
Verification of Timed Algorithms:

Gurevich Abstract State Machines

versus First Order Timed Logic

Danièle Beauquier1

Dept. of Informatics,
University Paris-12, France

Anatol Slissenko2†
Dept. of Informatics,

University Paris-12, France

Abstract. We give a survey of our recent and current work on the
specification and verification of timed algorithms within a rather com-
plete logical framework where timed Gurevich Abstract State Machines
(GASM) are used to specify algorithms. The time we use is continuous
as it is usual in specifications of control systems and often of protocols
(discrete time can be treated within the same framework but it is less
intuitive and harder to treat when automating the verification process).
The topics addressed in this survey concern semantics of timed GASM,
representation of this semantics in a first order logic adapted to verifica-
tion, heuristic considerations that are implied by the used type of GASM
and that help to automate the verification.

1 Introduction

We give a survey of our recent and current work on the specification and verifica-
tion of timed algorithms within a rather complete logical framework where timed
Gurevich Abstract State Machines (GASM) are used to specify algorithms. The
time we use is continuous as it is usual in specifications of control systems (and
often of protocols) that are our motivation.

Any textbook on software engineering (see e. g. [Som92]), whatever be the
models of software development process it considers, distinguishes in its process
requirements specification phase, algorithm specification phase and refinement
phases. The verification is a method of software validation that checks whether
the algorithm specification satisfies the requirements specification. The require-
ments specification, even if not well distinguished in practice, is usually declar-
ative and close to a natural language. The algorithm specification is usually
imperative and is done in terms of some specification language which is easy to
understand and to use, and the latter feature constitutes a crucial property of
such a language. From the algorithm specification one goes down via consecu-
tive refinements to an executable program. The verification starts from verifying
1 Address: Dept. of Informatics, University Paris-12, 61 Av. du Gén. de Gaulle, 94010,

Créteil, France. E-mail: beauquier@univ-paris12.fr
2 Address: Dept. of Informatics, University Paris-12, 61 Av. du Gén. de Gaulle, 94010,

Créteil, France. E-mail: slissenko@univ-paris12.fr
† Member of St Petersburg Institute for Informatics and Automation of Russian
Academy of Sciences.

1

whether the initial algorithm specification satisfies the requirements specifica-
tion, and continues towards ensuring this for the refinements.

A formal verification should produce a proof and hence, it demands that the
requirements as well as the algorithm be embedded in one logic framework. The
following properties are indispensable for persuasive verification: the verification
process should be

• Complete: The formalized requirements must completely represent the
initial ones. The used formalism must permit to represent the executions of the
algorithm completely.

• Direct: The formalized requirements, and well as the algorithm, must
be a direct rewriting of the initial ones without any modifications that are not
formally justified.

• Conservative: The verification of a refinement must preserve the verifi-
cation of the algorithm itself.

One can hardly believe that these properties are achievable entirely in prac-
tice. We state these three properties as an idealized goal and as a basis to compare
different approaches to the verification problem.

We are motivated by verification of real-time systems that consist of dis-
tributed processes each of them being not too complicated, but their interaction
may pose serious problems to solve. A particular feature of this problem is the
crucial role of explicit time constraints and time functions involving, for example,
arithmetical operations.

Real-time systems of control are usually specified in terms of continuous time.
That is why the time chosen in this paper is continuous. Moreover, continuous
time is very intuitive — many informal specifications and proofs concerning
distributed systems of control use time even if it is not quite necessary.

Notice that continuous time has, in a way, more efficient algorithmics than
discrete time, for example, the theory of real addition has smaller complexity
than the theory of integer addition (Presburger arithmetics), the theory of real
addition and multiplication (Tarski algebra) is decidable and the theory of inte-
ger addition and multiplication (formal arithmetics) is even incomplete.

How does look the verification problem from the point of view of logic? Given
requirements and an algorithm, the verification consists of proving, first, that the
algorithm has a run for every “admissible” input (i. e. satisfying the requirements
on the environment) and, second, that every run satisfies the requirements. The
first of these two questions (which demands a second order logic to formalize
it) is usually not considered, and its general formal treatment remains an open
problem. In concrete situations, for well structured algorithms it is usually not
hard to prove.

The second question is the most essential point of verification. It can be
formalized as establishing the validity of some sentence of the form

(ΦRuns ∧ ΦEnv) → ΦFunc,
where ΦFunc describes the requirements on functioning such as safety or liveness,
ΦEnv describes the environment (constraints on inputs, relations between them
etc...) and ΦRuns represents the runs of the algorithm to verify.

2

To provide a process which is complete, direct and conservative one clearly
needs to have rather powerful tools to describe requirements and algorithms.
This means that model-checking tools with all their advantages concerning par-
ticular questions cannot cover the full-scale verification as they are based on
formalisms with bounded expressive power and that are not quite convenient
from user’s viewpoint, e. g. on temporal or duration logics to specify require-
ments (see e. g. [Pnu77], [CHR91], [MP92],[Han94], [Var96], [Rab98a]) and, say,
on timed automata to specify algorithms [AD94], [LSVW96], [ACH+95]. So we
are approaching the verification problem from the same side as, e. g. PVS [PVS],
but paying more attention on foundations and algorithmic efficiency. Sure, this
approach may profit from model checking algorithms as well.

In our approach to the verification we do not invent new languages, but use
universal logical principles to embed this or that particular verification problem
in a logical framework trying to remain as much as possible within first order
applied logics as the latter are easier to analyze algorithmically and easier to use
practically. From this point of view, GASMs represent a quite adequate method-
ological setting as algorithm specification language for real-time distributed al-
gorithms in particular. The fact that GASMs are syntactically and semantically
close to first order logic permits to embed them into such a logical framework
working out only questions that are essential indeed.

In the present paper our logic of verification is the First Order Timed Logic
(FOTL) with explicit continuous time that we started to study in [BS97b,BS97a].
A concrete FOTL is an extension of a decidable theory of reals by timed pred-
icates and functions. For a large class of problems we can state the following
properties of such a logic.

First, concerning the requirements specification, this framework is more com-
plete, direct and conservative than most part of other approaches known to us. It
is sufficiently expressive from the user’s point of view to rewrite directly and en-
tirely the requirements specification of the problem under consideration usually
given in a language close to the natural one.

For example, the property ”two x-events are never separated by exactly
1 time unit” can be directly rewritten as the FOTL formula ¬∃ tt′ (x(t) ∧
x(t′) ∧ |t− t′| = 1). Another example, the property ”the average value of the
clocks x1, ..., xn does not exceed d” can be directly rewritten as the formula
∀t (x1(t) + ... + xn(t) ≤ n · d) with t being a time variable, d being a variable
or constant and n being a constant. The presence of arithmetics permits to eas-
ily specify also such problems as clock synchronization, that is impossible for
commonly used temporal logics and timed automata.

Second, FOTL permits to represent rather easily, in fact automatically, the
set of runs of timed programs (e. g. the runs of Gurevich Abstract State Machines
[BS97a] or timed automata [BS98]).

Third, we can describe decidable classes of the verification problem based on
the fact that the underlying theory of reals is decidable [BS99a]. And we have in
fact only one logic to consider as compared with numerous temporal logics. (The
unifying framework [HR98,HR99] for temporal logics or the version of Büchi’s

3

second order monadic logic for continuous time [Tra98,Rab98b,Rab97] neither
give sufficient power of expressibility, though preserve the decidability.)

The structure of the paper is as follows. In section 2 we define the syntax and
semantics of block GASM’s for continuous time, illustrate them by the RailRoad
Crossing Problem and discuss open questions which arise with continuous time.
Section 3 is devoted to the logic FOTL. We explain here how one can write a
formula of this logic which characterizes the set of total runs of a block GASM.
The entire specification of the RailRoad Crossing Problem in this logic is given.
In the last section, we mention our PVS proof for the RailRoad Crossing Problem
and heuristic considerations that can be used in automized search for verification
proofs within our setting.

2 Timed Gurevich Abstract State Machines (GASM)

We briefly describe a simple type of GASM namely block ones.

2.1 Syntax and semantics of a block GASM

Syntax
The vocabulary W consists of a finite set of sorts, and of a set of function symbols
(predicates are treated as a particular case of functions). To each sort there is
attributed a set of variables, the sets attributed to different sorts are disjoint.

The sorts are classified as predefined and abstract ones. The predefined sorts
are those which interpretation is fixed. Here we consider only finite abstract sorts.

We limit predefined sorts to the following ones:
• real numbers R,
• time T =df R≥0 treated as a subsort of R,
• boolean values Bool
• finite sets of given cardinality
• finite unions of the sorts mentioned above.

We explicitly mention just variables for time: t and τ with indices. For other
sorts we will use any letter with explicit indication of its sort. For example,
∀X ∈ X , where X is a list of n variables and X is a direct product of n sorts,
will mean that ith variable of X is of the ith sort of X .

As usually, each function has its type (profile) which determines also its arity.
The functions are classified as predefined and abstract.
The predefined function symbols have a fixed given interpretation. We take

as predefined functions the following ones:
• Boolean constants true and false,
• rational numbers Q each of the type real,
• addition + and subtraction − of reals, and infinite number of unary mul-

tiplications by rational numbers,
• usual binary predicates over reals: =, ≤, <.

4

We suppose that the type of any abstract function is of the form X → Z
where X is a finite product of finite sorts. The functions are also classified as dy-

namic or static. The dynamic functions are those which interpretation depends
on time as it will be explained later. At last, functions are classified as inter-

nal or external. Internal functions are computed by the GASM, and they are,
obviously, abstract and dynamic. External functions represent the inputs of the
GASM. We denote by VExtrn and VIntrn respectively the sets of external and
internal functions , and V =df VExtrn ∪ VIntrn.
Among external functions, there is a predefined dynamic one that is CT , rep-
resenting the current time. The type of CT is → T . Predefined static functions
have a fixed interpretation valid for every t ∈ T . The interpretation of a pre-
defined dynamic function, though changing with time, does not depend on the
functioning of the machine.

We assume that the equality is defined for each abstract sort.
A vocabulary W being fixed, the notion of term and that of formula over W

are defined in a usual way.
To define a block GASM we need the notion of rule:
• Any expression of the form f(θ1, . . . , θk) := θ, where f is an internal func-

tion, and θ1, . . . , θk, θ are terms of the appropriate types, is an update rule (in
other words, an assignment). The rule is executed instantaneously. This is the
assumption of instantaneous actions.

• Any expression of the form α1; . . . ; αm where α1, . . . , αm are rules is a
block. If α1, . . . , αm are update rules then the block is an update block. Informally,
we assume that all rules αi are executed simultaneously.

• Any expression of the form If G Then A EndIf , where G is a formula
(called here a guard) and A is a block, is a conditional rule. If A is an update
block then the conditional rule is a conditional update rule.

A block program has the form:

Repeat
ForAll ω ∈ Ω
InParallelDo
If G1(ω) Then A1(ω) EndIf
If G2(ω) Then A2(ω) EndIf
.
If Gm(ω) Then Am(ω) EndIf

EndDo
EndForAll

EndRepeat

where ω is a variable of a fi-
nite abstract sort Ω, each Gi,
1 ≤ i ≤ m, is a guard not
having free variables different
from ω, and each Ai is an up-
date block.

A block GASM over W is a triple of the form (W, Init, Prog), where W is
a vocabulary, Init is a closed formula over W describing the initial state and
Prog is a program of the just described form. The formula Init is presumed to
have the property: given an interpretation of abstract sorts and abstract exter-
nal functions for time 0, there is a unique interpretation of internal functions

5

such that the condition Init is satisfied. This unique interpretation of internal
functions defines their value at time 0.

Semantics
One can define semantics of timed algorithms in several ways that are ”physi-
cally” equivalent but are formally different and either impose some constraints
on the guards of the algorithms or not. We consider here a version from [BS99b]
that formalizes the intuition given in [GH96], and at the end of this section
we will mention other possibilities. Informally, the external Repeat means that
guards are evaluated permanently, and InParallelDo means that all the guards
are evaluated in parallel. If some guards become true at some moment, then the
assignments related to these guards are done. We give now a formal definition
of the semantics.

Consider a block GASM (W, Init, Prog) with the program Prog as given
above. Denote by Wk the set of terms that appear to the left of := in the
update block Ak(ω), and denote by θk,v the term of the assignment of Ak(ω)
with the left hand side v. Without loss of generality, we assume that there are no
two assignments of the form v := θ and v := θ′ in Ak(ω). Thus, the assignments
of Ak(ω) are of the form v := θk,v, v ∈ Wk.

As it was remarked above, informally speaking, all the If–Then conditional
rules (statements) are executed simultaneously as well as all the assignments in
any Then-part if the corresponding guard is true. Sure, if the assignments are
inconsistent, the execution is interrupted, and the run of the algorithm becomes
undefined.

For a given interpretation of abstract sorts we can define the semantics of the
program in terms of runs. Informally, given an input, that is an interpretation
of external functions for each moment of time, the machine computes a run ρ
which is an interpretation of internal functions for each moment of time or at
least for an initial segment of T . Notice that the external functions which are
classified as static have the same interpretation for every moment of time. The
interpretation of function CT at time t is t, for every t ∈ T .

Now suppose that an interpretation V ∗
Sorts of abstract sorts is given. Let

V ∗
Extrn (resp. V ∗

Intrn), be the set of possible interpretations of external (resp.
internal) functions.

Consider an input E : T → V ∗
Extrn; E(t) is the set of values of external

functions at the moment t, and we denote by ρ(t) the set of values of internal
functions at the moment t. We are going to define ρ(t) by a recursion. Together
with ρ(t), we define a sequence of time moments {Ti}i>0, where some guards of
the GASM become valid, and a sequence {ρi}i>0 of updated values of ρ induced
by these valid guards (at time 0 there may be no update, so ρ0 will be defined
in a special way). In fact, the new value ρi will be assigned to ρ to the right of
the moment {Ti}. Such ρi will be used as an extension of the run to the right of
Ti.

We denote by Dom(ρ) the (initial) segment of T where ρ is defined.
The input E(0) and the proposition Init uniquely define ρ(0). To avoid rep-

etitions we will define ρ0 later.

6

Set T0 = 0. Suppose that 0 ≤ T1 < . . . < Tn are the first n update times, (T0

is a particular case which may be an update time or not, we will see it later)
and the {ρi} are defined for 0 ≤ i ≤ n. Suppose that run ρ is defined on [0, Tn].
Now we introduce some auxiliary total run ϕn extending ρ to the right of Tn as
ρn:

ϕn(τ) =
{

(E(τ), ρ(τ)), if τ ∈ [0, Tn],
(E(τ), ρn), if τ > Tn

(1)

This ϕn(τ) is an interpretation of V . Let τ be fixed. For a formula F or a term
θ over W denote by F [ϕn(τ)] and θ[ϕn(τ)] respectively the sentence and the
constant term (that has now some concrete value) obtained from F and θ by
replacing all function symbols by their interpretations given by ϕn(τ).

Look for

Tn+1 = inf{τ > Tn : for some ω and k the guard Gk(ω)[ϕn(τ)] is valid}. (2)

If Tn+1 = ∞ (we assume that inf ∅ = ∞) then ρ(τ) = ρn for all τ > Tn. Thus
Dom(ρ) = T and the sequence of update times is, by definition, (Ti)i=1,...,n(and
Tn+1 = ∞).

Suppose Tn+1 < ∞.
If Tn+1 = Tn (Case 1) or ∀ω ∧

k ¬Gk(ω)[ϕn(Tn+1)] (Case 2) then the exe-
cution stops at time Tn, Dom(ρ) = [0, Tn] and the sequence of update times is
(Ti)i=1,...,n. We will give in subsection 2.3 examples of machines for which these
cases appear.

Suppose Tn < Tn+1 and ∃ω ∨
k Gk(ω)[ϕn(Tn+1)].

Let
K=df {(k, ω) : Gk(ω)[ϕn(Tn+1)]}.

Consider an update f(θ1, . . . , θn) := θ0 from any Ak(ω), (k, ω) ∈ K. The
interpretation ϕn(Tn+1) gives some value a∗i = θi[ϕn(Tn+1)] to θi. Thus, this
update for the interpretation ϕn(Tn+1) means that the value of the function f
for the arguments a∗1, . . . , a

∗
n becomes equal to a∗0 after time Tn+1. There may

be several updates in the set {Ak(ω)[ϕn(Tn+1)]}(k,ω)∈K concerning f for the
same value a∗1, . . . , a

∗
n. If these updates are inconsistent the run is interrupted

at Tn+1, Dom(ρ) = [0, Tn+1], the sequence of update times is (Ti)i=1,...,n+1 and
ρ(τ) = ρn for τ ∈ (Tn, Tn+1].

Suppose that updates are consistent. Hence, they determine a new value of
internal functions that we denote by ρn+1. By default, the values not touched
by the updates from the mentioned set remain unchanged.

Set ρ(τ) = ρn for Tn < τ ≤ Tn+1. And thus, the run is defined on [0, Tn+1],
the sequence of update times on this interval is (Ti)i=1,...,n+1 and the value of
the extension of ρ at the right of Tn+1 is ρn+1.

We have to initialize the recursion.
The run ρ is defined on [0, T0], and the extension ρ0 of ρ to the right of T0

depends on the evaluation of the guards at time 0.
Set φ(0) = (E(0), ρ(0)).
• If there are no ω and no k such that the guard Gk(ω)[φ0(0)] is valid, then

the extension ρ0 of ρ to the right of T0 is defined as equal to ρ(0).

7

• If there exists some ω and some k such that the guard Gk(ω)[φ0(0)] is valid,
then the updates are defined as above. If some updates are inconsistent, the run
is just defined in 0. If the updates are consistent they define a new value ρ0 for
the extension of ρ at the right of 0.

Hence, the recursive definition of update times is accomplished.
Let T=df sup0≤i Ti. The domain of ρ is Dom(ρ) = [0, T), and the run ρ :

Dom(ρ) → V ∗
Intrn is defined.

If the sequence (Ti) is infinite and T is finite then the run is Zeno.
If T = ∞ then the domain of ρ is T and ρ is a total run.

It can be easily proved that for a given input E : T → V ∗
Extrn, a function

ρ : T → V ∗
Intrn is a total run for this input iff the interpretation ϕ = (E , ρ)

satisfies the following property:
there exists a strictly increasing sequence (Ti)0≤i<N of time moments (N

may be infinite) with T0 = 0 such that:
– ρ is equal to some constant ρi on (Ti, Ti+1] if Ti+1 < ∞ and on (Ti, Ti+1)

if Ti+1 = ∞ for every 0 ≤ i < N .
– for every 0 < i < N , there is some guard Gk(ω) valid at time Ti for the

interpretation ϕ and the value ρi is the result of the updates done as above.
– if no guard is valid at time 0 for the interpretation ϕ then ρ0 = ρ(0)

otherwise ρ0 is the result of the updates done at time 0.
– for every time moment t 6= Ti, 1 ≤ i < N , no guard is valid for the

interpretation ϕ at time t. These properties will be used in section 3.2 to write
a formula describing the set of total runs.

2.2 An example : the Railroad Crossing Problem

We consider a largely studied problem involving several interacting processes,
the Generalized Railroad Crossing Problem3 introduced in [HL96]. Our anal-
ysis of this problem was inspired by [GH96]. We give an algorithm to solve
the problem following the algorithm described in the mentioned paper, slightly
modifying it to better meet the liveness property. We tried to give a direct and
relatively complete study of first-order part of this problem in [BS99b] and before
in [BS97a].

The problem is as follows. A railroad crossing has several parallel train tracks
and a common gate. Each track admits in each direction two sensors, one at some
distance of the crossing in order to detect incoming of a train and another one
just after the crossing in order to detect the train is leaving (see Figure 1 where
one-directional situation is shown). An automatic controller receives the signals
from the sensors and on the basis of these signals, decides to send to the gate
a signal close or open. The correctness requirements to satisfy by the controller
(i. e. by the algorithm to construct) are the following ones:

3 The Generalized Railroad Crossing Problem seems to be a good introductory exam-
ple and is widely exploited, e. g. see a recent collection of papers [HM96] where it
serves as a common example.

8

Incoming Leaving

Crossing

zone of control

gate

gate

Train

dmin - dclose dclose

dmin

Fig. 1. Railroad Crossing.

Safety. If a train is in the crossing, the gate is closed.

Utility (Liveness). The gate is open as much as possible.

Notice that Safety alone is easy to satisfy with the gate always closed. On the
other hand, the formulation of Utility is clearly vague. It demands to optimize
some functioning, clearly, under condition that Safety takes place. If to formalize
this directly we are to say that the demand is to construct a controller such
that whatever be any other controller satisfying the environment constraints (to
discuss below) and Safety and whatever be an input, the time interval when the
gate is opened for the constructed controller is not less than this time interval for
arbitrary controller. Such a formulation involves second order quantifiers, and
the existence of a demanded controller is not evident. We assume that (Utility)
is reasonably reformulated in a first order logic as in [BS99b]. The (Utility) in
the initial formulation has never been studied and hardly worth to be studied
(the solutions of [HL96,GH96] trivially do not satisfy this property).

Some assumptions are usually done. Without loss of generality, the tracks
are presumed to be one directional. It is assumed that a train cannot arrive on
a track (i. e. in the zone of control) before the previous one has left this track.
The situation when a train does not leave the crossing is not formally excluded.
It takes at least time dmin for a train to reach the crossing after the sensor has
detected its incoming. And it takes at most dopen (respectively dclose) to the
gate to be really opened (respectively closed) after the reception of signal to
open (respectively, to close) if the opposite signal has not been sent in between.
To exclude degenerated case, it is assumed that at least dclose < dmin.

One can directly formalize the requirements in a first order applied logic
modulo our remark on (Utility) [BS99b]. This rather short description of re-

9

quirements on environment and functioning is direct and complete. We do not
touch it here as our main subject concerns GASM.

A GASM controller is in Fig. 2, where the following notations are used. We
have a finite set Tracks of tracks of unknown cardinality. The current time
is represented by identifier (nullary function) CT . Predicate Cmg(x) (Cmg for
Coming) says that a train on a track x has been detected; Emp(x)=df ¬Cmg(x)
(Emp for Empty). This predicate is an input, and thus an external function.
To catch the moment when to start to close the gate the Controller uses its
internal function DL(x) (DL for Deadline), where WT=df dmin − dclose (WT
for WaitTime). The output signal of control demanded by the specification of
functioning is either DirCl or DirOp=df ¬DirCl saying that the gate must
be closed or opened. Remark that the specification gives only upper bound on
the time to close/open the gate, so it can be, say, opened instantaneously. The
decision to open or close the gate is being done on the basis of global condition
SafeToOpen which says when it safe to open the gate:
SafeToOpen=df ∀x

(
Emp(x) ∨ CT < DL(x)

)
. The initial values are defined

by the condition Init =df

(∀xDL(x) = ∞ ∧ DirOp
)

The algorithm is written

Repeat
ForAll x ∈ Tracks InParallelDo
If Cmg(x) ∧ DL(x) = ∞ Then DL(x) := CT + WT EndIf ;
If Emp(x) ∧ DL(x) < ∞ Then DL(x) := ∞ EndIf ;
If DirOp ∧ ¬SafeToOpen Then DirCl := true EndIf ;
If DirCl ∧ SafeToOpen Then DirOp := true EndIf ;

EndDo EndForAll
EndRepeat

Fig. 2. Railroad Crossing Controller.

in Fig. 2
The predefined sorts used are: time T =df R≥, its extension T ∞=df T ∪ {∞},

reals R, R∞=df R ∪ {∞} with natural inclusion of all these sorts to use arith-
metical operations and order relations <, ≤ without special comments. (Clear,
∞ can be eliminated.) Sure, boolean values Bool are also present. The only
abstract sort is Tracks, and we know only that it is finite with unknown cardi-
nality. The latter point is important: we wish to fulfil a verification without any
reference to concrete values of the cardinality of Tracks.

In addition to sorts, the vocabulary W contains functions. Some of them
are predefined as the just mentioned arithmetical ones, the other ones are ab-
stract. We add to predefined functions ∞, rational numbers Q and CT :→ T
to represent the current time. The abstract functions consist of static, as dmin,
dclose, ∞, and dynamic ones, the latter are denoted by V . The external ones,
as Cmg : Tracks → Bool or CT , are inputs that cannot be changed by the

10

algorithm. The internal ones can be changed by the algorithm, and we further
divide them into private functions of the algorithm, as DL : Tracks → T ∞, and
output ones, as DirCl :→ Bool. The outputs are represented in requirements as
compared with private functions that are used only inside the algorithm. The
functions DirCl or CT , though being a constant from logical point of view, are
dynamic. Such internal nullary functions will be called here identifiers, as well
as restrictions of other functions for fixed values of their arguments, as DL(x)
for a concrete x.

2.3 Open Questions of Defining Semantics of Timed GASM

In defining semantics for continuous time there are some boring situations that
are, on the one hand, of no ”physical” significance but, on the other hand, are
not desirable to be excluded if we wish not to care about minor details of algo-
rithms presentation.

First example

Algo1:
If CT = 1 Then flag := 1 EndIf
If flag = 1 ∧ x = 0 Then x := 1 EndIf

If for some input the associated run is defined up to time 1, then 1 is an update
time. In that case, if x is equal to 0 before time 1, the next possible update time
is again 1, and the second update, namely x := 1 should be done at time 1.
The run stops at this time. It corresponds to Case 1 above in the description of
the different possibilities to interrupt the run. This simple example underlines
the fact that an internal function cannot be used as an input to fire a guard.
This is due to the fact that internal functions are constant on intervals which
are left-open (it is a clear consequence of the semantics we have chosen). There
are several solutions to this problem.
• A first solution is to introduce some small delay eps between the moment when
the internal function takes a new value, and the moment when this new value
can be read. From a practical point of view, this delay seems to be reasonable,
but it contradicts the hypothesis of instantaneous actions. This delay can be
explicit in the machine. Algo1 will be rewritten:

Algo1bis:
If CT = 1 Then flag := 1; DL := CT + eps EndIf
If CT = DL ∧ flag = 1 ∧ x = 0 Then x := 1 EndIf

• Another possibility is to introduce delays in the semantics itself. This leads to
the notion of asynchronous GASM developed in [CS99]
• A third possibility is to allow the machine to make instantaneously a sequence
of updates. One can allow a finite sequence of updates, or also use a fixpoint.
If the sequence of updates is infinite and the values of the consecutive updates

11

converge, then the limit will be the final result of the update. This notion of run
can be defined properly again by induction. The shortcoming of this semantics
is that such runs cannot be described by a first order formula of FOTL (see the
next section for the definition of FOTL).
• At last, to avoid these consecutive updates at the same time, it is often possible
to write in place of the initial machine a new one which ”skips” the intermediate
steps and provides the final result. For Algo1 the new machine would be the
following one:

Algo1ter:
If CT = 1 ∧ x = 0 Then flag := 1; x := 1EndIf
If CT = 1 Then flag := 1 EndIf

Second example

Algo2:
If CT > 1 ∧ x = 0
Then x := 1 EndIf

Suppose that for some input the run can be de-
fined up to CT = 1, x is equal to 0 up to this
moment and the next update time is CT = 1

because 1 is the minimal of time moments when the guard CT > 1 is valid.
Nevertheless the guard is not valid at time 1, so the run stops at this time. It
corresponds to Case 2 above in the description of the different possibilities to
interrupt a run.
One solution is to change the guard CT > 1 into CT ≥ 1. From a practical
point of view, this seems to be reasonable, because these two guards cannot be
distinguished by a physical process.

3 Verification in First Order Timed Logic (FOTL)

The verification, as it was noticed in the Introduction, means a proof of some
properties. Thus, its rigorous treatment implies using some logic (maybe implic-
itly).

3.1 Syntax and Semantics of FOTL.

We define our logics as some extensions of decidable theories of reals. For a par-
ticular specification and verification problem it is reasonable to take a minimal
decidable theory that suffices to rewrite directly and completely a given speci-
fication. We take here the theory of real addition and unary multiplications by
rational constants. But one can take also Tarski algebra or other theories.

The vocabulary of a FOTL is constituted in a similar way as the vocabulary
of timed GASM as described above. The main difference concerns the types of
dynamic functions: any dynamic function is of the type T ×X → Z, where X is
as before a product of abstract finite sorts and Z is any sort.
A vocabulary being fixed, the notion of term and that of formula over this
vocabulary are defined in a usual way.

12

Semantics of FOTL.
A priori we impose no constraints on the admissible interpretations. Thus,

the notions of interpretation, model, satisfiability and validity are treated as in
first order predicate logic modulo preinterpreted part of the vocabulary.

3.2 FOTL Representation of Runs of a Block GASM.

Remind that the main goal of representing runs in logic is to give a logical frame-
work for the verification.
Let W be the vocabulary of a block GASM (W, Init, Prog) with the program
of the form given above. Denote by W ◦ the vocabulary obtained from the vocab-
ulary W by replacing each dynamic function symbol f ∈ W of the type X → Z
by f◦ of the type T × X → Z.

Define operation ”̂” which transforms a term θ over W and t ∈ T into a
term θ̂(t) over W ◦ by the following recursion (a)–(c):

(a) û(t) = u if u is a variable or a static function symbol (constant).

(b) For terms θ over W of the form f(θ1, . . . , θn), where f is a static
function symbol,

θ̂(t) = f(θ̂1(t), . . . , θ̂n(t)).

(c) For terms θ over W of the form f(θ1, . . . , θn), where f is a dynamic
function symbol,

θ̂(t) = f◦(t, θ̂1(t), . . . , θ̂n(t)).

For a formula F over W we denote by F̂ (t) the formula over V ◦ obtained
from F by replacing all terms θ by θ̂(t).

In such FOTL one can write a formula Ψ which models are exactly the runs
of the GASM. This formula can be produced by a simple algorithm, see [BS99b].
It is a conjunction of several formulas, the initial condition among them. For
example, one of these conjuncts says that if no guard is valid at t then no guard
is valid in some neighborhood of t, and this can be written for t > 0 as :

(∀ω
∧

k

¬Ĝk(ω)(t)
) → ∃ t1t2

(
t1 < t < t2 ∧ ∀ τ ∈ (t1, t2)∀ω

∧

k

¬Ĝk(ω)(τ)
)
.

In a similar way we write formulas saying
– if a guard is valid at t then no guard is valid in some neighborhood of t

except t itself,
– for any interval where no guard is valid, all the internal functions preserve

their values,
– the values of internal functions at t are equal to their values before t in

some left neighborhood of t,
– the updates made at t hold on some (t, t1),
– the values of internal functions that are not updated at the moment t

remain unchanged on some [t, t1).

13

3.3 FOTL-Vocabulary of the Generalized Railroad Crossing
Problem

Let W ◦ be the vocabulary obtained from the vocabulary W given in subsection
2.2. We add to W ◦ some abstract auxiliary predicates needed to describe the
environment:

• GtClsd◦ : T → Bool says that the gate is closed at a given time moment.
• GtOpnd◦ : T → Bool says that the gate is opened at a given time moment.

(GtOpnd◦ is not the negation of GtClsd◦ as we know only that the gate cannot
be opened and closed at the same time.)
Requirement Specifications of the Railroad Crossing Problem.

We have no formal notion of train within the given syntax. We assume that
for a given track a new train reaches the sensor launching Cmg◦ only after the
previous one has left the crossing making the track status Emp◦. The alterna-
tion Emp◦/ Cmg◦/ Emp◦ . . . corresponds to appearance of successive trains on
a given track. But we cannot express this property directly as a specification
formula, and use it only indirectly to justify the control requirements below.
More safe treatment of train detection is in terms of instantaneous predicates
In◦ and Out◦, that represent pointwise signals of incoming and going out of
a train. Though being more difficult to treat, such representation gives more
reliable specification because, in order to provide a proof of correctness, we are
to state explicitly the mentioned alternation of arrivals and departures of the
trains.

Notations:
• If f is a function of type T × X → Z
f(t−, X) = r is an abbreviation for ∃ ε > 0∀ τ (t−ε ≤ τ < t → f(τ, X) = r).
f(t+, X) = r is an abbreviation for ∃ ε > 0∀ τ (t < τ ≤ t+ε → f(τ, X) = r).
• A notion describing when the controller may open the gate is stated as

follows:
SafeToOpenSp(t)=df

∀x
[

Emp◦(t, x) ∨ ∀τ ≤ t
(∀τ ′ ∈ [τ, t) Cmg◦(τ ′, x) → t < τ + WaitT ime

)]
.

As compared with [HL96,GH96] we do not pretend that we can prove the Utility
in the initial formulation. Instead of that we take some reasonable formulation in
the chosen vocabulary. And our formulation will give an algorithm with strictly
better Utility than that of the mentioned papers.

The specifications that follow consist of two parts, namely, of specification of
the environment and that of functioning (or control).

Generalized Railroad Crossing Problem: Specification of the Environ-
ment.
(TrStInit) ∀x Emp◦(0, x)
(At the initial moment there are no trains on any track.)

(GtStInit) GtOpnd◦(0)

14

(At the initial moment the gate is opened.)

(GtSt) ∀ t ¬(GtOpnd◦(t) ∧ GtClsd◦(t))
(The gate cannot be closed and opened at the same time, but it can be neither
opened nor closed .)

(DirInit) DirOp◦(0)
(At the initial moment the signal controlling the gate is opened.)

(CrCm) ∀t (
InCr◦(t) → (

t ≥ dmin ∧ ∃x∀ τ ∈ [t− dmin, t] Cmg◦(τ, x)
))

(If a train is in the crossing it had been detected on one of the tracks at least
dmin time before the current moment.)

(OpnOpnd) ∀ t
((

t ≥ dopen ∧ ∀ τ ∈ (t−dopen, t]DirOp◦(τ)
) → GtOpnd◦(t)

)
(If at time t the command has been open for at least a duration dopen then the
gate is opened at time t.)

(ClsClsd) ∀t ((
t ≥ dclose ∧ ∀τ ∈ (t− dclose, t]DirCl◦(τ)

) → GtClsd◦(t)
)

(If at time t the command has been close for at least a duration dclose then the
gate is closed at time t.)

(Cmg)
∀x∀t [

Cmg◦(t, x) →
∃ t0

(
0 < t0 ≤ t ∧ ∀τ ∈ [t0, t] Cmg◦(τ, x) ∧ Emp◦(t−0 , x))

)]

(Emp)
∀x∀t [

Emp◦(t, x) → [∀τ (
0 ≤ τ ≤ t → Emp◦(τ, x)

) ∨
∃ t0

(
0 < t0 ≤ t ∧ ∀τ ∈ [t0, t] Emp◦(τ, x) ∧ Cmg◦(t−0 , x))

)]]
(The two last properties express that the predicate Cmg◦ is true on intervals

closed on the left and opened on the right and that the set of points where the
value changes has no accumulation points.)

(dIneq) 0 < dclose < dmin

(This is trivial constraint on the durations involved, the time for closing is smaller
than the minimum time of reaching the crossing by any train detected as com-
ing.)

Generalized Railroad Crossing: Specification of the Control.
These specifications concern requirements on the functioning.
Safety: ∀t (InCr◦(t) → GtClsd◦(t)).
(When a train is in the crossing, the gate is closed).

Utility: ∀t (SafeToOpenSp(t) → DirOp◦(t)).
(If the zone of control is safe to open at time t then the control signal must be
to open the gate).

One can notice that the formalization of Safety directly follows the informal
specification. On the contrary, we renounce to reformulate straightforwardly the
informal description of Utility because the difficulty of proving it (the other
authors [GH96,HL96] neither prove it in the initial generality). Instead of direct
reformulation we take a formulation that seems natural and can be expressed in

15

FOTL which vocabulary corresponds to that of the informal description of the
problem.

4 PVS Verification of the Generalized RailRoad Crossing
Problem and Heuristics Considerations

In our formalism, a formal verification of Safety of the Generalized RailRoad
Crossing Problem is rather short (about three pages, not taking in account the
initial specification that takes about 2 pages) and is relatively easy to understand.
Its simplicity and readability are incomparable with 73 pages paper [AH98] treat-
ing the case of one track. Moreover, the formalization of [AH98] deviates from
the original formulation of the problem, without proving that this modification
is correct. Recently we have checked this proof with PVS. For this purpose, we
have expressed in PVS the semantics of block GASM starting from the FOTL
formula describing runs that is given in [BS99b]. However, to make the descrip-
tion of GASM runs more practical, we have developed more detailed and efficient
properties of GASM runs. The entire specification in PVS of the requirements
and controller of the Generalized RailRoad Crossing Problem takes less than
four pages.

Heuristics as Pattern Based Strategy.
Our current work on feasible algorithms for the verification of timed systems
(with participation of our colleagues A. Durand, T. Crolard, and student F. Bel-
loni) concerns, in particular, development of strategies for proof search oriented
on the verification problems under discussion. It was noticed in [Sli99,Sli91] that
a basic language to express human considerations about where and what rule to
apply to advance in proof search, is a language of patterns that one can detect
in the current proof search situation. This idea was implemented in [Tar96] for a
particular term rewriting system related to symbolic computations and showed
very encouraging results.

The analysis of our proof search and the obtained proof permits to formulate a
pattern based strategy for verification of real-time block GASM’s. Together with
many known considerations concerning the proof search, this heuristics relies on
the particular role of internal functions. The main part of this heuristics describes
how to process elementary formulas containing internal functions of the GASM
under consideration.

Conclusion.

Our study of the verification problem for timed algorithms, though rather
limited, shows that a logic approach based in particular on GASM ideology, gives
a good basis for developing practical and theoretical tools. However, the fact that
even for this bounded domain there cannot be universal feasible languages to
write requirements and algorithms, implies that one needs some “methodology”
of producing particular tools for particular situations. To build particular tools
rapidly, one needs a collection of well developed components. As an example of

16

such building blocks we may mention a block GASM (maybe divided into some
subclasses), its semantics, its logic, particular rules of inference for verification
proofs, and a collection of patterns and basic strategies to construct more specific
and efficient strategies of proof search. We believe that there could be found
some efficient algorithm of verification if to study carefully the model checking
approach and to generalize it on a first order timed logic.

References

[ACH+95] R. Alur, C. Courcoubetis, N. Halbwachs, T. Henzinger, P.-H. Ho,
X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine. The algorithmic anal-
ysis of hybrid systems. Theoretical Computer Science, 138:3–34, 1995.

[AD94] R. Alur and D. Dill. A theory of timed automata. Theoretical Computer
Science, 126:183–235, 1994.

[AH98] M. Archer and C. Heitmeyer. Mechanical verification of timed automata:
A case study. Technical Report 5546-98-8180, Naval Research Laboratory,
Washington, 1998. NRL Memorandum Report.

[BS97a] D. Beauquier and A. Slissenko. On semantics of algorithms with continuous
time. Technical Report 97–15, Revised version., University Paris 12, Depart-
ment of Informatics, 1997. Available at http://www.eecs.umich.edu/gasm/
and at http://www.univ-paris12.fr/lacl/.

[BS97b] D. Beauquier and A. Slissenko. The railroad crossing problem: Towards
semantics of timed algorithms and their model-checking in high-level lan-
guages. In M. Bidoit and M. Dauchet, editors, TAPSOFT’97: Theory and
Practice of Software Development, pages 201–212. Springer Verlag, 1997.
Lect. Notes in Comput. Sci., vol. 1214.

[BS98] D. Beauquier and A. Slissenko. Decidable verification for reducible timed
automata specified in a first order logic with time. Technical Report 98–
16, University Paris 12, Department of Informatics, 1998. Available at
http://www.univ-paris12.fr/lacl/.

[BS99a] D. Beauquier and A. Slissenko. Decidable classes of the verification problem
in a timed predicate logic. In Proc. of the 12th Intern. Symp. on Fun-
damentals of Computation Theory (FCT’99), Iasi, Rumania, August 30 –
September 3, 1999, Lect. Notes in Comput. Sci, vol. 1684, pages 100–111.
Springer-Verlag, 1999.

[BS99b] D. Beauquier and A. Slissenko. A first order logic for specification of timed
algorithms: Basic properties and a decidable class. Submitted., 1999.

[CHR91] Z. Chaochen, C. A. R. Hoare, and A. Ravn. A calculus of duration. Inform.
Proc. Lett., 40(5):269–279, 1991.

[CS99] J. Cohen and A. Slissenko. On verification of refinements of asynchronous
timed distributed algorithms. Manuscript., October 1999. 15 p. Submitted.

[GH96] Y. Gurevich and J. Huggins. The railroad crossing problem: an experiment
with instantaneous actions and immediate reactions. In H. K. Buening,
editor, Computer Science Logics, Selected papers from CSL’95, pages 266–
290. Springer-Verlag, 1996. Lect. Notes in Comput. Sci., vol. 1092.

[Han94] H. A. Hansson. Time and Probability in Formal Design of Distributed Sys-
tems. Elsevier, 1994. Series: “Real Time Safety Critical System”, vol. 1.
Series Editor: H. Zedan.

17

[HL96] C. Heitmeyer and N. Lynch. Formal verification of real-time systems using
timed automata. In C. Heitmeyer and D. Mandrioli, editors, Formal Methods
for Real-Time Computing, pages 83–106. John Wiley & Sons, 1996. In series:
”Trends in Software”, vol. 5, Series Editor: B. Krishnamurthy.

[HM96] C. Heitmeyer and D. Mandrioli, editors. Formal Methods for Real-Time
Computing, volume 5 of Trends in Software. John Wiley & Sons, 1996.
Series Editor: B. Krishnamurthy.

[HR98] Y. Hirshfeld and A. Rabinovich. Quantitative temporal logic. Manuscript,
11 p., 1998.

[HR99] Y. Hirshfeld and A. Rabinovich. A framework for decidable metrical logics.
In Proc. of ICALP’99. Springer-Verlag, 1999. Lect. Notes in Comput. Sci..
To appear.

[LSVW96] N. Lynch, R. Segala, F. Vaandrager, and H. Weinberg. Hybrid i/o ao-
tomata. In Proc. of DIMACS/SYCON Workshop on Verification and Con-
trol of Hybrid Systems (Hybrid Systems III: Verification and Control),
New Brunswick, New Jersey, October 1995, Lect. Notes in Comput. Sci,
vol. 1066, pages 496–510. Springer-Verlag, 1996.

[MP92] Z. Manna and A. Pnueli. Temporal Logic of Reactive and Concurrent Sys-
tems: Specification. Springer Verlag, 1992.

[Pnu77] A. Pnueli. The temporal logic of programs. In Proc. IEEE 18th Annu.
Symp. on Found. Comput. Sci., pages 46–57, New York, 1977. IEEE.

[PVS] PVS. WWW site of PVS papers. http://www.csl.sri.com/sri-csl-fm.html.
[Rab97] A. Rabinovich. Decidability in monadic logic of order over finitely variable

signals. Manuscript, 15 p., 1997.
[Rab98a] A. Rabinovich. Expressive completeness of duration calculus. Manuscript,

33 p., 1998.
[Rab98b] A. Rabinovich. On the decidability of continuous time specification for-

malisms. J. of Logic and Computation, 8(5):669–678, 1998.
[Sli91] A. Slissenko. On measures of information quality of knowledge processing

systems. Information Sciences: An International Journal, 57–58:389–402,
1991.

[Sli99] A. Slissenko. Minimizing entropy of knowledge representaion. In Proc. of the
2nd International Conf. on Computer Science and Information Technolo-
gies, August 17–22, 1999, Yerevan, Armenia, pages 2–6. National Academy
of Sciences of Armenia, 1999.

[Som92] I. Sommerville. Software Engineering. Addison-Wesley, 4th edition, 1992.
[Tar96] V. V. Tarasov. Inference search control in expert systems based on explicit

meta-rules of inference search. PhD thesis, St. Petersgurg Institute for In-
formatics and automation, Russian Academy of Sciences, 1996. (Russian.).

[Tra98] B. Trakhtenbrot. Automata and hybrid systems. Lecture Notes 153, Uppsala
University, Computing Science Department, 1998. Edited by F. Moller and
B. Trakhtenbrot.

[Var96] M. Vardi. An automata-theoretic approach to linear temporal logic. In
F. Moller and G. Birtwistle, editors, Logic for Concurrency. Structure versus
Automata, pages 238–266. Springer-Verlag, 1996. Series: “Lecture notes in
Computer Science (Tutorial)”, Vol. 1043.

18

