maximum policy. For example, minimum policy to reach T is maximum policy to reach the
maximum recurrent set of the MDP not intersecting T . We will give this reduction in detail
below.
A set W is recurrent if for any its vertex x there exists an action α ∈ A not leading out of W ,
i. e. such that for each edge y ∈ V if ρ(xy, α) > 0 then y ∈ W. (An equivalent definition: the
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Figure 9: An example of degenerated D

set of vertices such that for every vertex there is a policy which probability to reach T is 0.) In
particular, for any policy σ any its ergodic set is recurrent.
Now take all recurrent sets not intersecting T , and denote by U their union. Clearly, U is
recurrent and does not intersect T . This set U may be empty. In this case T will be reached
with probability 1 by any policy.
One can show that the minimum value of Rs,F

∞ is the complement to 1 of the maximum value

R0 := V \ T ; i := 0;
Repeat
Ri+1 := {x ∈ Ri : ∃α ∈ A ReachableV erticesα(x) ⊆ Ri};
i := i + 1

UntilRi = Ri−1;
U := Ri.

Figure 10: Algorithm to compute U .

of Rs,U
∞ for U.

Indeed, let p+ be the maximum probability to reach U starting from s, and let p− be the
minimum probability to reach T starting from s:

p+ = maxσ{Rs,U
∞ (σ)}, p− = minσ{Rs,F

∞ (σ)}.

Consider an arbitrary M-policy σ. Denote by TRAPS(σ) the union of all ergodic sets of σ non
intersecting (and thus, different from) T (TRAPS(σ) may be empty). Clearly, TRAPS(σ) ⊆ U
because for every vertex of TRAPS(σ) the policy σ assures not leaving this set. But with
probability 1 policy σ will be trapped either by T or by TRAPS(σ). Thus

Rs,T
∞ (σ) + Rs,TRAPS(σ)

∞ (σ) = 1. (21)

Denote by σ̂ the following modification of σ : policy σ̂ coincides with σ for all vertices except
vertices x ∈ U such that Rx,T

∞ (σ) > 0; for such an x define σ̂(x) = α, where α is an action
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providing ρ(xy, α) = 0 for all y ∈ V such that and y 6∈ U . For the policy σ̂ the set U is contained
in TRAPS(σ̂), and thus U is the union of all ergodic sets of σ̂ different from T . Hence, from
the construction of σ̂ and (21) follows

Rs,T
∞ (σ̂) + Rs,U

∞ (σ̂) = 1, (22)

Rs,T
∞ (σ̂) ≤ Rs,T

∞ (σ), Rs,U
∞ (σ) ≤ Rs,U

∞ (σ̂). (23)

The latter equations are evident (look, e g. at the first one of (23)): any trajectory of σ̂ that
reaches T does not touch U , and thus, is also a trajectory of σ.
Take a Markov policy ζ that realizes the probability p− = Rs,T

∞ (ζ). From the minimality of ζ
and (22), (23) we get

p− = Rs,T
∞ (ζ̂) = 1−Rs,U

∞ (ζ̂) ≥ 1− p+ (24)

because p+ is the maximum probability to reach U .
Similarly, for an M-policy ϕ such that p+ = Rx,U

∞ (ϕ), we get

p+ = Rs,U
∞ (ϕ̂) = 1−Rs,F

∞ (ϕ̂) ≤ 1− p−. (25)

The inequalities (24), (25) give p− = 1− p+.

So, in order to compute p− in polytime it suffices to prove that the set U can be computed in
polytime. This can be done by the algorithm of Fig. 10, where ReachableV erticesα(x), α ∈ A,
represents the set of vertices y such that ρ(xy, α) > 0, i. e. the set of the vertices reachable from
x in one step with a non zero probability by action α.
Clearly, the running time of the algorithm of Fig. 10 is polynomial in the size of the MDP-graph.
Thus, a desirable policy can be found as a maximum policy to reach U .

3.7 Nonperiodicity of First Actions of Optimal T-policies

We fix now a MDP-graph G and T , and will be interested in the behaviour of Rk-maximum T-
policy when k grows. Remind that popt

k (s, T ) is the value of Rs,T
k -criterion for an Rs,T

k -maximum
T-policy, and popt∞ (s, T ) is the value of Rs,T

∞ -criterion for an maximum M-policy. It is clear that
popt

k (s, T ) converges to popt∞ (s, T ) when k tends to infinity. The actions of Rs,T
k -maximum T-

policies also converge to the actions of an maximum M-policy in the following weak sense.
Denote by Dk(v), v ∈ V , the set of actions of all Rv,T

k -maximum T-policies on the input (v, 1).
Thus Dk(v) is the set of possible first moves of policies that lead to T from v in not more than k
steps with maximum probability. Then there exists a natural N such that for every k ≥ N there
exists an maximum M-policy σ such that σ(v) ∈ Dk(v) for every vertex v. Such minimum N is
not more than exponentially large on the size of G (that can be proved by using estimations on
root separation for the characteristic polynomials). However, this convergency actually may be
exponentially slow, see Figure 3. Moreover, the sequence of sets Dk(v) not necessary stabilises
when k grows, see Figure 3.7. It is not hard to see that the first action of an Rk-maximum
T-policy depends on k mod 4: D4l+1(s) = D4l+3(s) = {r, l}, D4l(s) = {r}, D4l+2(s) = {l}.
In this example Dk(v) depends on k (ultimately) periodically. However, this is not the general
case:

Theorem 3 ([BBS94]) There exists a MDP-graph G such that the sequence Dk(s) is not (ulti-
mately) periodic on k.
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Figure 11: The graph G.

Proof. We divide the proof into 3 parts.

Construction of MDP-graph.
We start with the following MDP-graph G of Figure 11 defined as follows. • The set of

vertices is V = {s0, s1, s2, s3, s′1, s′2, s′3, t, trap}.
• The set of actions A = {d, d̄}.
• The vertex s0 is reliable and lbl(d, s0) = s0s1, lbl(d̄, s0) = s0s

′1.
• For the other vertices we have:
• Action d:
ρ( sisi+1, d) = 1−α

2 for i = 1, 2, 3,
ρ( sisi, d) = α/2, ρ(sit, d) = 1/2,
ρ(s′is

′
i+1, d) = 1−α

2 for i = 1, 2, 3
ρ(s′is

′
i, d) = α/2, ρ(s′it, d) = 1/2

(the sum of indices is mod 3).
• Action d̄:
ρ(sit, d̄) = 1/2, ρ(sitrap, d̄) = 1/2 for i = 2, 3,
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ρ(s1t, d̄) = 1/2 + ε, ρ(s1trap, d̄) = 1/2− ε,
ρ(s′it, d̄) = 1/2, ρ(s′itrap, d̄) = 1/2 for i = 1, 3,
ρ(s′2t, d̄) = 1/2 + ε, ρ(s′2trap, d̄) = 1/2− ε,

(ε is less than 1/4, and some restrictions on α, 0 < α < 1, will be imposed later). Figure 12

shows the probability distributions for edges according to action d or d̄.
Structure of Actions of Optimal T-policies.
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Figure 12: Probabilities of deviations for different actions.

Trivially, the first action of every maximum T-policy is either d or d̄. After this first action every
maximum policy makes action d as long as possible, i. e. up to the last move, because action
d never leads to trap, and action d̄ made in any vertex si or s′i, 1 ≤ i ≤ 3, definitely leads to t
with probability not greater than 1

2 + ε and to trap with probability not less than 1
2 − ε, and

thus, is always worse than 2 consecutive actions d.
So, there may be 2 types of T-policies maximum for a given k, a policy σ of the first one makes
action d at the first step, and a policy σ̄ of the second one makes action d̄ at the first step, and
then the both make action d at steps 2, 3, . . . , k − 1. Here we notice that that the probability
distribution of σ being at si, 1 ≤ i ≤ 3, after k−1 steps is the same as the probability distribution
of σ̄ being at s′i after k − 1 steps. And the probability of σ being at si, and respectively of σ̄
being at s′i, after k− 1 steps is clearly greater than 0. For this reason d̄ as the last action of any
of the policies is better than d. So, we assume that the last action of the both policies is d̄.
If we consider any 2 policies σ and σ̄ of the just mentioned types they can be compared with
respect to the probabilities of being respectively in s1 and s′2 after k − 1 steps, because the
probability to reach t from these vertices is greater than the same probability for other vertices
reachable by the corresponding policy. More precisely, denote by pk(v) (respectively, p̄k(v)), k ≥
0, the probability to arrive at vertex v after having executed exactly k steps of σ (respectively,
σ̄). Then pk(v) = p̄k(v′) for k ≥ 1.
If pk(s1) > p̄k(s′2) = pk(s2) for k ≥ 1 then σ is better than σ̄, i. e. Rs0,t

k+1(σ) > Rs0,t
k+1(σ̄). So, the

first move of an maximum T-policy for k ≥ 2 is determined by what of the inequalities

pk(s1) > pk(s2) (26)
pk(s1) < pk(s2) (27)
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takes place for this k.

Computing probability distribution for transitive vertices.
We compute the probabilities pk(si) for the policy σ that makes d as the first k actions. We
will denote these probabilities by pi,k−1 for simplicity. The matrix of transition probabilities for
action d is 1

2M where

M =




α 0 1− α
1− α α 0
0 1− α α




(Notice that M is a bistochastic matrix. )
And we have (for k ≥ 0)




p1,k

p2,k

p3,k


 = (

1
2
M)k




1
0
0


 . (28)

To compute Mk we transform M to its eigenvectors basis and then come back to the initial
basis. The characteristic polynomial of M , i. e. the polynomial det(t · E −M), where E is the
unity matrix, is (t−α)3− (1−α)3. The eigenvalues of M are 1, λ = α + (1−α)ζ, and λ̄, where
ζ = e

2πi
3 , i =

√−1, z̄ is the complex number conjugate to z. The eigenvectors of M are



1
1
1


 ,




ζ̄
ζ
1


 ,




ζ
ζ̄
1


 .

Transforming M to its eigenbasis we get

C−1MC =
1
3




1 1 1
ζ ζ̄ 1
ζ̄ ζ 1







α 0 1− α
1− α α 0
0 1− α α







1 ζ̄ ζ
1 ζ ζ̄
1 1 1


 =




1 0 0
0 λ 0
0 0 λ̄


 .

Hereupon we get

C−1MkC = (C−1MC)k =




1 0 0
0 λk 0
0 0 λ̄k


 ,

and hence

Mk =
1
3




1 ζ̄ ζ
1 ζ ζ̄
1 1 1







1 0 0
0 λk 0
0 0 λ̄k







1 1 1
ζ ζ̄ 1
ζ̄ ζ 1


 =




1 + λk + λ̄k . . . . . .
1 + ζ̄λk + ζλ̄k . . . . . .
. . . . . . . . .


 .

The latter equalities and (28) give p1,k = 1
2k (1 + λk + λ̄k) and p1,k = 1

2k (1 + ζ̄λk + ζλ̄k). So, the
inequality, say, (26) becomes

λk + λ̄k > ζ̄λk + ζλ̄k.

The latter is equivalent to λk(1 − ζ̄) + λ̄k(1 − ζ) > 0, and hence to 2Re(λk(1 − ζ̄)) > 0 where
Re(z) denotes the real part of a complex number z. Denoting by θ the argument of λ we can
rewrite the latter inequality as

cos(kθ +
π

6
) > 0. (29)
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Now we look at the definition of λ:

λ = α + (1− α)ζ = α + (1− α)(cos
2π

3
+ i sin

2πi

3
)

= α + (1− α)(−1
2

+ i

√
3

2
) =

1− 3α

2
+ i

(1− α)
√

3
2

that shows

cos θ =
1− 3α

2
√

1− 3α + 3α2
. (30)

One can choose a rational α sufficiently small, as required by our reasoning, and such that θ is
not a rational multiple of π.
Indeed, consider an equation

cos
p

q
π = f(α) (31)

where (p, q) = 1, 0 < p < q, α ∈ [α0, α1], α0 < α1 and f is an algebraic function over Q, for
simplicity supposed to be without critical points and monotone in [α0, α1]. Let f be defined by
the equation

a0(x) + a1(x)y + · · ·+ ad(x)ym = 0

where aj(x) ∈ Q[x], 0 ≤ j ≤ d. All values f(α) for rational α ∈ [α0, α1] are algebraic numbers

of the degree not greater than m. On the other hand, cos p
q π = 1

2(ζp
q + ζ−p

q ) where ζq = e
2πi
q ,

and thus is also an algebraic number, but of the degree not less than φ(2q) where φ is Euler
function. It is known that φ(n) ≥ c n

ln ln n for some constant c > 0. Hence, the set of algebraic
numbers of degree not greater than m having the form cos p

q π (under the mentioned conditions
on p and q) is finite. So, the equation (31) may be satisfied at most by a finite number of triples
(p, q, α) with α ∈ Q.
Now let α be a rational number such that (30) and θ is not a rational multiple of π. Denote
by Dk the Boolean value of (29). Suppose that the sequence {Dk}k∈N is ultimately periodic
with period T , and the periodicity begins at k0. Suppose, without loss of generality, that
cos(k0θ + π

6 ) ∈ [0, 1]. Then, denoting η0 = k0θ + π
6 and η = Tθ we have cos(η0 + iη) ∈ [0, 1] for

all i ∈ N. But η is not commensurable with π, and hence {iη}i∈N (mod 2π) is dense in [0, 2π].
Thus, the sequence {cos(η0 + iη)}i is dense in [−1, 1]. ¤

4 Finite Memory policies

4.1 Policies under Finite Automata Constraints.

In this section we consider the strategies whose realizations are confined to a regular (finite au-
tomaton) language [BBS95]. We give a generalization of the results concerning Markov strate-
gies. As above, the case of bijective colouring is treated, so we identify the vertices and their
colours.
In the case of robot motion planning, one can think about some constraints which the robot is
submitted to, for example, during its motion the robot has to fulfil some tasks, which implies its
trajectory cannot be anyone. Consider the following 3 examples of reasonable behaviours and
their formal descriptions.
Exemple 1. Every time the robot reaches some place u it has to visit place v before visiting u
later.
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Exemple 2. During its motion from s to T , the robot has to visit places u, v and w only once
and in this order.
Exemple 3. The robot cannot visit the place u more often than the place v.
These constraints can be formalized by defining the allowed paths of the robot from s to T as
a language L ⊂ V ∗. In the above examples, the languages are respectively

L1 = (V \ {u})∗{u}(V \ {u, v})∗{v}(V \ {u})∗)∗(V \ {u})∗,

L2 = V ′∗uV ′∗vV ′∗wV ′∗,

L3 = {w ∈ V ∗ | | w |u≤| w |v},
where V ′ = V \ {u, v, w}, and |w|u denotes the number of occurrences of u in w.
The languages L1 and L2 are regular (finite automata) languages, opposite to L3 which is not
regular.

4.2 RL-criterion.

The RL-criterion has been defined together with the other ones in subsection 2.4. Let a MDP-
graph G is fixed. Denote by Ps,T

≤k (G, L) or simply by Ps,T
≤k (L)if G is clear, the set of all paths of

the length not greater than k between s and a vertex of T in G, which belong to L and without
any proper prefix with the same property. Sometimes we call paths with the latter property
simple realisations. For a policy σ acting on G define

RL(σ, k) =
∑

W∈Ps,T
≤k (L)

Prob(W is a L-realization of σ) (32)

The unbounded version of this criterion serves to formulate the problem of maximizing the
probability to reach T from s via L-realizations without limitations on time. Its formal definition
is

RL
∞(σ) = sup{RL

k (σ) : k ∈ N}.
As RL

k (σ) is non decreasing on k we can replace sup by lim is this definition.
For general languages L optimization or even computation of RL-criterion is hard. So, we deal
only with the RL-criterion for regular (finite automata) languages L of sequences of states.
Recall the definition of regular language.

4.3 Regular languages.

The following notions are standard, see e. g. [Eil74].
A finite (complete and deterministic) automatonA over the alphabet Σ is a quintuple (Σ, Q, δ, q0, F ),
where
• Σ is the input alphabet,
• Q is a finite set of states,
• δ is a function: Q× Σ → Σ called the transition function,
• q0 ∈ Q is the initial state,
• F ⊂ Q is a set of final states.

The function δ can be extended to Q× Σ∗ as follows:

δ(q, ε) = q, δ(q, Wa) = δ(δ(q, W ), a) for q ∈ Q, W ∈ Σ∗, a ∈ Σ,
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where ε denote the empty word.
For short, δ(q,W ) will be denoted q.W . A word W ∈ Σ∗ is accepted by A if δ(q0,W ) belongs
to F . The set of words accepted by A is denoted by L(A). A language L ⊂ Σ∗ is a regular
language if there exists a finite (deterministic and complete) automaton A such that L = L(A).
If the set of final states is not precised, the automaton is called a finite transition system.

4.4 RL-optimal policies are not Markovian.

According to the previous section, as far as we consider the R-criterion, the class of M-policies
or T-policies is sufficient to find a maximum one, for infinite and finite horizon respectively. It
is no longer the case for the RL criterion as it is proved by the following example.

Proposition 5 There exists a MDP-graph and a regular language L for which no T-policy is
RL

k -optimal (k ≥ 4), and no M-policy is RL
∞-optimal.

Proof. Consider the graph of Fig. 13, and let L be the language specifying that the system

x

y

s t

Figure 13: A counter-example.

starts in state s, each time it is in state x, it has to reach next time state y, it has to be in state
x at least once, and it has to stop in state t. In other words, L = s{y, s, t}∗(xy{y, s, t}∗)+t. The
set of actions here is {s, x, y, t}. We define ρ in the following way:
• when the system is in state s, if action x or y is taken the system goes in state x or state

y with the same probability 1/2.
• when the system is in state x, if action x is choosen, the system remains in state x. If

another action d is taken, the system goes in state d with probability 1− 2ε and in both states
of {y, s, t} \ {d} with probability ε.
• the same rule holds for y permuting x and y. For state t, whatever is the action, the system

remains in state t. We suppose ε < 1/6 (for technical reasons).

Let σ be a T-policy, and RL(σ, k) be the criterion to evaluate (k ≥ 4). Suppose that σ is R-
optimal among T-policies. It is easy to prove that whatever is the value of σ(y, 3), there exists
a policy σ′ better than σ, i. e. satisfying R(σ′, k) > R(σ, k). The same kind of reasoning holds
for M-policies. More detailed demonstration for T-policies is as follows.
Let σ be a T-policy, and RL

k(σ) be the criterion to evaluate (k ≥ 4). Suppose that σ is R-
optimal among T-policies. We will prove that whatever be the value of σ(y, 3), there exists a
policy σ′ better than σ, i. e. satisfying R(σ′, k) > R(σ, k).
Consider 3 possible cases corresponding to 3 possible actions of σ from y after k − 3 steps.
Actually there are 2 cases.

Case 1. σ(y, 3) = t or σ(y, 3) = s. Consider a path W from s satisfying the three following
conditions:

(i) W has length k − 2,
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(ii) W has no occurrence of t and no occurrence of x,
(iii) y is a suffix of W .

Such a string is a realization in k − 3 steps of any policy with a positive probability. Clearly, σ
is not a “good” policy for W . There exists a better policy σ′ (but σ′ is not a T-policy). The
policy σ′ is the same as σ, except for W , Wx and Wxy. We define σ′(W ) = x, σ′(Wx) = y and
σ′(Wxy) = t . Suppose that after k − 3 steps, a realization of σ or σ′ is W . In that situation,
the probability to reach t in an admissible way with respect to L in at most k steps is less than
ε for the policy σ and equal to (1− 2ε)3 for policy σ′. On the other hand, if the policy σ or σ′

has followed in k − 3 steps a path W ′,W ′ 6= W , the probability to reach t in an admissible way
with respect to L in at most k steps is the same for σ and σ′. So, we have R(σ′, k) > R(σ, k).

Case 2. σ(y, 3) = x. Consider a string W satisfying the three following conditions:
(i) W has length k − 2,
(ii) W has no occurrence of t and has one occurrence of x,
(iii) xy is a suffix of W .

There exists a better policy σ′ (but σ′ is not a T-policy), which is the same as σ, except for
W . We define σ′(W ) = t. Suppose that after k − 3 steps, a realization of σ or σ′ is W . The
probability to reach t in an admissible way with respect to L in at most k steps is less than
(1− 2ε)3 + ε for the policy σ and more than 1− 2ε for the policy σ′. So, R(σ′, k) > R(σ, k). ¤

4.5 Finite memory policies.

A natural generalization of M-policy is finite memory policy. We prove below that the class
of finite memory policies contains optimal policies for the RL

∞-criterion, when L is a regular
language. Moreover, for the finite horizon, a generalization of T-policy in the same way, leads
to optimal solutions.
A (deterministic) policy σ is called a finite memory policy or F-policy if there exists a finite
transition system T = (Σ, Q, δ, q0), and a function σ′ : Q → A such that ∀W ∈ Σ∗ (σ(W ) =
σ′(q0.W )). The size of the memory is the size of the transition system T .
A (deterministic) policy σ is called dependent only on time and finite memory or FT-policy if
there exists a finite transition system T = (Σ, Q, δ, q0), and a function σ′ : Q × N → A such
that ∀W ∈ Σ∗ (σ(W ) = σ′(q0.W, |W |).
Notice that T- and FT-policies are not finite memory ones.

4.6 RL-optimal policies.

In this section we suppose the information is perfect (i. e. continue to consider the case of
bijective coloring). And we restrict ourselves to behavior constraints from a regular language
represented as a deterministic automaton.
The theorems proven here say that RL-optimal policies can be found in the class of F-policies
for infinite horizon, and in the class of FT-policies for finite horizon, and one can construct such
a policy in polytime.

Encoding a RL criterion into a Rs,T one.

Let G = (V, A, ρ, s, T ) be a MDP-graph with bijective coloring and fixed target T (if not then
there is no T ), and L a regular language over V recognizable by a finite automaton A =
(V,Q, δ, q0, F ). Without loss of generality we can suppose that A contains a nil action ω, such
that for every vertex v ∈ V , ρ(vv, ω) = 1. We need the following definitions to describe the
mentioned reductions. A path in G is called normal if it belongs to sV ∗. A policy on G is
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a normal policy if its value is ω for not normal paths. Clearly if σ is an RL-optimal policy,
then the unique normal policy σ1 defined as σ on normal paths is also an RL-optimal policy.
Moreover if σ is a T-policy (resp. a M-policy) then σ1 is a T-policy (resp. a M-policy).
To reduce the problem of constructing optimal policies to the previous case of section 3 we go
to MDP 〈G,A〉 defined as (V ′, A′, ρ′, s′, T ′) where
• V ′ = V ×Q,
• A′ = A,
• ρ′((u, q), (v, q.v), α) = ρ(u, v, α),
• s′ = (s, q0.s),
• T ′ = T × F (If not to fix the target set, we do not define T ′).

Thus an edge of MDP G from u to v that the system follows under an action α with probability
ρ(uv, α) and a transition from q to q.v give in 〈G,A〉 a transition from (u, q) to (v, q.v) with
probability ρ′((u, q)(v, q.v), α) = ρ(uv, α).
Now we define a mapping Φ from paths and policies of G to respectively paths and policies of
〈G,A〉.
For every path W ∈ V ∗, W = w1 . . . wn, wi ∈ V , 1 ≤ i ≤ n, denote by Φ(W ) the path in V ′∗

such that Φ(W ) = (w1, p1)(w2, p2) . . . (wn, pn) where pi = q0.w1 . . . wi, 1 ≤ i ≤ n.
For a policy σ on the MDP-graph G we define a normal policy σ′ = Φ(σ) on 〈G,A〉 as follows:

σ′(W ′) =
{

σ(W ) if W ′ ∈ s′V ′∗ and W ′ = Φ(W ),
ω otherwise.

It is clear that
(W ′ = Φ(w) & last.W ′ = (u, q)) ⇒ q0.W = q.

That means that the policy σ′ simulates the policy σ on the path W in the graph 〈G,A〉 which
contains in its states the information concerning the behavior of A on the path W in the graph
G.
It is easy to verify that the mapping σ → Φ(σ) is a one-to-one correspondence between the
normal policies in G and the normal policies in 〈G,A〉. Denote by T (A) the transition system
(V ×Q,V, ’., (s, q0.s)) where the transition function is defined by (u, q).v = (v, q.v). Note that if
W ∈ V ∗ then (s, q0.s).W = (last.sW, q0.sW ).

Lemma 8 Let G = (V, D, ρ, s) be a MDP-graph, and A a finite automaton recognizing a regular
language L. The following property holds for the MDP-graph 〈G,A〉:

if σ′ is a normal Rs′,T ′
k -optimal (resp. R∞-optimal) T-policy (resp. M-policy) on 〈G,A〉 then

Φ−1(σ′) is a normal RL
k-optimal (resp. RL

∞-optimal) FT-policy (resp. F-policy) on G for the
finite transition system T (A).

Proof. Let σ′ be a normal M-strategy on 〈G,A〉 and σ = Φ−1(σ′). The strategy σ is also
normal and

∀W ∈ sV ∗ (σ(W ) = σ′(Φ(W ))).

Denote by σ′′ the mapping from V ′∗ to A′ such that σ′′(W ′) = σ′(last.W ′) for all W ′ ∈ V ′∗.
This σ′′ maps the set of states of the transition system T (A) into A′. Since (s, q0.s) is the initial
state of T (A) and

∀W ∈ sV ∗ (σ(W ) = σ′′((s, q0.s).W ))

we conclude that σ is a normal F-strategy with transition system T (A).

Along the same lines one can show that Φ−1(σ′) is a normal FT-strategy if σ′ is a normal T-
strategy. ¤
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Lemma 9 Let G = (V, D, ρ, s) be a MDP-graph, and A a finite automaton recognizing a regular
language L. The following properties holds for the MDP-graph 〈G,A〉:

(i) RL(σ, k) = R(Φ(σ), k) and RL
∞(σ) = R∞(Φ(σ)) for every normal strategy σ on G;

(i) (ii) if σ′ is a normal R-optimal (resp. R∞-optimal) T-strategy (resp. M-strategy) on
〈G,A〉 then Φ−1(σ′) is a normal RL-optimal (resp. RL

∞-optimal) FT-strategy (resp. F-strategy)
on G with a finite transition system T (A).

Proof. Let σ be a strategy on G.
We have:

RL(σ, k) =
∑

W∈Ps,T
≤k (G, L)

Prob(W is a L-realization of σ)

=
∑

W ′∈Ps′,T ′
≤k (G′, L)

Prob(W ′ is a realization of Φ(σ))

= R(Φ(σ), k) (33)

Equality (33) implies that:

RL∞(σ) = RL(σ) = sup
k

RL(σ, k) = sup
k

R(Φ(σ), k) = R(Φ(σ)). (34)

Since Φ is a one-to-one correspondence between the normal strategies on G and the normal
strategies on Φ(G), we deduce (i) using (33) and (34).
Let σ′k be a normal R-optimal T-strategy on G′ for a given k. Then Lemma 8 implies that
Φ−1(σ′k) is a normal FT -strategy on G for the same k with transition system T (A). Furthermore,
by (i), the strategy Φ−1(σ′k) is a RL-optimal FT -strategy. In the same way, if σ′ is a R-optimal
T-strategy on G′, then Φ−1(σ′) is a RL-optimal T-strategy on G with finite transition system
T (A). ¤
The following 2 theorems are immediate consequences of Lemmas 8-9.

Theorem 4 For every MDP-graph with perfect information and every regular language L a
policy RL-optimal for a given k ∈ N does exist among FT-policies, and such a FT-policy can
be constructed in time polynomial in k, in the size of the MDP-graph and in the size of a
deterministic automaton defining L.

Theorem 5 For every MDP-graph with perfect information and every regular language L RL
∞-

optimal policy does exist among F-policies, and such an F-policy can be constructed in time
polynomial in the size of the MDP-graph and in the size of a deterministic automaton defining
L.

4.7 Limits of finite memory policies

We come back to the partial information case. We prove that, opposite to the perfect information
situation, in the case when there exists a Rr

∞-optimal policy, maybe no finite memory policy is
optimal.
We start with the MDP-graph G shown on the Figure 14). Its formal description is a sfollows.
• The set of vertices is V = {s0, s1, s2, s3, s′1, s′2, s′3, t, trap}.
• The set of actions is D = {d, d̄}.
• The transition probability function ρ is defined as:

ρ(s0, s1, d) = ρ(s0, s
′
1, d) = ρ(s0, s1, d̄) = ρ(s0, s

′
1, d̄) = 1/2.

For xi ∈ {s2, s3, s
′
1, s

′
3}:
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Figure 14: The graph G.

ρ(xi, xi+1, λ) = 1−α
2 , ρ(xi, xi, λ) = α/2, ρ(xi, t, λ) = 1/2, λ ∈ {d, d̄}

(the sum of indices is mod 3).
ρ(s1, s1, d) = α/2, ρ(s1, trap, d) = 1/2− β,
ρ(s1, s2, d) = 1−α

2 ρ(s1, t, d) = β,
ρ(s1, s1, d̄) = α/2, ρ(s1, trap, d) = β,
ρ(s1, s2, d̄) = 1−α

2 ρ(s1, t, d) = 1/2− β,
ρ(s′2, s

′
2, d) = α/2, ρ(s′2, trap, d) = β,

ρ(s′2, s
′
3, d) = 1−α

2 ρ(s′2, t, d) = 1/2− β,
ρ(s′2, s

′
2, d̄) = α/2, ρ(s1, trap, d) = 1/2− β,

ρ(s′2, s
′
3, d̄) = 1−α

2 ρ(s′2, t, d) = β.
• Vertices s1, s2, s3, s

′
1, s

′
2, s

′
3 have the same color, we will call this color c.

After one step, the state of the system has a color c, and while state t or state trap is not
reached, the system remains in a state with color c. So, at step n + 1, a policy σ acts on the
word clr(s0)cn, and it can be considered as a T-policy.
Denote by pn(si) (resp. pn(s′i)) the probability to be in state si (resp. s′i) after n steps applying
some policy σ, and knowing that the system is in a state with color c. Whatever is σ we have:
pn(si) = pn(s′i) = pi,n for i = 1, 2, 3 with




p1,n

p2,n

p3,n


 =

1
2
Mn




1
0
0


 , where M =




α 0 1− α
1− α α 0
0 1− α α


 . (35)

So at step n, n ≥ 1, if the system is in a state with color c, the probability to reach t at the next
step depends only on the action made at this moment, because the probability distribution at
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this moment is independant of σ, and this probability to reach t at the next step is:
pn(s1)β + pn(s′2)(1/2− β) + 1/2(pn(s2) + pn(s3) + pn(s′1) + pn(s′3)) if action d is made,
pn(s1)(1/2− β) + pn(s′2)β + 1/2(pn(s2) + pn(s3) + pn(s′1) + pn(s′3)) if action d̄ is made.

Thus at step n the best action is d if

pn(s1)β + pn(s′2)(1/2− β) > pn(s1)(1/2− β) + pn(s′2)β
which is equivalent to

pn(s1) > pn(s′2) (36)

if β < 1/4. Using M , a computation of the probabilities pk(si) shows that (36) is equivalent to :

cos(nθ +
π

6
) > 0. (37)

where θ is the argument of λ = α + (1 − α)ζ, with ζ = e
2πi
3 , where λ is one of the eigenvalues

of M , the others are 1 and λ̄.
The definition of λ leads to the equality:

cos θ =
1− 3α

2
√

1− 3α + 3α2
. (38)

One can choose a rational α sufficiently small, as required by our reasoning, and such that θ is
not a rational multiple of π.

Now let α be a rational number such that (38) and θ is not a rational multiple of π. Denote by
Dk the boolean value of (37).

Lemma 10 The sequence {Dk}k∈N is not ultimately periodic.

Proof. Suppose that the sequence {Dk}k∈N is ultimately periodic with period T , and the
periodicity begins at k0. Suppose, without loss of generality, that cos(k0θ + π

6 ) ∈ [0, 1]. Then,
denoting η0 = k0θ + π

6 and η = Tθ we have cos(η0 + iη) ∈ [0, 1] for all i ∈ N. But η is not
commensurable with π, and hence {iη}i∈N (mod 2π) is dense in [0, 2π]. Thus, the sequence
{cos(η0 + iη)}i is dense in [−1, 1], a contradiction. ¤
Notice that there is a unique (except for the first step where, d or d̄ can be chosen arbitrarily)
Rs,t
∞ -optimal policy τ defined bythe equality

τ(clr(s0)cn) = If Dn Then d Else d̄.
Moreover, we know that the boolean value Dn of (37) is not ultimately periodic (Lemma 10). But
a T-policy which has a finite memory is exactly an ultimately periodic function. Therefore, for
every finite memory policy σ there exists infinitely many n such that σ(clr(s0)cn) 6= τ(clr(s0)cn).
So every policy σ which is ultimately periodic satisfies the following inequality:

Rs,t
∞ (σ) < Rs,t

∞ (τ).
We can claim

Theorem 6 For the MDP-graph G defined above, there exists a Rs,t
∞ -optimal policy τ , and for

every finite memory policy σ
Rs,t
∞ (σ) < Rs,t

∞ (τ).

Since Rs,t criterion is a particular case of both Rr and RL ones we have:

Corollary 1 For Rr criterion as well as RL one, in the case of partial information and infinite
horizon, in general, no finite memory policy is optimal.
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5 Randomized policies

We consider a more rich class of policies, namely, randomized policies. As many algorithmic
problems related to constructing optimal deterministic policies are computationally hard, one
can hope that similar problems for randomized policies will be simpler.

5.1 Definitions.

A randomized policy is a random function of the same type as deterministic policy. Such a
function τ can be represented by the function Λτ that gives a distribution of probabilities to
choose this or that action: Λτ : C+×A → [0, 1], such that for all W ∈ C+

∑
α∈A Λτ (W,α) = 1

for all W ∈ C+.

The distributions Bτ (v1 . . . vk−1vk, λ1 . . . λk−1) generated by a randomized policy τ are defined
similarly to the deterministic case:

Bτ (v1 . . . vk−1vk) = s(v1) ·
k−1∏

i=1

(
∑

α∈A

Λτ (clr(Vi), α) · ρ(vivi+1, α)),

where s(v) is an initial distribution.
But this distibution is not as well productive because it does not determine uniquely the actions
of the strategy corresponding to a given path, and we cannot directly find the reward obtained
on the path. The distribution on sequences of states and sequences of actions is defined by

Bτ (v1 . . . vk−1vk, α1 . . . αk−1) = s(v1) ·
k−1∏

i=1

Λτ (clr(V1,i), αi) · ρ(vivi+1, αi)).

Informally speaking, Bτ (P ) is the probability to follow a given path P of the length k when
executing a strategy τ .

5.2 Probabilistic versus Deterministic: general Policies.

In the case of perfect information it is known that randomized policies are not better than deter-
ministic ones for the R-criterion [Kal83]. This result can be extended to the partial information
case.

Theorem 7 For every randomized policy τ , an initial distribution s and natural k there exists
a deterministic policy σ such that Rs

k(τ) ≤ Rs
k(σ).

The proof is rather straightforward but technical, and is based on considerations of convexity of
Rs with respect to some kind of addition of policies.

In a similar way as for deterministic policies, we define the notion of finite memory randomized
policy.
A randomized policy τ defined by the function Λτ : C+×D → [0, 1], is a finite memory policy if
there exists a finite transition system T = (States, C, δ, p0) and a function Λτ ′ : States×A →
[0, 1], such that for all W ∈ C+

Λτ (W,α) = Λτ ′(p0.W, α) (39)
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and, for all q ∈ States,
∑

α∈A

Λτ ′(q, α) = 1. (40)

The size of the memory is the size of the transition system.

5.3 Randomized versus Deterministic Finite Memory Policies.

We give here an example when finite memory randomized policies are better than the deter-
ministic ones. Constructing examples of this type it is reasonable to take into account the
complexity of MDP-graphs and of policies, in particular, the complexity of random number gen-
erators with respect to the simple uniform 0-1 Bernoulli source. Our example deals with grids,
for less ‘geometric’ graphs one can find simpler examples.

Proposition 6 Given an integer M , there exists a MDP-graph GM for which the following
property holds: there exists a randomized policy τ with finite memory bounded by M such that
for every deterministic policy σ with finite memory bounded by M , we have Rs,T∞ (τ) > Rs,T∞ (σ).

Proof. Consider the square grid n × n, n being odd and specified later. The set of actions
is D = {N, E, S, W}, the actions corresponding to cardinal points. One side of the square is
fixed as the target. We use two colors, black and white. All the vertices are white except the
target vertices which are black. We take four copies of the same grid but with four different
target sides (with respect to cardinal points) with centres o1, o2, o3, o4. We add a white source
vertex s. Define the function ρ as follows. For s, we put ρ(s, oi, d) = 1/4 whatever be the action
d, i = 1, . . . , 4. So starting from s, after one step, we reach one of the four centres with the same
probability. For every vertex u in the grids and every direction d ∈ D, if v is a d-neighbour of
u then ρ(uv, d) = 1 otherwise ρ(uu, d) = 1. It means that taking action d in state u, we go to
its d-neighbour with probability 1 if this d-neighbour exists otherwise we remain in state u with
the same probability 1.
Denote the described graph by G.

Let σ be a finite memory deterministic policy with memory size bounded by M . Consider
its behavior when it starts from the centre of one grid. While the policy sees white states
its behavior is defined by a deterministic automaton without input. But the state transition
diagram of such an automaton is a (directed) cycle, say Z, with a directed simple path, say Y ,
of vertices coming in it. Thus, once having done Y , the policy starts some periodic behavior.
Suppose that n > M . The sequence Y determines some displacement inside the interior of the
square. After having done this displacement the policy follows the periodic pattern defined by
Z. If this pattern is strictly inside the square the displacement is determined by the vector going
from the initial to the end vertex of the pattern. We will call it the displacement vector. But
when the policy reaches a white boundary, further displacements are along the projection of the
vector on the boundary. On the whole the policy can reach vertices situated on at most two
adjacent boundaries but without end extremities different from their joint vertex.
Now launch in G a deterministic policy σ with the memory bounded by M . Suppose, without
loss of generality, that its displacement vector belongs to North-West quadrant. With probability
1/2 it arrives in a grid where the target is either the North or West boundary. Thus σ reaches
the target with probability not more than 1/2.
On the other hand, the randomized policy τ which defines the usual uniform random walk in
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the square reaches the target with probability 1. And τ has a very small constant memory even
if it uses for random generation of directions the uniform zero-one Bernoulli source. ¥

6 Unobservable Processes

In this section we consider the class of MDP-graphs with one color, i. e. with the set of colors
consisting of one element. We will call such graphs non-colored. The argument of a strategy is a
string of one and the same character, and hence it contains only the information on the number
of executed steps in unary notation. Thus, the action of a strategy depends only on time, and
we consider a strategy σ as a function σ : N→ A that may be represented also by the string of
its values d1d2 . . .. So, this is a particular case of T-strategy. The following result was proven in
[PT87] as a corollary of a more general theorem on the complexity of partially observed Markov
decision processes.

Theorem 8 ([PT87], Corollary 2) The following problem is NP-complete:
Given a non-colored MDP-graph with k vertices, a starting vertex s, and a set of target vertices
T ,
to recognize whether there exists a strategy σ with Rs,T

k (σ) = 1.

The following theorem [BdRS96] shows that the problem of computing an optimal strategy in
the case of total unobservability does not admit even very weak approximations.

Theorem 9 The following problem is NP-hard:
Given a noncolored MDP-graph with k vertices, a starting vertex s and a set of target vertices T
(such that popt

k (s, T ) equals 1 or is less than exp(−
√

k)),
recognize whether there exists a strategy σ which leads from s to T in k steps with probability
not less than exp(−

√
k).

Proof. We use the notations related to 3SAT-problem from sunsection 2.6.
Given a formula F , we construct the following simple MDP-graph HF .
• The set of actions is D = {1, 2, 3}.
• Reliable vertices are {t, trap, 1, 2, . . .m− 1} ∪ (Z × {1, 2, . . .m− 1} × {1, 2}), s = 1.
• Random vertices are D × {1, 2, . . . m− 1}.
• Reliable edges for action λ:

lbl(λ, t) = (t, t), lbl(λ, trap) = (trap, trap), lbl(λ, i) = (i, (λ, i)),
lbl(λ, (z, i, a)) =
case 1.1: a = 1 & z = zi+1,λ =⇒ edge to trap;
case 1.2: a = 1 &z 6= zi+1,λ =⇒ edge to (z, i, 2);
case 2.1: a = 2 & i < m− 1 =⇒ edge to (z, i + 1, 1);
case 2.2: a = 2 & i = m− 1 =⇒ edge to t.

• Two random edges from a vertex (λ, i), i < m− 1:
an edge ”right” to i + 1 with probability m−i−1

m−i and
an edge ”down” to (zi,λ, i, 1) with probability 1

m−i .
• One edge ”down” to (zm−1,λ,m− 1, 1) from vertex (λ,m− 1).

For an example of graph HF see Figure 5. Claim. If the path P = z1,d1z2,d3 . . . zm,d2m−1

determined by a strategy σ = d1d2 . . . d2m is contradictory then σ traverses HF from s to t with
probability not more than 1− 1

m−1 .
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s

If P is open then R
s,{t}
2m+1(σ) = 1.

Indeed, if P is a contradictory path we have zi,d2i−1 = z̄j,d2j−1 for some 1 ≤ i < j ≤ m. When
executing σ, we follow from the vertex 1 to D×{1} then ”right” to 2 and to D×{2} etc. until
the first ”down” move. The probability to go ”down” from the D×{i} is exactly 1

m−1 . Then at
the 2j−1th step we arrive at the condition of the case 1.1 and go to trap. Thus, such a strategy
traverses HF successfully from s to t with probability not more than 1− 1

m−1 .
The proof of the second assertion of the claim is similar. ¤
Graph HF contains less than 20m2 vertices (for m large enough). We construct now the desired
graph ĤF as follows. Take 20m4 copies of HF denoted by H1

F , . . . , H20m4

F . We consider the
vertex 1 = s of H1

F as a starting vertex for ĤF and the vertex t of H20m4

F as a target vertex for
ĤF and redefine the reliable edges from vertices t of H i

F ’s. We put a unique reliable edge from
t of H i

F to s of H i+1
F for all i < 20m4. Thus we get sequential composition of the initial graphs.

Obviously, ĤF has not more than k = 20m2 · 20m4 = (20m3)2 vertices.
Consider a strategy σ = d1 . . . d2m·20m4 for traversing ĤF from starting to target. If the
paths z1,d(2m+1)i+1

z2,d(2m+1)i+3
. . . zm,d(2m+1)i+(2m−1)

are contradictory for all 0 ≤ i < 20m4 then
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the claim implies that σ traverses each of H i+1
F with probability not greater than 1 − 1

m−1 ,
and hence the total probability for σ to traverse ĤF from starting to target is not more than
(1− 1

m−1)20m4
< exp(−20m3) = exp(−

√
k). Thus for any strategy σ whose probability of success

is not less than exp(−
√

k), one of the paths z1,d(2m+1)i+1
z2,d(2m+1)i+3

. . . zm,d(2m+1)i+(2m−1)
is open.

Since k is not more than polynomially greater than the size of F . ¤

7 Bounded Unobservability

7.1 Bounded Unobservability

It was shown in [PT87] than the problem of computating an optimal strategy for partially
observed processes is PSPACE-complete. We consider here the partially observed processes when
this uncertainty concerning observability of states is bounded by a fixed parameter citeBdRS96.

7.1.1 Graphs with fixed multiplicity of colors.

We say that a MDP-graph has a coloring of multiplicity m if the pre-image of each color
contains not more than m vertices. That is, when the color is known, the location is determined
up to not more than m vertices. Obviously, bijective coloring corresponds to multiplicity 1.
As intermediate case between bijective coloring and total unobservability we consider MDP-
graphs with fixed multiplicity of coloring m > 1. The notion of PT-strategy gives a reasonable
generalization of T-strategies for this case, and proposition 1 shows that in some sense it suffices
to consider PT-strategies only.

Consider the first non trivial case m = 2, and assume for simplicity that the set of moves D
is {right, left}. For a color v ∈ C we denote by v+ and v− the two vertices of this color. When
traversing the graph we actually have just one ‘hidden parameter’ (+ or −) that influences,
however, the probabilities of further transitions. Having arrived at a color v after k steps a PT-
strategy σ makes its next action basing it on k and on the probabilities p+ and p−, p+ +p− = 1,
of being at v+ and v− respectively. Thus, σ induces a partition of [0, 1] into two sets L and R
such that σ goes right if p+ ∈ R and goes left otherwise. One might expect that if it is more
profitable to go right from v+ and to go left from v− then there should exist some boundary
probability p0 such that if p+ ≥ p0 then it is better to go right, and if p+ ≤ p0 then it is better
to go left. But this is not the case. In fact, the sets R and L may contain exponentially many
(on k) intervals that alternate.

7.1.2 Complexity of optimization.

The following theorem shows that computing an optimal strategy for graphs with small multi-
plicity of colors is NP-hard.

Theorem 10 Every optimal universal strategy for the class of MDP-graphs with coloring of
multiplicity 3 and the class of Rs,T

k -criteria, k ∈ N, is universal for NP (with respect to polytime
Turing reducibility). In simpler words, constructing an optimal strategy for MDP-graphs with
multiplicity of coloring 3 is NP-hard.

It is an interesting open question related to Max Word Problem (see subsection 7.1.3) whether
the theorem holds for multiplicity 2 and/or for a class of MDP-graphs containing only one graph.

We can reformulate theorem 10 as NP-hardness of recognizing whether there exists a strategy
with probability of success not less than a given parameter.
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However, contrary to the case of total uncertainty, the problem of computing an optimal
strategy for graphs with small multiplicity of colors does admit a reasonable polytime approxi-
mation.

A universal strategy σ is said to be ε-optimal if it is optimal up to an additive error ε, i. e.

Rs,T
k (σG,(k,s,T )) ≥ Rs,T

k (ζ)− ε

for all G, k, s, T and for all strategies ζ.

We can consider the property to be ε-optimal as a criterion with the value 1 on ε-optimal
strategies and 0 otherwise.

Theorem 11 There exists an optimal universal strategy σ with respect to the criterion of ε-
optimality such that for the class of MDP-graphs with a fixed multiplicity of coloring m it is
computable in time polynomial on the size of input graphs and 1/ε. In particular, this means
that for a fixed multiplicity of colors optimal strategies admit polytime approximations with an
additive error.

Theorem 11 is interesting in the context of Theorem 10, taken as itself it may seem very
natural.

The proofs of Theorems 11 and 10 are given in subsections 7.1.4 and 7.1.7.

7.1.3 Relations with Max Word Problem for Stochastic Matrices.

Recall that Max Word Problem for stochastic matrices is the following one. Given a set S =
{Mi}1≤i≤n of stochastic m×m-matrices with rational entries, Mi = (M i

αβ),
∑

α M i
αβ = 1, two

(row) vectors V , W with positive coordinates and an integer k in unary notation, the problem
is to find a sequence Mi1 , . . . , Mik which maximizes the product 〈V, (

∏k
j=1 WMij )〉.

It was shown in [Con91] that the Max Word Problem for stochastic matrices is NP-hard as
well as its approximation version up to any multiplicative factor.

Max Word Problem for stochastic m × m-matrices can be reduced to the problem of con-
structing an optimal strategy for MDP-graphs with coloring of multiplicity m (see (i) below
in this subsection). Together with theorem 11 this implies that for every fixed m Max Word
Problem for stochastic m × m-matrices admits polytime approximations with every additive
precision.

The problem of constructing an optimal strategy for MDP-graphs with one color can be
straightforwardly reduced to Max Word Problem for stochastic matrices (see (ii) below in this
subsection). With theorem 9 this implies that Max Word Problem for stochastic matrices does
not admit polytime approximations within additive precision exp(−

√
k).

The reductions mentioned above are described as follows.
(i) For an input Mi = (M i

αβ), 1 ≤ i ≤ n, V = (vα), W = (wβ), 1 ≤ α, β ≤ m and k
of Max Word Problem for stochastic m × m-matrices we build a MDP-graph with vertices s,
{vi,α}1≤i≤k+1,1≤α≤m, t and trap, and with the set of actions {1, . . . , n}. Every action leads from
s to v1,α with the probability wα∑

1≤β≤m wβ
and from vk+1,β to t with the probability vβ∑

1≤β≤m vβ
.

An action i leads from vj,α to vj+1,β with the probability M i
αβ.

A simple consideration shows that the probability of success of a strategy σ which makes the
actions (i0i1 . . . ikik+1) is

1∑
1≤β≤m wβ

· 〈V, W (
k∏

j=1

Mij )〉.
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(ii) For a MDP-graph with one color and the set of vertices {v1 = s, v2, . . . , vm = t} and the
set of actions {d1, . . . , dn} the problem of computing an optimal strategy to reach t from s in
k steps is equivalent to the Max Word Problem for stochastic m ×m-matrices with the input
Mi = (µ(di, vαvβ))α,β, W = (1, 0, . . . , 0), V = (0, . . . , 0, 1), k.
Remark. Approximabilities with additive and multiplicative errors are equivalent unless the
the value of an optimization problem under consideration is more than polynomially large or
small. So, this difference occurs when either the value under approximation or its inverse are
too small.

7.1.4 Proof of theorem 11.

The proof shows that the partially observed problem is smooth enough, and it may look te-
dious as compared with the underlying ideas which are usual in the theory of Markov decision
processes.

Enumerate the vertices of the graph G by 2 indices i and α such that the first one is a color,
so V = {vi,α : i = 1, . . . , n, α = 1, . . . , m}.

We supply Rm with l1 metric ‖(xi)i − (yi)i‖ =
∑

i |xi − yi|, and will consider Lipschits
property with respect to this metric.

A point of the simplex S (in Rm) defined by the inequalities:

m∑

i=1

xi = 1, xi ≥ 0

can be treated as a distribution of probabilities over the set {vi,1, . . . , vi,m} of vertices of color i.
Let P i = (pi

1, . . . , p
i
m) be this probability distribution, i. e. P i(vjk) = pkδij , where δij is

Kronecker’s delta.
Let FN,i(P i) be the probability to reach T starting with the distribution P i in not more than

N steps by an optimal strategy.

Lemma 11 All FN,i are Lipschits-1 functions, i. e. |FN,i(P )−FN,i(Q)| ≤ ‖P−Q‖ for P, Q ∈ S.

Proof. Extend the functions FN,k onto the points
P ∈ S̃ = {(p1, . . . , pm) :

∑m
i=1 pi ≤ 1 & pi ≥ 0}

in the following way. We append a new trap to our graph, and treat P k ∈ S̃ as the probability
distribution of being at vjl with the probability plδkj and at the new trap with the rest probability
1 −∑m

i=1 pi. Now the function FN,k is defined in all the points of the simplex S̃, again as the
optimal probability to reach the target starting with the distribution P k.

To verify the Lipschitz property of FN,k consider 2 points P, Q ∈ S. Let d = ‖P − Q‖.
Then for some vectors Ai = (0, . . . , 0, ai, 0, . . . , 0) with the only non zero ith coordinate we have∑ |ai| = d, Q = P +

∑
1≤i≤m Ai. It suffices to check |FN,k(P + A) − FN,k(P )| ≤ a where

A = (0, . . . , 0, a, 0, . . . , 0), a > 0 occupies the ith coordinate of A and P, P + A ∈ S̃.
It is clear that FN,k(P + A)− FN,k(P ) ≥ 0. Reasoning by contradiction assume that

|FN,k(P + A)− FN,k(P )| > a.

Then for some strategy σ we have R
(P+A)k

N (σ) > FN,k(P ) + a. On the other hand (recall that
Pk(T ) is the set of all k-vertex paths containing a vertex from T ),

R
(P+A)k

N (σ) =
∑

w1...wN∈PN (T )

(P + A)k(w1) · pσ(w1w2 . . . wN )
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=
∑

w1...wN∈PN (T )

P k(w1) · pσ(w1w2 . . . wN ) +
∑

vkiw2...wN∈PN (T )

a · pσ(vkiw2 . . . wN )

= RP k

N (σ) +
∑

vkiw2...wN∈PN (T )

a · pσ(vkiw2 . . . wN ) ≤ FN,k(P ) + a

that is a contradiction. ¥

The family of functions FN,i satisfies the following recurrent system of equations

FN,i(p1, . . . , pm) = max
d∈D

n∑

j=1

qi,d
j (P ) · FN−1,j(T

i,d
j (P )), (41)

where qi,d
j (P ) is the probability to arrive at the color j starting with distribution P i by the

action d and T i,d
j (P ) is the conditional distribution on the vertices of the color j if this color has

been observed after the move d from the distribution P i. More formally,

qi,d
j (P ) =

m∑

α=1

m∑

β=1

pα · µ(d, vi,α, vj,β) (42)

and

(T i,d
j (P ))h =

1

qi,d
j (P )

·
m∑

α=1

pα · µ(d, vi,α, vj,h). (43)

Notice that qi,d
j (P ) ≥ 0 and

m∑

j=1

qi,d
j (P ) = 1. (44)

7.1.5

Let δ = ε
2K , where K is the number of steps and ε is a chosen precision. Let M be the smallest

integer greater than 1
δ .

We subdivide S into Mm−1 equal simplices by hyperplanes parallel to the faces of S.
Consider the class F of continuous functions on S whose restriction onto every tiny simplex

of our partition is linear.
For a function f we denote by f∗ the unique function from F that coincides with f on all

vertices of the simplices of the partition. Clear that supS |f − f∗| ≤ δ for every Lipschitz-1
function f .

7.1.6 Algorithm

For constructing our strategy we, firstly, define recursively the functions F̃N,i : S −→ Rm,
N ≥ 0, and dN,i : S −→ D, n ≥ 1.

N = 0. F̃N,i(P ) = P i(T ∩ {vi,1, . . . , vi,m}) where P (∅) = 0.
N > 0. Put

F̂N,i(p1, . . . , pm) = max
d∈D

n∑

j=1

qi,d
j (P ) · F̃N−1,j(T

i,d
j (P )), F̃N,i = F̂ ∗

N,i (45)
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and put dN,i(P ) to be an element of D maximizing the righthand side of (45).
Before the description of the desired strategy σ we prove Claims 1-3.

Claim 1 F0,k = F̃0,k for all k.

Proof. By the definition. ¥

Claim 2 |F1,k − F̃1,k| ≤ δ for all k.

Proof. We have F̂1,k = F1,k because the both functions are defined by the same equations
as given by Claim 1. Hence F̃1,k = F ∗

1,k, and thus |F1,k − F̃1,k| ≤ δ since F1,k is Lipschitz-1
(Lemma 11). ¥

Claim 3 |FN,k − F̃N,k| ≤ Nδ for all k,N .

Proof. Induction on N . As the base of the induction we use Claim 1. Suppose the inequalities
are valid for N − 1:

|FN−1,k − F̃N−1,k| ≤ (N − 1)δ. (46)

Consider a point P = (p1, . . . , pm). The inequality (46) implies that for some ζ

F̃N−1,k(P ) = FN−1,k(P ) + ζ, |ζ| ≤ (N − 1)δ (47)

By definition, we have

FN,i(P ) = max
d∈D

n∑

j=1

qi,d
j (P ) · FN−1,j(T

i,d
j (P )), (48)

F̂N,i(P ) = max
d∈D

n∑

j=1

qi,d
j (P ) · F̃N−1,j(T

i,d
j (P )). (49)

From these equations and (47) we get

|F̂N,i(P )− FN,i(P )|

= |max
d∈D

n∑

j=1

qi,d
j (P ) · (FN−1,j(T

i,d
j (P )) + ζ)− FN,i(P )|

= |max
d∈D

{
n∑

j=1

qi,d
j (P ) ·FN−1,j(T

i,d
j (P ))+

n∑

j=1

qi,d
j (P ) ·ζ}−max

d∈D

n∑

j=1

qi,d
j (P ) ·FN−1,j(T

i,d
j (P ))| (50)

≤ |ζ ·
n∑

j=1

qi,d
j (P )| ≤ (N − 1)δ (51)

since the coefficients qi,d
j (P ) are non negative with the sum equal to 1, see (44). Hence,

|FN,k − F̂N,k| ≤ (N − 1)δ. (52)
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The point P = (p1, . . . , pm) lies in a tiny simplex of our partition, let it be a simplex with
vertices X1, . . . , Xm. Then P =

∑
1≤i≤m βi ·Xi for some non negative βi,

∑
βi = 1.

Since FN,k is Lipschitz-1 and the diameter of our tiny simplex is not greater than δ we have
|FN,k(P )− FN,k(Xi)| ≤ δ for all i. Adding these inequalities with the coefficients βi we get

|FN,k(P )−
∑

βi · FN,k(Xi)| ≤ δ. (53)

On the other hand,

F̃N,k(P ) = F̂ ∗
N,k(P ) =

∑
βi · F̂N,k(Xi). (54)

Together with (53) and (52) this gives the required inequality |FN,k(P )− F̃N,k(P )| ≤ Nδ, since
the coefficients βi are non negative with the sum equal to one. ¥

Now we describe our strategy σ. Firstly, it computes and stores all the functions F̃N,i,
0 ≤ N ≤ K, 1 ≤ i ≤ m as tables of their values at the vertices of our partition. This can be
done in polytime. After that for every P ∈ S the value of the function dN,i(P ) is computed in
polytime due to (45) by trying all the d ∈ D. For a string of colors W = c1 . . . cN the strategy
computes the probability distribution of being at vertices of the color cN . This distribution is
represented as a point P of S. Then the action to make is defined by σ(W ) = dN,cN

(P ).

Claim 4 |RP i

N (σ)− F̃N,i(P )| ≤ Nδ for all i.

Proof. Similar to the proof of Claim 3 using the fact that RP i

N is Lipschitz-1 on the argument
P that can be shown as in lemma 11. ¥

The latter Claim 4 together with Claim 3 immediately imply

RP i

K (σ) ≥ FK,i(P i)− ε

that completes the proof of Theorem 11.

7.1.7 Proof of theorem 10.

Our proof is based on a reduction of the Partition Problem [GJ79], A3.2: Given a set {za}a∈A

of natural numbers indexed by natural numbers from A, to find whether there exists a subset
A′ ⊂ A such that

∑
a∈A′ za =

∑
a∈A\A′ za. If such a subset A′ exists we say that the instance

of the problem admits a partition.
As in the proof of Theorem 11 we treat the distributions of probabilities as points of the

approriate simplex and vice versa.
For a given instance of the Partition Problem represented by a set {za}a∈A we construct a

MDP-graph G in the following way.
Let k = |A|, p =

∑
i∈A zi and αi = πzi

p . Without loss of generality we can assume that αi < π
2 .

Denote by R̂i the matrix of rotation in R3 with the axis x = y = z and the angle αi, and by Ĥ i

the 3 × 3-matrix with the eigenvectors (1, 1, 1), (1, 0,−1) and (1,−2, 1) and the eigenvalues 1,
e−cαi and e−cαi , where c is a constant that guarantees the elements of the matrices M̂ i defined
below being positive. (Recall that the positiveness of elements of a matrix M is equivalent to
that M maps the positive quadrant into itself.)
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Let M̂ i = R̂i · Ĥ i = Ĥ i · R̂i.
The graph G is constituted by (the notations are of the same type as in the proof of Theo-

rem 11):
• the vertices: V = {vi,α : i = 1, . . . , k + 1, α = 1, 2, 3} ∪ {t} ∪ {trap}, s = v1,1;
• the edges go from every vertex vi,α to all vertices vi+1,α with exception of the last layer

with i = k + 1 from where there are edges to both t and trap;
• the set of actions: D = {skip, take};
• the function of deviations:

µ(skip, vi,αvi+1,α) = 1, µ(take, vi,αvi+1,β) = M̂ i
αβ , i 6= k + 1,

µ(skip, vk+1,αt) = µ(take, vk+1,αt) = lα,
µ(skip, vk+1,αtrap) = µ(take, vk+1,αtrap) = 1− lα,

where lα will be chosen later.

7.1.8

For every realization of a strategy σ up to the (k + 1)th step the observed sequence of colors
is 1, 2, . . . , k + 1, so a strategy is determined by a sequence of its actions d1 . . . dk since the last
action does not matter.

After k steps of executing σ the probability distribution of being in vertices vk+1,α is P k+1

where P =
∏

di=take(1, 0, 0)M̂ i. (Recall that we continue to use the notations for P k+1 of the
previous proof.)

To deal with the distribution P k+1 we use the following geometric interpretation (see Fig-
ure 6).

(1,0,0) x'
(1/3,1/3,1/3)

f(p/2)

y'
Plane  x+y+z=1

Figure 6: Geometric interpretation

Clear, all our matrices R̂i, Ĥ i and M̂ i preserve the plane x + y + z = 1. Consider the
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restrictions Ri, H i and M i of these matrices onto this plane. The matrices Ri are rotations with
angles αi, and H i are homotheties with coefficients e−cαi .

Supply the plane x + y + z = 1 with Cartesian coordinates (x′, y′) centered at (1
3 , 1

3 , 1
3),

with the x′-axis containing (1, 0, 0). Consider the logarithmic spiral φ(t) = e−ct(cos t, sin t), the
parameter t can be taken as the coordinate of a point on the spiral. One can see that our
matrices M̂ i preserve the spiral, and being restricted on the spiral they act by adding αi to the
coordinate t. Thus, the point P =

∏
di=take(1, 0, 0)M̂ i lies on the spiral and has the coordinate

t =
∑
{i:di=take} αi.

Now choose a linear function L : R3 → R, L(x) = 〈l, x〉, l = (li) ∈ R3, 0 < li ≤ 1 such that
the point φ(π

2 ) maximizes L on the spiral. This can be done along the following lines.
Let T be a tangent vector to our spiral φ(t) at the point φ(π

2 ). Take a vector l such that
〈l, T 〉 = 0, and L(φ(π

2 )) > L(1
3 , 1

3 , 1
3).

This vector l can be chosen by a small rotation of vector (1
3 , 1

3 , 1
3) around T .

We use the coordinates lα as transition probabilities to arrive at t from the vertices vk+1,α.
Thus the probability of success of σ is L(P ). Notice that

∑
αi = π. So, if a subset of A with

the desired property does exist then every optimal strategy has the sum
∑
{i:di=take} αi = π

2 ,
and thus,

∑
{i:di=take} zi = p

2 .

7.1.9

The construction above does not take into consideration the rationality of the probabilities of
deviations. For this reason we take appropriate rational approximations to the values defined
above.

Suppose that the set A admits a partition. Denote it by Ā.
Now we replace the values of the function µ by some rational approximations with polynomial

number of digits. We show that every optimal strategy for this MDP-graph also provides us
with a partition of the set A.

Assume that
∑

zi ≤ en and k ≤ n.
To make necessary estimates we need the following inequality

Lemma 12 For a constant θ > 0

L(φ(
π

2
))− L(φ(

∑

i∈A′
αi)) ≥ θe−n

whenever
∑

i∈A′ zi 6=
∑

i∈A\A′ zi.

Proof. Consider the function ψ : [0, 2π] → R, defined by ψ(t) = L(φ(π
2 ) − φ(t)). The

inequality to prove can be rewritten as

ψ(
π

2
− r) ≥ θe−n,

where r = π
2 −

∑
i∈A′ αi. The bound on

∑
zi implies that r ≥ e−n.

Clear,
(i) ψ(π

2 ) = 0 and ψ(t) 6= 0 for t 6= π
2 ;

(ii) ψ′(π
2 ) = L(−φ′(π

2 )) = q > 0. (Direct computation.)
Thus, using Taylor expansion, we can state that for some absolute constants ε > 0 and η > 0

the inequality

|ψ(
π

2
− r)| ≥ |ψ(

π

2
)− 1

2
ψ′(

π

2
)r| − η|r|2
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holds for all 0 ≤ |r| ≤ ε and thus we have

|ψ(
π

2
− r)| ≥ q

4
|r|

for all 0 ≤ |r| ≤ ε.
If |r| ≥ ε then for some absolute constant δ > 0 we have

ψ(
π

2
− r) ≤ δ.

Put θ = min{δ, 1
4q}. Now the statement of the lemma follows from the above inequalities.

Indeed, if |r| < ε then
ψ(

π

2
− r) ≥ q

4
|r| ≥ θe−n.

Otherwise, ψ(π
2 − r) ≥ δ ≥ δe−n ≥ θe−n. ¥

To complete the proof we compute in polytime matrices M̃ i and a linear function L̃ such that

||M̃ i −M || ≤ 1
10

θe−n3
,

||L̃− L|| ≤ 1
10

θe−n2
.

Then for every B ⊂ A we have

||
∏

i∈B

M̃ i −
∏

i∈B

M i|| ≤ 1
10

θe−n2
(55)

since ||M i|| ≤ 1.
Consider a strategy σ̄ with actions di = take whenever i ∈ Ā.
The probability of success of σ̄ is

R(σ̄) = L̃(
∏

i∈Ā

M̃ i) · (1, 0, 0)

≥ L̃(
∏

i∈Ā

M i · (1, 0, 0))− 3
10

θe−n2

≥ L(
∏

i∈Ā

M i · (1, 0, 0))− 3
10

θe−n2 − 1
10

θe−n2

= L(φ(
π

2
))− 4

10
θe−n2

.

(We used (55), ||∏i∈Ā M i|| ≤ 1 and li ≤ 1.)
Let an optimal strategy σ have actions di = take for i ∈ A′. Then

R(σ) = L̃(
∏

i∈A′
M̃ i) · (1, 0, 0)

≤ L̃(
∏

i∈A′
M i · (1, 0, 0)) +

3
10

θe−n2
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≤ L(
∏

i∈A′
M i · (1, 0, 0)) +

3
10

θe−n2
+

1
10

θe−n2

= L(φ(
∑

i∈A′
αi)) +

4
10

θe−n2
.

Applying lemma 12 and comparing R(σ) and R(σ̄) we see that the optimality of σ implies
that A′ is also a partition.
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